首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycogen synthase kinase (GSK)-3beta, a serine/threonine kinase highly abundant in brain is a negative regulator of signal transduction cascades including the phosphatidylinositol-3-kinase (PI3-K)/Akt and the Wnt. GSK-3beta has recently been suggested to be an intracellular target of the mood stabilizers lithium and valproate and of the typical and atypical antipsychotic agents haloperidol and clozapine. We have previously shown that these agents do not alter frontal cortex GSK-3beta protein levels or activity. The current study was conducted to assess the effect of psychotropic drugs on phospho-Ser9-GSK-3beta levels in rodents. Chronic administration of haloperidol to rats resulted in a significant reduction in frontal cortex phospho-Ser9-GSK-3beta protein levels and no change in those of GSK-3alpha, while chronic administration of clozapine or subchronic administration of valproate caused significant elevation of GSK-3beta protein levels. Mice treated chronically with lithium exhibited the most prominent elevation in phospho-Ser9-GSK-3beta. The results support the notion that GSK-3beta may be a common target for mood stabilizers and neuroleptics.  相似文献   

2.
Par-4 has been suggested to mediate dopamine neurotransmission. Dopamine D2 receptor (DRD2) activation induces a signalling complex of AKT1, PP2A and beta-arrestin2 which dephosphorylates/inactivates AKT1 thereby activating GSK-3beta, transducing dopamine-dependent behaviour. DRD2 activation also results in down-regulation of PKA activity. Among other substrates PKA phosphorylates GSK-3beta. Prolonged DRD2 activation leads to its 'desensitization' which involves GRKs and beta-arrestins. beta-arrestin1 binds to phosphorylated receptors preventing further G-protein stimulation. This study examined whether Par-4, beta-arrestin1, AKT1 and GSK-3beta are involved in the pathophysiology of schizophrenia. Lymphocytes obtained from schizophrenia and bipolar patients and healthy controls recruited from the Beer-Sheva Mental Health Center were transformed by Epstein-Barr virus (EBV) into lymphocyte-derived cell lines (LDCL). Post-mortem brain samples were obtained from the Rebecca L. Cooper Brain Bank, Parkville, Australia. The study was approved by the IRB committees of Beer-Sheva, Israel and Parkville, Australia. Levels of the specific proteins were assayed by Western blotting. beta-arrestin1 protein levels were significantly ~2-fold increased in LDCL from schizophrenia patients while Par-4 protein levels were unaltered. A 63% significant decrease was found in frontal cortex phospho-Ser9-GSK-3beta protein levels in schizophrenia but not in those of AKT1, Par-4 or beta-arrestin1. Elevated beta-arrestin1 protein levels in LDCL and decreased phospho-Ser9-GSK-3beta protein levels in post-mortem frontal cortex of schizophrenia patients vs. control groups support the possible involvement of these proteins in the pathophysiology of schizophrenia. However, since we did not find differences in beta-arrestin1, AKT1 and Par-4 protein levels in post-mortem frontal cortex of schizophrenia patients and although GSK-3beta participates in other signalling cascades we can not rule out the possibility that the differences found reflect deviation in DRD2 signalling.  相似文献   

3.
It has been reported that rats forced to swim in a restricted space assume, after initial frenzied attempts to escape, an immobile posture. Porsolt et al. referred to this phenomenon as "behavioral despair", an animal model of depression. Prenatal stress induces an increase of behavioral depression in adult female offspring. This study presents new evidence supporting the hypothesis that maternal stress during gestation increases the risk of depression in the offspring since immobility time was modified by antidepressant drugs (tricyclics and an atypical antidepressant). In rats, amitriptyline (5 mg/kg), imipramine (5 mg/kg) and nomifensine (1 mg/kg) decreased the immobility time in Porsolt test in offspring of mothers stressed during gestation. Moreover, increasing doses of amitriptyline (1, 5, 25 and 40 mg/kg) reduced depression in the forced swimming test in dose-dependent manner.  相似文献   

4.
Ginsenoside compound K (CK) is the main metabolite of protopanaxadiol-type ginsenosides and has been demonstrated to exert neuroprotective and cognition-enhancing effects. The effects of CK on cognitive function in vascular dementia (VD) has not been elucidated. Therefore, the present study aims to elucidate the effects of CK on memory function as well as its potential mechanism in VD rats. Sprague–Dawley rats were subjected to Chronic Cerebral Hypoperfusion (CCH) by permanent bilateral common carotid artery occlusion (2VO). CCH induced neuronal damage and aggravated the aggregation of Amyloid-β1-42 peptides (Aβ1-42), which plays a critical role in the neurotoxicity and cognitive impairment. CK treatment attenuated CCH-induced Aβ1-42 deposition and ameliorated cognition impairment. Furthermore, CK enhanced the activity of the pSer9-Glycogen synthase kinase 3β (pSer9-GSK3β) and the insulin degrading enzyme (IDE), which mainly involved the production and clearance of Aβ1-42. Moreover, CK treatment enhanced the activity of protein kinase B (PKB/Akt), a key kinase in phosphatidylinositol 3 kinase (PI3K)/Akt pathway that can regulate the activity of GSK-3β and IDE. In short, our findings provide the first evidence that CK might attenuate cognitive deficits and Aβ1-42 deposition in the hippocampus via enhancing the expression of pSer9-GSK-3β and IDE.  相似文献   

5.
GSK-3beta is regarded as playing an important part in the pathogenesis of schizophrenia and the action of psychotomimetic agents. We observed phosphorylation of molecules associated with the GSK-3beta signalling pathway in the rat brain after MK-801 injection, which induces a schizophrenia-like state in humans. Ser9-GSK-3beta phosphorylation was increased after injection of 1 mg/kg MK-801 in the rat frontal cortex but not in the hippocampus or cerebellum. This increase peaked at 30 min and was maintained until 90 min after injection. The phosphorylation showed a dose-dependent increase up to 1 mg/kg MK-801, followed by a decrease at higher dosage. Furthermore, phosphorylation of Ser473-Akt and Ser133-CREB showed similar temporal, dose-dependent and regionally specific patterns with those of Ser9-GSK-3beta. However, phosphorylation of Dvl and Ser33-beta-catenin was not affected by MK-801. These results suggest that GSK-3beta phosphorylation by MK-801 may be associated with the Akt-GSK-3beta pathway rather than with the Wnt-Dvl-GSK3beta pathway.  相似文献   

6.
目的 探讨天麻素对多发性抽动症(TS)模型大鼠头部抽动行为的影响及相关机制。方法 采用1-(2,5- 二甲氧基-4-碘苯基)-2-氨基丙烷(DOI)诱导法制备TS大鼠模型,将40只Wistar大鼠随机均分为4组:正常组(生理 盐水灌胃)、TS模型组(从造模首日起,注射DOI后2 h以生理盐水灌胃)、TS+天麻素组(从造模首日起,注射DOI后2 h以 30 mg/kg天麻素灌胃);TS+天麻素+CHIR-99021[糖原合酶激酶-3β(GSK-3β)抑制剂]组(从造模首日起,注射DOI后 2 h,先以2 mg/kg CHIR-99021腹腔注射,再以30 mg/kg天麻素灌胃),连续给药21 d。末次给药后,记录大鼠在30 min 内的头部抽动次数,采用试剂盒检测纹状体5-羟色胺(5-HT)、5-羟吲哚乙酸(5-HIAA)、多巴胺(DA)水平,免疫组化 法检测黑质中 DA 神经元数量,Western blot 法检测纹状体中 5-羟色胺转运蛋白(SERT)、5-羟色胺 2A 受体(5- HT2AR)、5-羟色胺2C受体(5-HT2CR)表达及GSK-3β磷酸化情况。结果 与正常组比较,TS模型组大鼠头部抽动 次数、DA 水平、DA 神经元数量、SERT 水平及 p-S9-GSK-3β、p-S9-GSK-3β/t-GSK-3β 水平增高,5-HT 水平降低 (P<0.05)。与TS模型组比较,TS+天麻素组大鼠头部抽动次数、DA水平、DA神经元数量、SERT水平及p-S9-GSK- 3β、p-S9-GSK-3β/t-GSK-3β水平降低,5-HT水平升高(P<0.05)。与TS+天麻素组比较,TS+天麻素+CHIR-99021 组大鼠头部抽动次数、DA水平、DA神经元数量、SERT水平及p-S9-GSK-3β、p-S9-GSK-3β/t-GSK-3β水平升高,5- HT水平降低(P<0.05)。结论 天麻素可改善TS大鼠头部抽动行为,其作用机制可能是通过抑制GSK-3β的磷酸 化,调节SERT表达,影响5-HT水平,进而抑制纹状体中DA的释放。  相似文献   

7.
Preclinical and clinical studies indicate that deficiency in folic acid plays a role in the pathophysiology of depression. Considering that alterations in the signaling pathways that regulate neuroplasticity and cellular survival are implicated in depressive disorders, the present study investigated the involvement of the phosphoinositide 3-kinase (PI3K), glycogen synthase kinase-3 (GSK-3β), and peroxisome proliferator-activated receptor-γ (PPARγ) in the antidepressant-like effect of folic acid in the forced swimming test (FST). The intracerebroventricular (i.c.v.) pre-treatment of mice with LY294002 (10 nmol/site, a PI3K inhibitor) or GW-9662 (1 μg/site, a PPARγ antagonist) prevented the antidepressant-like effect of folic acid (50 mg/kg, p.o.) in the FST. In addition, the administration of subeffective doses of the selective GSK-3β inhibitor, AR-A014418 (3 mg/kg, i.p.), a non-selective GSK-3β inhibitor, lithium chloride (10 mg/kg, p.o) or a PPARγ agonist, rosiglitazone (1 μg/site, i.c.v.) in combination with a subeffective dose of folic acid (10 mg/kg, p.o.) significantly reduced the immobility time in the FST as compared with either drug alone, without altering the locomotor activity. These results indicate that the antidepressant-like effect of folic acid in the FST might be dependent on inhibition of GSK-3β and activation of PPARγ, reinforcing the notion that these are important targets for antidepressant activity.  相似文献   

8.
The effects of curcumin on depressive-like behaviors in mice   总被引:5,自引:0,他引:5  
Curcuma longa is a major constituent of Xiaoyao-san, the traditional Chinese medicinal formula, which has been used effectively to treat depression-related diseases in China. There is no information available about the antidepressant activity of curcumin, the active component of curcuma longa. In the present study, we analyzed the effects of curcumin on depressive-like behaviors in mice, using two animal models of depression. Our results showed that curcumin treatment at 5 and 10 mg/kg (p.o.) significantly reduced the duration of immobility in both the tail suspension and forced swimming tests. These doses that affected the immobile response did not affect locomotor activity. In addition, the neurochemical assays showed that curcumin produced a marked increase of serotonin and noradrenaline levels at 10 mg/kg in both the frontal cortex and hippocampus. Dopamine levels were also increased in the frontal cortex and the striatum. Moreover, curcumin was found to inhibit monoamine oxidase activity in the mouse brain. These findings suggest that the antidepressant-like effects of curcumin may involve the central monoaminergic neurotransmitter systems.  相似文献   

9.
10.
Although dopamine (DA) regulates the serine/threonine kinase Akt and its downstream substrate glycogen synthase kinase-3β (GSK-3β), the direct influence of dopaminergic receptors remains poorly characterized. Short-term incubation of Chinese hamster ovary (CHO)-expressed human (h)D(?L) and hD?) receptors with DA (maximal effect, 5-10 min) phosphorylated Akt (Thr308 and Ser473) and GSK-3β (Ser9), actions blocked by the selective D? and D? antagonists, 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) and (3aR,9bS)-N[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl] (4-phenyl)benzamide (S33084), respectively. Similar findings were acquired with the specific D?/D? receptor agonist quinelorane, which also enhanced (10 min after administration) levels of p-Akt and p-GSK-3β in rat nucleus accumbens, an action blocked by the D?/D? receptor antagonist raclopride. Akt and GSK-3β phosphorylation mediated via CHO-expressed hD(?L) and hD? receptors was prevented by pertussis toxin and by inhibitors of insulin-like growth factor-1 receptors as well as phosphatidylinositol 3-kinase and Src. Likewise, chelation of intracellular Ca2+ and interference with an "atypical" phorbol ester-insensitive protein kinase C (PKC) abolished recruitment of Akt and GSK-3β. Inactivation of PKCμ blocked Akt and GSK-3β phosphorylation at hD(?L) receptors. However, blockade of conventional PKC isoforms attenuated the actions of DA at hD? receptors only. Furthermore, phospholipase C (PLC), calmodulin, and Akt inhibitors abolished DA-induced GSK-3β phosphorylation by hD? receptors, whereas phosphorylation by hD(?L) receptors partially involved calmodulin, Akt, and extracellular signal-regulated kinase (ERK) 1/2. In conclusion, at both hD(?L) and hD? receptors, DA elicited a G(i/o)- and Ca2+/calmodulin-dependent phosphorylation of Akt and GSK-3β via transactivation of insulin-like growth factor 1 receptor. However, significant differences were seen regarding the involvement of PLC, calmodulin, and ERK1/2.  相似文献   

11.
We have previously reported that N-desmethylclozapine (NDMC), a major clozapine metabolite, acts as a δ-opioid receptor agonist. Here, we show that in different cellular systems NDMC regulates protein kinase B/Akt (Akt) signaling through the activation of δ-opioid receptors. In Chinese hamster ovary cells transfected with the human δ-opioid receptor (CHO/DOR), NDMC induced a time- and concentration-dependent phosphorylation of Akt at Thr308 and glycogen synthase kinase-3β (GSK-3β) at Ser9 and these effects were fully blocked by the δ-opioid receptor antagonist naltrindole. NDMC-induced Akt and GSK-3β phosphorylations were completely prevented by pertussis toxin, the Src tyrosine kinase inhibitor PP2 and the selective insulin-like growth factor-I (IGF-I) receptor tyrosine kinase inhibitor tyrphostin AG 1024. NDMC stimulated IGF-I receptor β subunit tyrosine phosphorylation and this effect was prevented by either naltrindole or PP2. Blockade of phosphatidylinositol 3-kinase (PI3K) α, but not PI3Kγ, suppressed NDMC-induced Akt and GSK-3β phosphorylation, whereas inhibition of Akt curtailed the stimulation of GSK-3β phosphorylation. In rat nucleus accumbens, NDMC induced Akt and GSK-3β phosphorylation either in vitro or in vivo and these effects were prevented by naltrindole. NDMC also regulated Akt and GSK-3β phosphorylation through δ-opioid receptors in NG108-15 cells. In these cells NDMC counteracted oxidative stress-induced apoptosis and the effect was lost following PI3K inhibition. These data demonstrate that in different cell systems NDMC can stimulate Akt signaling by activating Gi/Go-coupled δ-opioid receptors, which, at least in CHO/DOR cells, regulate PI3Kα through Src-dependent transactivation of the IGF-I receptor, and indicate that through this mechanism NDMC can exert neuroprotective effects.  相似文献   

12.
Olianas MC  Dedoni S  Onali P 《Neuropharmacology》2011,60(7-8):1326-1336
Besides being involved in analgesia, δ-opioid receptors have recently been shown to exert antidepressant-like and neuroprotective effects. Glycogen synthase kinase-3β (GSK-3β), a key enzyme involved in cellular apoptosis and in mood disorders, may constitute a molecular target of δ-opioid receptors. However, relatively little is known on how δ-opioid receptors affect the multiple signaling pathways regulating GSK-3β. In the present study, we show that activation of human δ-opioid receptors stably expressed in Chinese hamster ovary (CHO) cells induced a rapid GSK-3β phosphorylation on Ser9 and a significant inhibition of the kinase activity. This effect was dependent on G proteins Gi/Go, unaffected by cell transfection with the Gβγ scavenger transducin, required the Src non-receptor tyrosine kinase and the specific involvement of the α isoform of phosphatidylinositol 3-kinase. δ-Opioid agonists activated the protein kinase Akt in a Src-dependent manner and chemical inhibition of Akt or stable expression of a dominant negative Akt1 mutant reduced the stimulation of GSK-3β phosphorylation. Moreover, δ-opioid receptor regulation of Akt and GSK-3β was dependent on transphosphorylation and transactivation of platelet-derived growth factor and insulin-like growth factor-1 receptor tyrosine kinases. AMP-activated protein kinase (AMPK) activity was also required, as δ-opioid effects on Akt and GSK-3β were mimicked by the AMPK activator A-769662 and reduced by the AMPK inhibitor Compound C. Conversely, inhibition of protein kinase C isoforms, extracellular signal-regulated protein kinases 1/2 and mammalian target of rapamycin was without effect, although the latter two kinases were activated by δ-opioid agonists. The results identify Src-dependent transactivation of receptor tyrosine kinases as a key process in δ-opioid receptor inhibitory control of GSK-3β and reveal a novel δ-opioid regulatory mechanism mediated by AMPK. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.  相似文献   

13.
A selective serotonin reuptake inhibitor fluoxetine not only is widely used in the treatment of depression but also has an anti-inflammatory property. Glycogen synthase kinase-3beta (GSK-3β) is a vital factor in the inflammation process. How fluoxetine interferes with inflammation via a GSK-3β-dependent pathway remains unclear. The aim of this study is to investigate the effects of fluoxetine on lipopolysaccharide (LPS)-induced inflammation. Results showed that fluoxetine decreased mortality rate of the mice. It also inhibited LPS-induced release of nitric oxide (NO) and prostaglandin E2 (PGE2) in serum and RAW264.7 murine macrophages and expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Upon LPS stimulation, fluoxetine caused a delay but increased in the phosphorylated levels of GSK-3β (ser9), whereas it did not affect LPS-induced activation of mitogen-activated protein kinase (MAPK) and generation of reactive oxygen species (ROS). Fluoxetine in combination with phosphatidylinositol 3-kinases/Akt inhibitors (LY294002 and Wortmannin) did not have a synergistic inhibition on LPS-induced NO release and PGE2 production. In addition, peroxisome proliferator-activated receptor γ (PPARγ) antagonist GW9622 showed no reverse effects of this inhibition of fluoxetine. GSK-3β knockdown blocked the inhibitory effects of fluoxetine on LPS-induced iNOS/NO release and COX-2/PGE2 production. These results indicated that GSK-3β regulated anti-inflammatory property of fluoxetine. However, Akt activation, ROS generation, and altered PPARγ activity were not involved in this inhibition of fluoxetine.  相似文献   

14.
Chronic intake of alcohol results in multiple organ damage including brain. This study was designed to examine the impact of facilitated acetaldehyde breakdown via transgenic overexpression of mitochondrial aldehyde dehydrogenase-2 (ALDH2) on alcohol-induced cerebral cortical injury. ALDH2 transgenic mice were produced using the chicken β-actin promoter. Wild-type FVB and ALDH2 mice were placed on a 4% alcohol or control diet for 12 weeks. Protein damage and apoptosis were evaluated with carbonyl formation, caspase and TUNEL assays. Western blot was performed to examine expression (or its activation) of ALDH2, the pro- and anti-apoptotic proteins caspase-8, Bax, Bcl-2, Omi/HtrA2, apoptosis repressor with caspase recruitment domain (ARC), FLICE-like inhibitory protein (FLIP), X-linked inhibitor of apoptosis protein (XIAP), Akt, glycogen synthase kinase-3β (GSK-3β), p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Chronic alcohol intake led to elevated apoptosis in the absence of overt protein damage, the effect of which was ablated by the overexpression of ALDH2 transgene. Consistently, ALDH2 transgene significantly attenuated alcohol-induced upregulation of Bax, Omi/HtrA2 and XIAP as well as downregulation of Bcl-2 and ARC without affecting alcohol-induced increase of FLIP in cerebral cortex. Phosphorylation of Akt and GSK-3β was dampened while total/phosphorylated JNK and p38 phosphorylation were elevated following chronic alcohol intake, the effects of which were abrogated by ALDH2 transgene. Expression of total Akt, GSK-3β, p38 and ERK (total or phosphorylated) was not affected by either chronic alcohol intake or ALDH2 transgene. Our results suggested that transgenic overexpression of ALDH2 rescues chronic alcoholism-elicited cerebral injury possibly via a mechanism associated with Akt, GSK-3β, p38 and JNK signaling.  相似文献   

15.
In mice glycogen synthase kinase (GSK)-3beta heterozygote knockout status was reported to cause reduced immobility in the Porsolt forced swim test and reduced amphetamine-induced hyperactivity, behaviors that mimic the effects of lithium. GSK-3beta protein and mRNA level and activity have been reported to be reduced in the postmortem brain of schizophrenia patients and this could suggest the involvement of GSK-3beta in the etiology of schizophrenia. However, apomorphine-induced stereotyping was reported to be unchanged in GSK-3beta heterozygote (HZ) knockout (KO) mice. As such behaviors are not always robust, study in another laboratory seemed indicated. Motor activity and coordination were assessed in the rotarod test. Behavior was studied in the following tests: pilocarpine-induced seizures model for lithium action, Porsolt forced swim test, tail suspension test, elevated plus-maze, large open field, startle response and prepulse inhibition of acoustic startle response, amphetamine-induced hyperactivity, and apomorphine-induced stereotypic climbing. We could not confirm the report that GSK-3beta HZ KO mice exhibit reduced immobility in the Porsolt forced swim or reduced amphetamine-induced hyperactivity in a manner mimicking the behavioral effects of lithium. We did not find increased apomorphine-induced stereotypic climbing or disruption of prepulse inhibition, suggesting that human postmortem findings regarding GSK-3beta in schizophrenia are not mediated by changes in dopamine receptors and are not the cause of prepulse inhibition deficits in schizophrenia. These data do not support the role of GSK-3beta in schizophrenia or in the mechanism of therapeutic action of lithium. Although differences in the genetic background of the GSK-3beta HZ KOs used in the present study compared with that of the previous study could be responsible, such results could suggest that the previously reported effects of GSK-3beta knockout on behavior are not robust.  相似文献   

16.
Development of animal models of treatment-resistant depression in rats]   总被引:1,自引:0,他引:1  
Psychoendocrinological studies have focused on the hypothalamic-pituitary-adrenal axis in patients with depression. We have already reported that in rats, repeated adrenocorticotropic hormone (ACTH) treatment blocks the effect of tricyclic antidepressants in decreasing immobility time in a forced swim test, a widely used animal experiment for predicting antidepressant activity. Furthermore, chronic coadministration of lithium or carbamazepine, an agent that potentiates the actions of antidepressants in patients with depression, including those with treatment-resistant depression, significantly decreased the duration of immobility, even when given concurrently with ACTH. Recently, clinical and animal studies have shown that neurogenesis/neuroprotection in the adult brain is important for the therapeutic actions of antidepressants. We indicated that repeated ACTH treatment decreased the expression of BDNFmRNA and the number of newborn cells in the rat hippocampus. Namely, we recognized that ACTH-treated rats served as a useful animal model of tricyclic antidepressant treatment-resistant conditions.  相似文献   

17.
18.
The mechanism by which lithium exerts either its anti-manic or antidepressant effects remains to be fully elucidated. Although lithium inhibits the enzyme glycogen synthase kinase-3 (GSK-3) at concentrations that are relevant for treatment of bipolar disorder, it is unclear whether GSK-3-related mechanisms are responsible for its therapeutic effects in the treatment of this disease. We report that AR-A014418 (a selective GSK-3 inhibitor) induces behavioural changes that are consistent with the effects of antidepressant medications. Subacute intraperitoneal injections of AR-A014418 reduced immobility time in rats exposed to the forced swim test, a well-established model for antidepressant efficacy. In addition, the specificity of this effect is supported by our finding that AR-A014418 decreased spontaneous as well as amphetamine-induced activity. Taken together, these data support the hypothesis that lithium may exert its antidepressant effects through inhibition of GSK-3, and that novel small-molecule GSK-3 inhibitors may be useful for the treatment of bipolar disorder and depression.  相似文献   

19.
The influence of chronic (14 days) administration of 5-HTIA receptors agonist--8-OH-DPAT (0.05 mg/kg, s.c.) and 5-HT(1A) receptors antagonist NAN-190 (0.1 mg/kg, i.p.) alone or in a combination with 17beta-estradiol (0.5 mg on each animal, i.m.) for on depressive behavior and expression of 5-HT(1A)-, 5-HT(2A)-, 17beta- estradiol receptors mRNAs was estimated in hippocampus in adult ovariectomized (OVX) female rats. The model of depression in rats was carried out in Porsolt test. The measurement of expression of 5-HT(1A)-, 5-HT(2A)-, 17beta-estradiol receptors mRNAs in the hippocampus was performed by semiquantitative RT-PCR. In Porsolt test 17beta-estradiol in OVX rats reduced time immobility to some extent. 8-OH-DPAT alone significantly decreased time immobility in OVX rats. Chronic 8-OH-DPAT administration in a combination with 17beta-estradiol in OVX females resulted in potentiated antidepressive effect. Simultaneously, 8-OH-DPAT induced significant increase of 5-HT(1A)-, 5-HT(2A)-receptors mRNAs expression and decrease of 17beta-estradiol receptor mRNA expression in hippocampus in OVX rats as compared to the control. The data obtained indicate a close interaction of the ovary hormonal and serotonergic systems of the brain in mechanisms of depression.  相似文献   

20.
Some findings have suggested that the rescue of bupivacaine (BPV)-induced cardiotoxicity by lipid emulsion (LE) is associated with inhibition of mitochondrial permeability transition pore (mPTP). However, the mechanism of this rescue action is not clearly known. In this study, the roles of phosphoinositide 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) in the molecular mechanism of LE-induced protection and its relationship with mPTP were explored. h9c2 cardiomyocytes were randomly divided into several groups: control, BPV, LE, BPV + LE. To study the effect of LE on mPTP, atractyloside (Atr, 20 μM, mPTP opener) and cyclosporine A (CsA, 10 μM, mPTP blocker) were used. To unravel whether LE protects heart through the PI3K/Akt/GSK-3β signaling pathway, cells were treated with LY294002 (LY, 30 μM, PI3K blocker) or TWS119 (TWS 10 μM, GSK-3β blocker). Later mitochondrial respiratory chain complexes, apoptosis, opening of mPTP and phosphorylation levels of Akt/GSK-3β were measured. LE significantly improved the mitochondrial functions in h9c2 cardiomyocytes. LE reversed the BPV-induced apoptosis and the opening of mPTP. The effect of LE was not only enhanced by CsA and TWS, but also abolished by Atr and LY. LE also increased the phosphorylation levels of Akt and GSK-3β. These results suggested that LE can reverse the apoptosis in cardiomyocytes by BPV and a mechanism of its action is inhibition of mPTP opening through the PI3K/Akt/GSK-3β signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号