首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin D plays a central role in bone regeneration, and its insufficiency has been reported to have profound negative effects on implant osseointegration. The present study aimed to test the in vitro biological effect of titanium (Ti) implants coated with UV-activated 7-dehydrocholesterol (7-DHC), the precursor of vitamin D, on cytotoxicity and osteoblast differentiation. Fourier transform infrared spectroscopy confirmed the changes in chemical structure of 7-DHC after UV exposure. High-pressure liquid chromatography analysis determined a 16.5 ± 0.9% conversion of 7-DHC to previtamin D3 after 15 min of UV exposure, and a 34.2 ± 4.8% of the preD3 produced was finally converted to 25-hydroxyvitamin D3 (25-D3) by the osteoblastic cells. No cytotoxic effect was found for Ti implants treated with 7-DHC and UV-irradiated. Moreover, Ti implants treated with 7-DHC and UV-irradiated for 15 min showed increased 25-D3 production, together with increased ALP activity and calcium content. Interestingly, Rankl gene expression was significantly reduced in osteoblasts cultured on 7-DHC-coated Ti surfaces when UV-irradiated for 15 and 30 min to 33.56 ± 15.28% and 28.21 ± 4.40%, respectively, compared with the control. In conclusion, these findings demonstrate that UV-activated 7-DHC is a biocompatible coating of Ti implants, which allows the osteoblastic cells to produce themselves active vitamin D, with demonstrated positive effects on osteoblast differentiation in vitro.  相似文献   

2.
This study investigated the surface characteristics, in vitro and in vivo biocompatibility of Ti–6Al–4V alloy implants incorporating strontium ions (Sr), produced by hydrothermal treatment using a Sr-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, contact angle and surface energy measurement and inductively coupled plasma-mass spectroscopy (ICP-MS). Human osteoblast-like cell (MG63) attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Sr-containing Ti–6Al–4V surfaces were compared with untreated Ti–6Al–4V surfaces. Fifty-six screw implants (28 control and 28 experimental) were placed in the tibiae and femoral condyles of seven New Zealand White rabbits. The osteoconductivity of Sr-containing Ti–6Al–4V implants was evaluated by removal torque testing and histomorphometric analysis after 4 weeks implantation. Hydrothermal treatment produced a crystalline SrTiO3 layer. ICP-MS analysis showed that Sr ions were released from treated surfaces into the solution. Significant increases in ALP activity (P = 0.000), mRNA expressions of key osteoblast genes (osterix, bone sialoprotein, and osteocalcin), removal torque values (P < 0.05) and bone–implant contact percentages (P < 0.05) in both cortical and cancellous bone were observed for Sr-containing Ti–6Al–4V surfaces. The results indicate that the Sr-containing oxide layer produced by hydrothermal treatment may be effective in improving the osseointegration of Ti–6Al–4V alloy implants by enhancing differentiation of osteoblastic cells, removal torque forces and bone apposition in both cortical and cancellous bone.  相似文献   

3.
Metallic biomaterials are widely used to restore the lost structure and functions of human bone. Due to the large number of joint replacements, there is a growing demand for new and improved orthopedic implants. More specifically, there is a need for novel load-bearing metallic implants with low effective modulus matching that of bone in order to reduce stress shielding and consequently increase the in vivo lifespan of the implant. In this study, we have fabricated porous Ti6Al4V alloy structures, using laser engineered net shaping (LENS?), to demonstrate that advanced manufacturing techniques such as LENS? can be used to fabricate low-modulus, tailored porosity implants with a wide variety of metals/alloys, where the porosity can be designed in areas based on the patient’s need to enhance biological fixation and achieve long-term in vivo stability. The effective modulus of Ti6Al4V alloy structures has been tailored between 7 and 60 GPa and porous Ti alloy structures containing 23–32 vol.% porosity showed modulus equivalent to human cortical bone. In vivo behavior of porous Ti6Al4V alloy samples in male Sprague–Dawley rats for 16 weeks demonstrated a significant increase in calcium within the implants, indicating excellent biological tissue ingrowth through interconnected porosity. In vivo results also showed that total amount of porosity plays an important role in tissue ingrowth.  相似文献   

4.
《Acta biomaterialia》2014,10(3):1451-1462
Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li+). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li+ content, bone–implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li+. Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm−2 released Li+. Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm−2 released Li+, but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li+, is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity.  相似文献   

5.
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials β-tricalcium phosphate (β-TCP), processed human spongiosa (Tutoplast?) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log10 cfu per sample) were highest on β-TCP (S. aureus 7.67 ± 0.17; S. epidermidis 8.14 ± 0.05) while bacterial density (log10 cfu per surface) was highest on PMMA (S. aureus 6.12 ± 0.2, S. epidermidis 7.65 ± 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (β-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between β-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.  相似文献   

6.
The acetabular cup (AC) is an implant impacted into a bone cavity and used for hip prosthesis surgery. Initial stability of the AC is an important factor for long term surgical success. The aim of this study is to determine the variations of the impact duration during AC implant insertion.Twenty-two bone samples taken from bovine femurs were prepared ex vivo for the insertion of an acetabular cup implant, following the surgical procedure used in the clinic. For each bone sample, ten impacts were applied using reproducible mass falls (3.5 kg) in order to insert the AC implant. Each impact duration was recorded using a wide bandwidth force sensor.For all bone samples, the impact duration was shown to first decrease as a function of the impact number, then reaching a stationary value equal in average to 4.2 ± 0.7 ms after an average number of 4.1 ± 1.7 impacts. The impact duration may be related to variations of the bone–implant interface contact rigidity because of an increase the amount of bone tissue in contact with the AC implant.Measurements of impact duration have a good potentiality for clinical application to assist the surgeon during the insertion of the AC implant, providing valuable information on the bone–implant interface contact properties.  相似文献   

7.
In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated + TGF-β1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0–500 μm; middle: 500–1000 μm; and outer: 1000–1500 μm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.  相似文献   

8.
Previous studies have shown that bone-to-implant attachment of titanium implants to cortical bone is improved when the surface is modified with hydrofluoric acid. The aim of this study was to investigate if biological factors are involved in the improved retention of these implants. Fluoride was implemented in implant surfaces by cathodic reduction with increasing concentrations of HF in the electrolyte. The modified implants were placed in the cortical bone in the tibias of New Zealand white rabbits. After 4 weeks of healing, wound fluid collected from the implant site showed lower lactate dehydrogenase activity and less bleeding in fluoride-modified implants compared to control. A significant increase in gene expression levels of osteocalcin and tartrate-resistant acid phosphatase (TRAP) was found in the cortical bone attached to Ti implants modified with 0.001 and 0.01 vol.% HF, while Ti implants modified with 0.1% HF showed only induced TRAP mRNA levels. These results were supported by the performed micro-CT analyses. The volumetric bone mineral density of the cortical bone hosting Ti implants modified with 0.001% and 0.01% HF was higher both in the newly woven bone (<100 μm from the interface) and in the older Haversian bone (>100 μm). In conclusion, the modulation of these biological factors by surface modification of titanium implants with low concentrations of HF using cathodic reduction may explain their improved osseointegration properties.  相似文献   

9.
A sandblasting process with round zirconia (ZrO2) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO2. As the sandblasted surfaces proved superior, the present study further compared the ZrO2 surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12 weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2 weeks Zr-SL implants had the highest significant bone ingrowth (p < 0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO2 treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.  相似文献   

10.
Silicon nitride (Si3N4) is an industrial ceramic used in spinal fusion and maxillofacial reconstruction. Maximizing bone formation and minimizing bacterial infection are desirable attributes in orthopedic implants designed to adhere to living bone. This study has compared these attributes of Si3N4 implants with implants made from two other orthopedic biomaterials, i.e. poly(ether ether ketone) (PEEK) and titanium (Ti). Dense implants made of Si3N4, PEEK, or Ti were surgically implanted into matching rat calvarial defects. Bacterial infection was induced with an injection of 1 × 104 Staphylococcus epidermidis. Control animals received saline only. On 3, 7, and 14 days, and 3 months post-surgery four rats per time period and material were killed, and calvariae were examined to quantify new bone formation and the presence or absence of bacteria. Quantitative evaluation of osteointegration to adjacent bone was done by measuring the resistance to implant push-out (n = 8 rats each for Ti and PEEK, and n = 16 rats for Si3N4). Three months after surgery in the absence of bacterial injection new bone formation around Si3N4 was ~69%, compared with 24% and 36% for PEEK and Ti, respectively. In the presence of bacteria new bone formation for Si3N4, Ti, and PEEK was 41%, 26%, and 21%, respectively. Live bacteria were identified around PEEK (88%) and Ti (21%) implants, whereas none were present adjacent to Si3N4. Push-out strength testing demonstrated statistically superior bone growth onto Si3N4 compared with Ti and PEEK. Si3N4 bioceramic implants demonstrated superior new bone formation and resistance to bacterial infection compared with Ti and PEEK.  相似文献   

11.
Several bi-modular hip prostheses exhibit an elevated number of fretting-related postoperative complications most probably caused by excessive micromotions at taper connections. This study investigated micromotions at the stem–neck interface of two different designs: one design (Metha, Aesculap AG) has demonstrated a substantial number of in vivo neck fractures for Ti–Ti couplings, but there are no documented fractures for Ti–CoCr couplings. Conversely, for a comparable design (H-Max M, Limacorporate) with a Ti–Ti coupling only one clinical failure has been reported. Prostheses were mechanically tested and the micromotions were recorded using a contactless measurement system.For Ti–Ti couplings, the Metha prosthesis showed a trend towards higher micromotions compared to the H-Max M (6.5 ± 1.6 μm vs. 3.6 ± 1.5 μm, p = 0.08). Independent of the design, prostheses with Ti neck adapter caused significantly higher interface micromotions than those with CoCr ones (5.1 ± 2.1 μm vs. 0.8 ± 1.6 μm, p = 0.001). No differences in micromotions between the Metha prosthesis with CoCr neck and the H-Max M with Ti neck were observed (2.6 ± 2.0 μm, p = 0.25).The material coupling and the design are both crucial for the micromotions magnitude. The extent of micromotions seems to correspond to the number of clinically observed fractures and confirm the relationship between those and the occurrence of fretting corrosion.  相似文献   

12.
Immobilized bisphosphonates (BPs) have been introduced to improve implant fixation, however, no information could be found about the efficiency of this approach in osteoporotic bone. This study was designed to evaluate the bone response to surface immobilized BPs on implants inserted in tibiae of ovariectomized (OVX) rats. Three months after bilateral ovariectomy, 40 rats were randomly assigned into four groups for implantation of hydroxyapatite-coated titanium implants with or without immobilized BPs: (1) control group (without BP treatments); (2) pamidronate (PAM) group (1 mg/ml of PAM immersing); (3) ibandronate group (1 mg/ml of ibandronate immersing); and (4) zoledronic acid (ZOL) group (1 mg/ml of ZOL immersing). After implantation periods of 3 months, the peri-implant–bone density, trabecular microstructure, bone–implant interface and mechanical fixation of implants were evaluated by dual energy X-ray absorptiometry, micro-computed tomography, histology and push-out test. We found that three BPs triggered pronounced bone–implant integration and early bone formation around implants in OVX rats, with a rank order of ZOL > ibandronate > PAM. These results provide new evidence that immobilized BPs have positive effects on implant fixation in osteoporotic bone, in addition to their well-documented potency to inhibit implant loosening in normal bone.  相似文献   

13.
The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20 min, 2 h, 5 h and 8 h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti–OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89 ± 0.76 μm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79 ± 0.31 to 10.25 ± 0.39 μm.  相似文献   

14.
Recombinant human BMP-2 (rhBMP-2) was immobilized non-covalently and covalently as a monolayer on plasma vapour deposited (PVD) porous commercially pure titanium surfaces in amounts of 5–8 μg cm?2, providing a ca. 10-fold increase vs. previously reported values [37]. Dissociation of the immobilized [125I]rhBMP-2 from the surface occurred in a two-phase exponential decay: a first rapid phase (ca. 15% of immobilized BMP-2) with a half-life of 1–2 days and a second slow sustained release phase (ca. 85% of immobilized BMP-2) with a half-life of 40–60 days. Dissociation rate constants of sustained release of k?1 = 1.3–1.9 × 10?7 s?1 were determined, allowing an estimation of the binding constants (KA) for the adsorbed rhBMP-2 monolayer, to be around 1012 M?1. The rhBMP-2-coated surfaces showed a high level of biological activity, as demonstrated by in vitro epifluorescence tests for alkaline phosphatase with MC3T3-E1 cells and in vivo experiments. In vivo osteoinductivity of rhBMP-2-coated implants was investigated in a gap-healing model in the trabecular bone of the distal femur condylus of sheep. Healing occurred without inflammation or capsule formation. The calculated concentration of released rhBMP-2 in the 1 mm gap ranged from 20 to 98 nM – well above the half-maximal response concentration (K0.5) for inducing alkaline phosphatase in MC3T3-E1 cells. After 4, 9 and 12 weeks the bone density (BD) and bone-to-implant contact (BIC) of the explanted implants were assessed histomorphometrically. Implants with immobilized rhBMP-2 displayed a significant (2- to 4-fold) increase in BD and BIC values vs. negative controls after 4–9 weeks. Integration of implants by trabecular bone was achieved after 4 weeks, indicating a mean “gap-filling rate” of ~250 μm week?1. Integration of implants by cortical bone was observed after 9 weeks. Control implants without rhBMP-2 were not osseointegrated. This study demonstrates the feasibility of enhancing peri-implant osseointegration and gap bridging by immobilized rhBMP-2 on implant surfaces which may serve as a model for future clinical applications.  相似文献   

15.
The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M = 22.8 ± 1.8 GPa) to that of hyaline articular cartilage embedded in PMMA (M = 5.7 ± 1.0 GPa) across a narrow transition region <5 μm wide. Contact resonance force microscopy (CR-FM), which measures the frequency and quality factor of the AFM cantilever’s vibrational resonance in contact mode, was used to determine the relative storage modulus and loss tangent of the osteochondral interface. With better spatial resolution than nanoindentation, CR-FM measurements indicated an even narrower interface width of 2.3 ± 1.2 μm. Furthermore, CR-FM revealed a 24% increase in the viscoelastic loss tangent from the articular calcified cartilage into the PMMA-embedded hyaline articular cartilage. Quantitative backscattered electron imaging provided complementary measurement of mineral content. Our results provide insight into the multiscale functionality of the osteochondral interface that will advance understanding of disease states such as osteoarthritis and aid in the development of biomimetic interfaces.  相似文献   

16.
For the improvement of surface roughness and mechanical interlocking with bone, titanium prostheses are grit-blasted with Al2O3 particles during manufacturing. Dislocated Al2O3 particles are a leading cause of third-body abrasive wear in the articulation of endoprosthetic implants, resulting in inflammation, pain and ultimately aseptic loosening and implant failure. In the present study, a new treatment for the removal of residual Al2O3 particles from grit-blasted, cementless titanium endoprosthetic devices was investigated in a rabbit model. The cleansing process reduces residual Al2O3 particles on titanium surfaces by up to 96%. The biocompatibility of the implants secondary to treatment was examined histologically, the bone–implant contact area was quantified histomorphometrically, and interface strength was evaluated with a biomechanical push-out test. Conventional grit-blasted implants served as control. In histological and SEM analysis, the Al2O3-free implant surfaces demonstrated uncompromised biocompatibility. Histomorphometrically, Al2O3-free implants exhibited a significantly increased bone–implant contact area (p = 0.016) over conventional implants between both evaluation points. In push-out testing, treated Al2O3-free implants yielded less shear resistance than conventional implants at both evaluation points (p = 0.018). In conclusion, the new surface treatment effectively removes Al2O3 from implant surfaces. The treated implants demonstrated uncompromised biocompatibility and bone apposition in vivo. Clinically, Al2O3-free titanium prostheses could lead to less mechanical wear of the articulating surfaces and ultimately result in less aseptic loosening and longer implant life.  相似文献   

17.
Statins are known to stimulate osteoblast activity and bone formation. This study examines whether local application of fluvastatin enhances osteogenesis around titanium implants in vivo. Ten-week-old rats received a vehicle gel (propylene glycol alginate (PGA)) or PGA containing fluvastatin (3, 15, 75 or 300 μg) in their tibiae just before insertion of the implants. For both histological and histomorphometric evaluations undecalcified ground sections were obtained and the bone–implant contact (BIC), peri-implant osteoid volume and mineralized bone volume (MBV) were calculated after 1, 2 and 4 weeks. Using the same models mechanical push-in tests were also performed to evaluate the implant fixation strength. After 1 week the MBV and push-in strength were significantly lower in the 300 μg fluvastatin-treated group than in the other groups (P < 0.01). At 2 weeks, however, the BIC and MBV were both significantly higher in the 75 μg fluvastatin-treated group than in the non-fluvastatin-treated groups (P < 0.01). Similar tendencies were observed at week 4. Furthermore, the data showed a good correlation between the MBV and the push-in strength. These results demonstrate positive effects of locally applied fluvastatin on the bone around titanium implants and suggest that this improvement in osseointegration may be attributed to calcification of the peri-implant bone.  相似文献   

18.
《Acta biomaterialia》2014,10(2):986-995
Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50–100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (<10 μm) was achievable. The bone trabeculae interweaved with the pore struts, establishing a large contact area which might enable an improved load transfer and stronger implant/bone interface. Furthermore, there was a clear interconnection with the surrounding cortical bone, suggesting that mechanical interlocking of the coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol–gel-derived bioactive glass–ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth.  相似文献   

19.
This work investigated the suitability of microporous β-tricalcium phosphate (TCP) scaffolds pre-seeded with autologous chondrocytes for treatment of osteochondral defects in a large animal model. Microporous β-TCP cylinders (Ø 7 mm; length 25 mm) were seeded with autologous chondrocytes and cultured for 4 weeks in vitro. Only the upper end of the cylinder was seeded with chondrocytes. Chondrocytes formed a multilayer on the top. The implants were then implanted in defects (diameter 7 mm) created in the left medial femoral condyle of ovine knees. The implants were covered with synovial membrane from the superior recess of the same joint. For the right knees, an empty defect with the same dimensions served as control. Twenty-eight sheep were split into 6-, 12-, 26- and 52 week groups of seven animals. Indentation tests with a spherical (Ø 3 mm) indenter were used to determine the biomechanical properties of regenerated tissue. A software-based limit switch was implemented to ensure a maximal penetration depth of 200 μm and maximal load of 1.5 N. The achieved load, the absorbed energy and the contact stiffness were measured. Newly formed cartilage was assessed with the International Cartilage Repair Society Visual Assessment Scale (ICRS score) and histomorphometric analysis. Results were analysed statistically using the t-test, Mann–Whitney U-test and Wilcoxon test. Statistical significance was set at p < 0.05. After 6 weeks of implantation, the transplanted area tolerated an indentation load of 0.05 ± 0.20 N. This value increased to 0.10 ± 0.06 N after 12 weeks, to 0.27 ± 0.18 N after 26 weeks, and 0.27 ± 0.11 N after 52 weeks. The increase in the tolerated load was highly significant (p < 0.0001), but the final value was not significantly different from that of intact cartilage (0.30 ± 0.12 N). Similarly, the increase in contact stiffness from 0.87 ± 0.29 N mm?1 after 6 weeks to 3.14 ± 0.86 N mm?1 after 52 weeks was highly significant (p < 0.0001). The absorbed energy increased significantly (p = 0.02) from 0.74 × 10?6 ± 0.38 × 10?6 Nm after 6 weeks to 2.83 × 10?6 ± 1.35 × 10?6 Nm after 52 weeks. At 52 weeks, the International Cartilage Repair Society (ICRS) scores for the central area of the transplanted area and untreated defects were comparable. In contrast, the score for the area from the edge to the centre of the transplanted area was significantly higher (p = 0.001) than the score for the unfilled defects. A biomechanically stable cartilage was built outside the centre of defect. After 52 weeks, all but one empty control defect were covered by bone and a very thin layer of cartilage (ICRS 7 points). The empty hole could still be demonstrated beneath the bone. The histomorphometric evaluation revealed that 81.0 ± 10.6% of TCP was resorbed after 52 weeks. The increase in TCP resorption and replacement by spongy bone during the observation period was highly significant (p < 0.0001). In this sheep trial, the mechanical properties of microporous TCP scaffolds seeded with transplanted autologous chondrocytes were similar to those of natural cartilage after 52 weeks of implantation. However, the central area of the implants had a lower ICRS score than healthy cartilage. Microporous TCP was almost fully resorbed at 52 weeks and replaced by bone.  相似文献   

20.
BackgroundIn anterior cruciate ligament (ACL) reconstruction, an interference device achieves soft-tissue graft fixation by radially compressing the graft against the bone.PurposeThe objective of this study was to measure the radial force generated by different interference devices and evaluate the effect of this radial force on the pullout strength of graft-device constructs.Study DesignControlled laboratory study.MethodsA resultant force (FR) was used as a representative measure of the total radial force generated. Bovine tendons were fixated in either synthetic bone or porcine tibia using one of following devices: (1) RCI titanium screw, (2) PEEK screw, (3) IntraFix sheath-and-screw device, and (4) ExoShape sheath-and-insert device. FR was measured while each device was inserted into synthetic bone mounted on a test machine (n = 5 for each device). In a subsequent test series, graft-device constructs were loaded to failure at 50 mm/min. The pullout strength was measured as the ultimate load before failure (n = 10 for each device).ResultsThe FR values generated during insertion into synthetic bone were 777 ± 86 N, 865 ± 140 N, 1313 ±198 N, and 1780 ± 255 N for the RCI screw, PEEK screw, IntraFix, and ExoShape, respectively. The pullout strengths in synthetic bone for the RCI screw, PEEK screw, IntraFix and ExoShape were 883 ± 125 N, 716 ± 249 N, 1147 ± 142 N, and 1233 ± 190 N, respectively.ConclusionsThese results suggest that the FR generated during interference fixation affects the pullout strength with sheath-based devices providing superior FR compared with interference screws. The use of synthetic bone was validated by comparing the pullout strengths to those when tested in porcine tibia.Clinical relevanceThese results could be valuable to a surgeon when determining the best fixation device to use in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号