首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructose feeding has been widely reported to cause hypertension in rats, as assessed indirectly by tail cuff plethysmography. Because there are potentially significant drawbacks associated with plethysmography, we determined whether blood pressure changes could be detected by long-term monitoring with telemetry in age-matched male Sprague-Dawley rats fed either a normal or high-fructose diet for 8 weeks. Fasting plasma glucose (171+/-10 versus 120+/-10 mg/dL), plasma insulin (1.8+/-0.5 versus 0.7+/-0.1 microg/L), and plasma triglycerides (39+/-2 versus 30+/-2 mg/dL) were modestly but significantly elevated in fructose-fed animals. Using the hyperinsulinemic euglycemic clamp technique, the rate of glucose infusion necessary to maintain equivalent plasma glucose was significantly reduced in fructose-fed compared with control animals (22.9+/-3.6 versus 41.5+/-2.9 mg/kg per minute; P<0.05). However, mean arterial pressure (24-hour) did not change in the fructose-fed animals over the 8-week period (111+/-1 versus 114+/-2 mm Hg; week 0 versus 8), nor was it different from that in control animals (109+/-2 mm Hg). Conversely, systolic blood pressure measured by tail cuff plethysmography at the end of the 8-week period was significantly greater in fructose-fed versus control animals (162+/-5 versus 139+/-1 mm Hg; P<0.001). Together, these data demonstrate that long-term fructose feeding induces mild insulin resistance but does not elevate blood pressure. We propose that previous reports of fructose-induced hypertension reflect a heightened stress response by fructose-fed rats associated with restraint and tail cuff inflation.  相似文献   

2.
Woods LL  Weeks DA  Rasch R 《Hypertension》2001,38(3):337-342
The present study was designed to determine whether adult hypertension caused by a reduced number of nephrons from birth is due to preceding glomerular damage. Newborn male Sprague-Dawley rat pups were uninephrectomized during the first 24 hours after birth (UNX rats). At 20 weeks of age, chronically instrumented UNX animals were hypertensive on a normal-sodium (0.20%) diet compared with sham-operated controls (142+/-2 versus 124+/-2 mm Hg in controls). Body weights and the total kidney-to-body weight ratio were not significantly different in adult UNX animals compared with controls. Glomerular filtration rate (GFR) was reduced by 49% in UNX rats (1.85+/-0.24 versus 3.65+/-0.22 mL/min). Urine protein excretions were higher in UNX rats (20+/-2 versus 7+/-1 mg/d in controls). On a high-sodium (3.15%) diet, arterial pressure increased more in UNX than in controls (28+/-9 versus 3+/-1 mm Hg). In contrast, in animals studied at 8 weeks of age, GFR was only reduced by 26% in UNX animals (2.02+/-0.06 versus 2.73+/-0.07 mL/min). Their hypertension (125+/-2 versus 117+/-2 mm Hg) was also salt sensitive (increase on high-sodium diet of 35+/-11 versus 8+/-2 mm Hg in controls) but was not associated with proteinuria or histological signs of glomerular disease. Number of glomeruli per kidney in UNX animals was not different from controls, but individual glomerular volume increased by 41%. Thus, surgical removal of 50% of the nephrons, when done during development, causes reduced renal function and salt-sensitive hypertension in adulthood. Hypertension is present earlier in life than signs of glomerular disease, which suggests that hypertension is a major contributor to rather than primarily resulting from onset of renal disease.  相似文献   

3.
The objective of this study was to determine the effect of pioglitazone on blood pressure (BP) and oxidative balance in obese, hypertensive, Sprague-Dawley rats and to identify some of the molecular mechanisms involved. After 12 weeks of a moderately high-fat diet, rats diverged into obesity-prone (OP) and obesity-resistant (OR) groups (n=6 per group). At the end of the diet, peroxisome proliferator activated receptor-gamma (PPARgamma) mRNA expression and activity in the renal cortex and medulla of OP rats were significantly lower compared with that in OR rats. Pioglitazone treatment increased PPARgamma expression and activity in OP rats, suggesting a possible direct ligand-related effect of pioglitazone. As opposed to the untreated OP group, which showed moderate hypertension (systolic BP=159+/-5.3 mm Hg) after 12 weeks, pioglitazone-treated rats were normotensive (systolic BP=123.9+/-2.7 mm Hg). Insulin production was reduced by 2-fold in the OP group treated with pioglitazone. Urinary isoprostanes and renal lipid peroxides were also reduced in OP rats treated with pioglitazone compared with untreated counterparts. Also, expression of p47phox and gp91phox, both increased in OP versus OR rats, was reduced in the former by pioglitazone treatment. In addition, pioglitazone treatment increased nitrate/nitrite excretion and expression of renal endothelial and neuronal nitric oxide synthase. Collectively, the results show that pioglitazone treatment prevented hypertension and renal oxidative stress both by reducing free-radical production and by increasing nitric oxide production/availability.  相似文献   

4.
The present study tested the hypothesis that cytochrome P-450 (CYP) metabolites of arachidonic acid (AA) are involved in mediating hypertension and renal vasoconstriction during chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats. 1-aminobenzotriazole (ABT), a CYP enzyme inhibitor (25 mg/kg per day), or vehicle (saline 0.9%) was administered for 7 days to normal pregnant (NP) rats and to pregnant rats with chronic RUPP. RUPP rats infused with vehicle showed significantly (P<0.01) higher mean arterial pressure (MAP) (130+/-2 versus 106+/-1 mm Hg), renal vascular resistance (RVR) (22.6+/-1.8 versus 16.3+/-1.1 mm Hg/mL per minute) and lower (P<0.05) glomerular filtration rate (GFR) (1.6+/-0.1 versus 2.3+/-0.1 mL/min) than NP rats. ABT decreased (P<0.01) MAP in RUPP rats (111+/-1 mm Hg), whereas it had no effect in NP rats (108+/-2 mm Hg). CYP inhibition also attenuated the differences in renal hemodynamics observed between NP and RUPP rats. After treatment with ABT, RVR and GFR were similar in RUPP rats (19.3+/-1.5 mm Hg/mL per minute and 2.0+/-0.2 mL/min, respectively) and NP rats (16.3+/-2.4 mm Hg/mL per minute and 2.4+/-0.2 mL/min). The effects of CYP enzymes inhibitor in RUPP rats were associated with a reduction (P<0.05) of 20-HETE formation (32%) and a decreased (P<0.05) expression (33%) of CYP4A protein in renal cortex. In contrast, renal epoxygenase activity did not change in these animals. These results suggest that 20-HETE contributes to hypertension and renal vasoconstriction induced by chronic RUPP in pregnant rats.  相似文献   

5.
6.
Role of chloride in angiotensin II-induced salt-sensitive hypertension   总被引:2,自引:0,他引:2  
Y Sato  E Ogata  T Fujita 《Hypertension》1991,18(5):622-629
The present study investigated the effect of the anion accompanying sodium on the development of angiotensin II-induced hypertension in rats and the role of the sympathetic nervous system and extracellular fluid volume in its mechanism. Hypertension was induced by intraperitoneal infusion of angiotensin II (125 ng/min) for 12 days via miniosmotic pump. High dietary intake of sodium chloride significantly augmented the angiotensin II-induced hypertension (mean blood pressure on day 13, 165 +/- 6 versus 142 +/- 6 mm Hg, p less than 0.05), but equimolar sodium loading provided as sodium citrate failed to enhance angiotensin II hypertension (140 +/- 6 mm Hg). Plasma norepinephrine concentration in the conscious, resting state increased with sodium chloride loading in angiotensin II-infused rats (594 +/- 42 versus 312 +/- 37 pg/ml, p less than 0.01), but it remained unchanged with sodium citrate loading (324 +/- 23 pg/ml). Correspondingly, maximum response to hexamethonium bromide, a ganglion blocker, was greater in sodium chloride-loaded angiotensin II rats (77.7 +/- 4.6 mm Hg) than that in angiotensin II (59.7 +/- 5.1 mm Hg) or in sodium citrate-loaded angiotensin II (57.7 +/- 4.2 mm Hg) rats. Moreover, extracellular fluid volume, measured as Na2(35)SO4 space, increased in sodium chloride-loaded angiotensin II rats (427 +/- 18 ml/kg body wt) as compared with that in angiotensin II rats (375 +/- 15 ml/kg body wt) but not when compared with volume in sodium citrate-loaded angiotensin II (389 +/- 7 ml/kg body wt) rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The aim of this study was to determine the contribution of NO to arterial pressure and heart rate variability in normotensive rats subjected to high sodium intake. Arterial pressure, heart rate, and arterial pressure and heart rate variability, baroreflex sensitivity, and pressure responsiveness were measured in male Wistar rats treated for 6 weeks (control and high sodium [1%] intake groups), before and after acute NO synthesis blockade. After treatment, no changes were observed in arterial pressure or heart rate. Arterial pressure variability was increased after sodium intake; however, heart rate variability and baroreflex sensitivity were not modified in high-sodium rats. NO synthase blockade increased arterial pressure in both groups but was higher in the high-sodium group (from 110+/-5 to 162+/-1.5 mm Hg) compared with the control group (from 109+/-6.7 to 144+/-10 mm Hg). The increase in arterial pressure was accompanied by a decrease in heart rate (from 354+/-28 to 303+/-25 bpm in control rats and from 380+/-34 to 298+/-30 bpm in high-sodium rats). NO synthase blockade increased the tachycardic response to sodium nitroprusside in high-sodium rats. Arterial pressure variability, evaluated by a nonlinear method (3D return maps), showed a larger reduction in response to NO synthase inhibition in the high-sodium group (from 162+/-26 to 34.8+/-8.6 for general index of beat-to-beat blood pressure variability) than in the control group (from 58+/-9.6 to 36+/-4.7 for general index of beat-to-beat blood pressure variability). Heart rate variability, evaluated by the SD of the R-R intervals, was not changed in control rats but was increased by NO synthase inhibition in the high-sodium rats (from 9.5+/-0.2 to 21.9+/-1.7 milliseconds). These findings suggest an important role for increased NO production in adaptation to high-sodium intake. The increase in NO system sensitivity in high-sodium intake may contribute to changes in the autonomic nervous system regulating heart rate and, especially, arterial pressure variability.  相似文献   

8.
To investigate the role of thromboxane A(2) in the development of hypertension in the fructose-fed rat, we treated male fructose-fed rats with dazmegrel (a thromboxane synthase inhibitor) and monitored blood pressure, fasting plasma parameters, and insulin sensitivity for 7 weeks. Systolic blood pressure was measured each week using tail plethysmography, and an oral glucose tolerance test was performed at the end of the study to assess insulin sensitivity. Treatment with a 60% fructose diet and dazmegrel (100 mg. kg(-1). d(-1) via oral gavage) was initiated on the same day. Plasma triglyceride levels increased 2-fold in both fructose- and fructose/dazmegrel-treated groups, and plasma insulin levels tended to be higher in these groups, although not significantly. Systolic blood pressure increased significantly throughout the study in the fructose-fed group only (132+/-3 versus 112+/-4 mm Hg in control rats, 118+/-2 mm Hg in control-treated rats, 116+/-2 mm Hg in fructose-treated rats). Both fructose groups demonstrated a higher peak insulin response to oral glucose challenge and had 40% to 60% lower insulin sensitivity index values. The results of this study show that treatment with a thromboxane synthase inhibitor, dazmegrel, can prevent the development of hypertension but does not improve insulin sensitivity or other fructose-induced metabolic impairments. Based on these data, we conclude that the potent vasoconstrictor thromboxane is involved in the link between hyperinsulinemia/insulin resistance and hypertension.  相似文献   

9.
Kopkan L  Majid DS 《Hypertension》2006,47(3):568-572
An enhancement of superoxide (O2-) activity was shown to contribute to the development of hypertension induced by NO deficiency. To better understand the mechanistic role of O2- in this NO-deficient hypertension, we evaluated the renal responses to acute intraarterial administration of an O2- scavenger, tempol (50 microg/min per 100 g of body weight) in anesthetized male Sprague-Dawley rats treated with NO synthase inhibitor nitro-L-arginine methyl ester (15 mg/kg per day in drinking water, n=7) for 4 weeks, which caused increases in mean arterial pressure (146+/-3 versus 124+/-2 mm Hg) compared with normotensive control rats (n=6). Hypertensive rats had higher renal vascular resistance (29+/-2 versus 20+/-1 mm Hg/mL per minute per gram), as well as lower renal blood flow (5.2+/-0.3 versus 6.3+/-0.2 mL/min per gram; cortical blood flow, 153+/-13 versus 191+/-8 perfusion units; medullary blood flow, 43+/-2 versus 51+/-3 perfusion units) and glomerular filtration rate (0.69+/-0.04 versus 0.90+/-0.05 mL/min per gram) without a significant difference in urinary sodium excretion (0.81+/-0.07 versus 0.86+/-0.12 micromol/min per gram) compared with normotensive rats. Urinary 8-isoprostane excretion rate (6.8+/-0.7 versus 4.5+/-0.3 pg/min per gram) was higher in hypertensive than normotensive rats. Intraarterial infusion of tempol did not alter renal function in normotensive rats. However, tempol significantly decreased renal vascular resistance by 12+/-2% and urinary 8-isoprostane excretion rate by 24+/-4% and increased renal blood flow by 10+/-2%, cortical blood flow by 9+/-2%, medullary blood flow by 15+/-6%, glomerular filtration rate by 11+/-3%, and urinary sodium excretion by 19+/-5% in hypertensive rats. These data indicate that enhanced O2- activity modulates renal hemodynamics and excretory function during reduced NO production and, thus, contributes to the pathophysiology of the NO-deficient form of hypertension.  相似文献   

10.
BACKGROUND: Renal stent placement improves or cures hypertension in only 60-70% of patients with renal artery stenosis (RAS) and uncontrolled hypertension. There is a need to better identify patients who are likely to respond to percutaneous renal revascularization. We investigated whether an abnormal renal fractional flow reserve (FFR) would predict blood pressure improvement in patients undergoing renal artery stent placement. METHODS: We prospectively enrolled 17 patients with unilateral RAS and medically refractory hypertension (BP > 140/90 mm Hg). Renal FFR was measured at maximal hyperemia induced by papaverine followed by renal stent placement. Blood pressure improvement was defined as a blood pressure of 相似文献   

11.
The effects of renal denervation on the onset and maintenance of one-kidney, one clip Goldblatt (1K1C) hypertension were determined. Renal denervation was performed at the time of 1K1C surgery, and was repeated at 3-week intervals to prevent renal nerve regeneration. Denervation delayed the onset of 1K1C hypertension by about 5 weeks, but the final hypertensive state was unaltered. Mean arterial pressure (MAP) averaged 196 +/- 11.4 mm Hg in six rats at 9 weeks after 1K1C surgery and 194 +/- 11.3 mm Hg in eight renal-denervated rats at this time. The delay in the development of 1K1C hypertension following renal denervation could not be explained by interference with renin release. This delay in the development of hypertension could be prevented, however, in renal-denervated 1K1C rats by substituting saline for the drinking water. Two weeks after 1K1C surgery and a high sodium diet, MAP averaged 164 +/- 6.4 mm Hg in eight rats rats with intact renal nerves and 173 +/- 4.8 mm Hg in nine renal-denervated rats. Intact renal nerves are not necessary for the development or maintenance of 1K1C hypertension. Renal denervation delays development of 1K1C hypertension, possibly by delaying the ability of these rats to retain sodium.  相似文献   

12.
Insulin resistance and impairment of the renal depressor system have been thought to be involved in the development of essential hypertension. However, the relationship between insulin resistance and this system is still unclear. To clarify this relationship, we investigated the role of the renal depressor system in a rat model of insulin-resistant hypertension. Sprague-Dawley rats were fed a standard diet (control) or a fructose-rich diet (FFR), and their blood pressures were measured every week. Urinary dopamine (uDA), urinary kallikrein (uKAL) activity and urinary nitric oxide (uNOx) levels were also measured each week, and the renal mRNA expression levels of endothelial nitric oxide synthase (eNOS), aromatic-L-amino-acid decarboxylase (AADC), and kallikrein (KAL) activity were compared at the end of the study. The blood pressure of FFR was elevated significantly from 2 weeks after the start of fructose loading. The uDA level was lower in FFR than in control rats throughout the study period (p<0.01), and the expression level of AADC mRNA was enhanced in FFR (p<0.05). There was a tendency of negative correlation between uDA level and systolic blood pressure (SBP) (r=-0.49, p=0.056). uNOx level was lower in FFR throughout the study period (p<0.05), and the eNOS mRNA expression level in the kidney was lower in FFR than in control rats (p<0.05). There was a negative correlation between uNOx level and SBP (r=-0.68, p <0.01). On the other hand, there was no significant difference in the kallikrein-kinin system between FFR and control rats. In conclusion, impairment in functions of the renal dopamine and NO systems occur in FFR, and this impairment may be caused by insulin resistance and may contribute to the development of hypertension.  相似文献   

13.
We hypothesized that the downregulation of Cyp2c by tumor necrosis factor (TNF) alpha contributes to hypertension and renal injury in salt-sensitive angiotensin hypertension. Male Sprague-Dawley rats were fed a high-salt diet (8% NaCl), and osmotic minipumps were implanted to deliver angiotensin II for 14 days. Rats were divided into 3 groups: high salt, angiotensin high salt, and angiotensin high salt administered the TNF-alpha blocker, etanercept. Arterial pressure increased from 94+/-5 to 148+/-7 mm Hg during week 1 in the angiotensin high-salt group, whereas etanercept slowed blood pressure elevation during the first week in the treated group (90+/-2 to 109+/-6 mm Hg). After 2 weeks, arterial pressure increased to 156+/-11 mm Hg in the angiotensin high-salt group and 141+/-6 mm Hg in the etanercept-treated group. Albuminuria and proteinuria were significantly elevated in angiotensin high-salt rats and were reduced in the etanercept-treated rats. Urinary monocyte chemoattractant protein-1 excretion significantly increased in the angiotensin high-salt group (275+/-47 versus 81+/-19 ng/day) and was decreased in the etanercept-treated group (153+/-31 ng/day). Angiotensin high-salt rats also had a significant increase in renal monocyte/macrophage infiltration, and this was again attenuated by etanercept treatment. Renal expression of Cyp2c23 decreased, whereas renal epoxide hydrolase expression increased in angiotensin high-salt rats. Etanercept treatment increased Cyp2c23 expression and lowered epoxide hydrolase expression. These data suggest that TNF-alpha contributes to downregulation of Cyp2c23, blood pressure regulation, and renal injury in angiotensin high-salt hypertension.  相似文献   

14.
The importance of nephron endowment and salt intake for the development of hypertension is under debate. The present study was designed to investigate whether reduced nephron number, after completion of nephrogenesis, or chronic salt loading causes renal injury and salt-sensitive hypertension in adulthood. Rats were operated at 3 weeks of age (after completed nephrogenesis) and then subjected to either normal or high-salt diets for 6 to 8 weeks. Four different experimental groups were used: sham-operated animals raised with normal-salt diet (controls) or high-salt diet (HS) and uninephrectomized animals raised with normal-salt diet (UNX) or high-salt diet (UNX+HS). In the adult animals, renal and cardiovascular functions were evaluated and blood pressure recorded telemetrically under different sodium conditions (normal, high, and low). Hypertension was present in UNX+HS (122+/-9 mm Hg), UNX (101+/-3 mm Hg), and HS (96+/-1 mm Hg) groups on normal-salt diets compared with the controls (84+/-2 mm Hg), and the blood pressure was salt sensitive (high- versus normal-salt diet; 23+/-3, 9+/-2, 7+/-2, and 1+/-1 mm Hg, respectively). The hypertensive groups (UNX+HS, UNX, and HS) had increased diuresis and reduced ability to concentrate urine. The glomerular filtration rate (milliliters per minute) in anesthetized rats was reduced in the UNX+HS (2.36+/-0.30) and UNX animals (2.00+/-0.31) compared with both HS animals (3.55+/-0.45) and controls (3.01+/-0.35). Hypertensive groups displayed reduced plasma renin concentrations during high sodium conditions and hypertrophic kidneys and hearts with various degrees of histopathologic changes. In conclusion, at a young age after completed nephrogenesis, uninephrectomy or chronic salt loading causes renal and cardiovascular injury with salt-sensitive hypertension.  相似文献   

15.
Zhou MS  Jaimes EA  Raij L 《Hypertension》2004,44(2):186-190
Statins, inhibitors of cholesterol biosynthesis, are endowed with pleiotropic effects that may contribute to their favorable clinical results. Hypertensive Dahl salt-sensitive (DS) rats have endothelial dysfunction and cardiorenal injury associated with decreased NO bioavailability and increased superoxide (O2-) production linked to a functional upregulation of angiotensin II. We investigated whether atorvastatin (30 mg/kg per day; by gavage) would prevent endothelial nitric oxide (eNOS) downregulation and the increase in O2- in DS rats, thereby reducing end-organ injury. DS rats given a high-salt diet (4% NaCl) for 10 weeks developed hypertension (systolic blood pressure [SBP] 200+/-8 versus 150+/-2 mm Hg in DS rats fed 0.5% NaCl diet [NS]; P<0.05), impaired endothelium-dependent relaxation, functional upregulation of endothelin-1, left ventricular hypertrophy (LVH; 30%), and proteinuria (167%), accompanied by downregulation of aortic eNOS activity (0.7+/-0.2 versus 1.8+/-0.3 nmol/min per gram protein in NS; P<0.05) and increased aortic O2- (2632+/-316 versus 1176+/-112 counts/min per milligram in NS; P<0.05) and plasma 8-F2alpha isoprostanes. Atorvastatin prevented the decrease in eNOS activity (1.5+/-0.3 nmol/min per gram protein) as well as the increase in O2- (1192+/-243 counts/min per milligram) and plasma 8-F2alpha isoprostanes, reduced LVH and proteinuria, and normalized endothelial function and vascular response to endothelin-1, although reduction in SBP was modest (174+/-8 mm Hg). Atorvastatin combined with removal of high salt normalized aortic eNOS activity, SBP, LVH, and proteinuria. These findings strongly suggest that concomitant prevention of vascular eNOS downregulation and inhibition of oxidative stress may contribute to the protection against end-organ injury afforded by this statin in salt-sensitive hypertension.  相似文献   

16.
The aim of this study was to examine the role of muscle fiber composition in insulin resistance and the effect of a calcium channel antagonist on insulin sensitivity in fructose-induced insulin resistant and hypertensive rats. Six-week-old male Sprague-Dawley rats were fed either normal rat chow (control) or fructose-rich diet (FFR). For the last 2 weeks of a 6-week period of either diet, the rats were treated, by gavage, with gum arabic solution (control or FFR) or a dihydropyridine calcium channel antagonist, benidipine hydrochloride (3 mg/kg/day: FFR + Ca), then the euglycemic hyperinsulinemic glucose clamp technique was performed to evaluate insulin sensitivity. Blood pressure was measured weekly for 6 weeks. At the end of the glucose clamp, the soleus muscle was dissected out for determination of muscle fiber composition by ATPase methods. Blood pressure was elevated at 2 weeks after the start of fructose-rich chow feeding and persisted thereafter throughout the study. Blood pressure at the glucose clamp in the FFR was significantly higher than that in the control group (142 +/- 2 v 155 +/- 2 mm Hg, P < .01) and the calcium antagonist significantly lowered blood pressure of FFR (136 +/- 6 mm Hg for FFR +/- Ca, P < .05). The average rate of glucose infusion during glucose clamp, as a measure of insulin sensitivity (M value), was significantly lower in the FFR than in the control (15.4 +/- 0.4 v 10.9 +/- 0.6 mg/kg/min, P < .01). The calcium channel antagonist partially improved the M value compared to that of FFR (13.4 +/- 0.7 mg/kg/min in FFR +/- Ca, P < .01 compared to FFR, P < .05 compared to control). The composite ratio of type I fiber in soleus muscle was significantly decreased in FFR compared to control (81.7 +/- 1.5% v 75.0 +/- 1.7%, P < .01), and the composite ratio of type I fiber in rats treated with the calcium channel antagonist (FFR +/- Ca) recovered to the control level (79.9 +/- 1.1%, P < .05 compared to FFR). The M value was significantly correlated with the compositions of type I and type II fibers (for type I fibers, r = 0.80, P < .01; for type II fibers, r = -0.81, P < .01). These results suggest that fiber composition of skeletal muscle links insulin resistance and that a calcium channel antagonist may modulate muscle fiber composition in hypertensive animal model, fructose-fed rats.  相似文献   

17.
The goal of this study was to determine the role of prostanoids in a new model of mineralocorticoid-dependent hypertension induced by the subcutaneous infusion of aldosterone (1 micrograms/hr) to normal male Sprague-Dawley rats. This regimen caused a mild and gradual increase in systolic pressure over a period of 4 weeks (113 +/- 1 vs. 137 +/- 3 mm Hg) and was associated with an increase in the in vivo formation of prostaglandins I2 and E2 and of thromboxane A2 in the kidney. High sodium intake induced a fall in the urinary levels of prostaglandin E2 and a rise in the arterial pressure of control rats (126 +/- 1 vs. 113 +/- 1 mm Hg) but did not influence aldosterone-induced hypertension. Indomethacin (3.0 mg/kg/day) caused a profound inhibition of the in vivo synthesis of prostaglandin I2 and thromboxane A2 without modifying the renal production of prostaglandin E2. Although indomethacin exerted no effect on aldosterone-induced hypertension in rats fed a normal diet, it caused a further rise in systolic pressure in aldosterone-treated rats fed a high sodium diet (157 +/- 6 vs. 140 +/- 4 mm Hg). The results of this study in a model of aldosterone-induced mild hypertension in the rat indicate that 1) aldosterone exerts a stimulatory effect on the renal synthesis of prostanoid, particularly prostaglandin E2; 2) thromboxane A2 and prostaglandin I2 do not seem to play a role in aldosterone-induced hypertension under conditions of normal dietary salt intake, whereas the role of prostaglandin E2 is unclear; 3) there is enough sodium in a normal diet to allow for the maximal expression of the hypertensive effect of aldosterone; 4) prostaglandin I2 seems to play a significant role in modulating the cardiovascular impact of a high sodium diet in aldosterone-treated rats; and 5) the renal biosynthesis of prostaglandin E2 is particularly resistant to the inhibitory effect of indomethacin in vivo.  相似文献   

18.
The importance of increased endogenous digitalis-like factor (EDLF) in volume-expanded hypertension has been generally agreed. To further clarify the role of EDLF on the development of hypertension and renal water-sodium handling in 5/6 reduced renal mass hypertensive rats (RRM), we studied the effects of acute administration of digoxin-specific antibody Fab fragment (Digibind) in the early phase and the chronic phase of hypertension in RRM. RRM and sham-operated rats were given 1% saline for 1 or 4 weeks. RRM were injected Digibind (60 mg/kg) or vehicle (0.9% saline) intravenously in the first or fourth week under thiobutabarbital anesthesia. All sham-operated rats were administered Digibind under the same condition. Digibind altered neither blood pressure, heart rate, urine volume, nor urinary sodium excretion in sham-operated rats. However, Digibind produced a gradual but significant decline in mean arterial pressure to the level slightly above that in sham-operated rats from 153 +/- 5 to 131 +/- 5 mm Hg in the first week and from 181 +/- 6 to 129 +/- 4 mm Hg in the fourth week without any significant change in heart rate. The decrease in mean arterial pressure at 160 min after Digibind administration in the fourth week (-48 +/- 5 mm Hg) was greater than that in the first week (-22 +/- 4 mm Hg). No differences were observed in urine volume, urinary sodium excretion, or plasma norepinephrine concentration between Digibind and vehicle-treated RRM in either week. These data suggest that EDLF would contribute to both the early and chronic phase in the development of hypertension in RRM.  相似文献   

19.
The present study was intended to determine whether the long-term V2 receptor-mediated effects of vasopressin on sodium reabsorption in the renal collecting duct is an aggravating factor in salt-sensitive hypertension. Deoxycorticosterone acetate (DOCA)-salt hypertension was induced in uninephrectomized rats that had been chronically pretreated with a V2 agonist (dDAVP; 1-deamino-8D-arginine vasopressin; 0.6 microg/kg.d) or a V2 antagonist (SR121463, 3 mg/kg.d) or were untreated. Plasma osmolality and natremia were not significantly different in the groups. Blood pressure was significantly increased by dDAVP pretreatment (+11 mm Hg; P = 0.006), and this effect was exacerbated after DOCA-salt-induced hypertension (+17 mm Hg; P = 0.042). The dDAVP-treated rats had a lower hematocrit (40 +/- 2% vs. 47 +/- 1% and 45 +/- 2%) and markedly higher albuminuria (91 +/- 9 vs. 17 +/- 8 and 15 +/- 8 mg/d), mortality rate (50% vs. 0% and 0%), and cardiac and renal hypertrophy than the control and SR121463 groups. Histological renal lesions were worsened by V2 agonism and prevented by V2 antagonism. Renal mRNA expression of beta- and gamma-subunits of the epithelial sodium channel was significantly increased by dDAVP treatment (P < 0.05). These findings provide evidence that chronic stimulation of vasopressin V2 receptor raises basal blood pressure in rats and exacerbates the development of DOCA-salt hypertension, organ damage, and mortality. These effects could be due at least in part to the sustained stimulation of sodium reabsorption by epithelial sodium channel in the distal part of the nephron, which promotes sodium retention.  相似文献   

20.
Recent reports have indicated that endothelin-induced vasoconstriction in isolated aortic vascular rings may be mediated by the production of superoxide anion. The purpose of this study was to determine the role of superoxide anion in mediating the chronic renal and hypertensive actions of endothelin. Endothelin-1 (5 pmol/kg per minute) was chronically infused into the jugular vein by use of mini-osmotic pump for 9 days in male Sprague-Dawley rats and in rats treated with the superoxide anion scavenger tempol (30 mg/kg per day). Mean arterial pressure in the endothelin-1-treated rats was 141+/-3 mm Hg, compared with 125+/-2 mm Hg in control rats. Endothelin-1 increased renal vascular resistance (15.3+/-2.5 versus 10+/-1.3 mm Hg/mL per minute) and decreased renal plasma flow (6.5+/-0.9 versus 8.7+/-0.7 mL/min) in control rats. Endothelin-1 also significantly increased TBARS in the kidney and urinary 8-isoprostaglandin F2alpha excretion. The increase in arterial pressure in response to endothelin-1 was completely abolished by tempol (127+/-4 versus 127+/-4 mm Hg). Tempol also markedly attenuated the renal plasma flow and renal vascular resistance response to endothelin-1. Tempol also significantly decreased the level of 8-isoprostaglandin F2alpha in the endothelin-1-treated rats. Tempol had no effect on arterial pressure or renal hemodynamics in control rats. These data indicate that formation of reactive oxygen species may play an important role in mediating hypertension induced by chronic elevations in endothelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号