首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Complete sequence analysis of 194 human phenylalanine hydroxylase genes from PKU patients originating from West Germany and Bulgaria revealed 13 different mutations within exon 7 of the gene. Four of these mutations (T238P: ACT-->CCT; L242F:CTC-->TTC; R252G:CGG-->GGG; and 1043 delta 11: nt 1043-nt 1053 deleted) have so far not been described in the literature. Including these new mutations at least 21 different gene lesions and one sequence polymorphism exist for exon 7. Despite this large number unbiased calculation of the mutation frequency/exon size ratio does not provide conclusive evidence that exon 7 is a hot spot for disease causing mutations. Extensive screening during our experiments also failed to demonstrate the existence of excessive polymorphism in this part of the gene. It might therefore be speculated that the functional importance of the highly conserved exon 7 sequence accounts for the clustering of observed mutations which result in clinically manifest PKU. In addition we report our experience in regard to the resolution capacity of denaturing gradient gel electrophoresis (DGGE), a nonradioactive technique for the rapid screening of unknown mutations in exon 7.  相似文献   

2.
In this report, we describe a Korean patient with May-Hegglin anomaly from a mutation of the MYH9 gene. The proband was a 21-year-old man with thrombocytopenia. He did not have a bleeding tendency. His neutrophil count was normal at 7490/mm3; however, the neutrophils contained abnormal basophilic inclusions in their cytoplasm. The platelet count was decreased at 15,000/mm3 with giant platelets. Coagulation test results were not remarkable. Direct sequencing of MYH9 revealed that he was heterozygous for a mutation in exon 1, which was a 97T>A substitution mutation affecting codon 33, substituting tryptophan with arginine (Trp33Arg). Family study showed that both of his parents had normal phenotype and genotypes, indicating a de novo occurrence of the mutation in the proband.  相似文献   

3.
Myosins of class II constitute part of a superfamily of several classes of proteins expressed in almost all eukaryotic cell types. Differences in the heavy chains produce three isoforms of class II non-muscle myosins (A, B and C), which are widely distributed in most tissues and thought to be components of the cell motor systems, although specific functional roles are largely unknown. In particular, it is still a matter of debate whether they interact and have overlapping or distinct functions. This argument is relevant not only to cell physiology, but also to human pathology since mutations of the MYH9 gene encoding non-muscle myosin heavy chain II A (NMMHC-A) cause MYH9-related disease (MYH9-RD), an autosomal dominant disorder characterized by platelet macrocytosis, thrombocytopenia and leukocyte inclusions, variably associated with sensorineural hearing loss, cataracts and/or glomerulonephritis. In this study, we report the results of yeast two-hybrid screening showing that the C-terminals of NMMHC-A and -B interact. This interaction was confirmed by immunoprecipitation in transfected COS-7 cells and in skin fibroblasts naturally expressing both isoforms. Moreover, our immunomorphological study revealed that isoforms A and B co-localize in fibroblasts, erythroblasts and kidney cells. These results suggest that isoforms A and B are strictly related molecules and support the hypothesis that their interrelationship could be involved both in the variability of clinical phenotype and selectivity of tissue damage of MYH9-RD.  相似文献   

4.
MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain.  相似文献   

5.
MD-2 is an accessory protein of the Toll-like receptor (TLR)-4, necessary for assembling a receptor complex to sense low quantities of lipopolysaccharide in order to subsequently trigger innate immune responses. MD-2 and TLR-4 are expressed on a variety of immunocompetent cells. Mutations within the TLR-4 gene have been shown to attenuate immune responses against lipopolysaccharide in mice. In humans, a TLR-4 polymorphism has been associated with a higher risk for developing severe Gram-negative sepsis and with a lower risk for atherosclerosis. Since MD-2 is an essential part of the lipopolysaccharide receptor complex, we screened 20 patients that underwent surgical cancer therapy for novel MD-2 mutations by a single-strand conformation polymorphism technique. In one patient we found an A --> G substitution at position 103, resulting in an amino-acid exchange from Thr 35 to Ala. Reporter gene assays revealed that this mutation resulted in a reduced lipopolysaccharide-induced signaling. The patient displayed an uneventful postoperative course, with the exception of slightly decreased TNF-alpha levels after in vitro stimulation with LPS as compared to wt patients. Genotyping of a further 41 patients by a newly developed Lightcycler/FRET method failed to detect any additional polymorphism carriers, indicating that this is a rare mutation.  相似文献   

6.
Summary We identified a novelAvaI polymorphism within 3 noncoding region within exon 5 of the human rhodopsin gene and determined the allele frequency in a Japanese population. The polymorphism was found to be due to A/G transversion at nucleotide 5510 of the gene.  相似文献   

7.
Metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by the deficiency of arylsulfatase A (ASA), is inherited as an autosomal recessive trait, and its frequency is estimated to be 1 in 40,000 live births. Genomic DNA from 21 MLD patients (14 late-infantile and 7 juvenile cases) was amplified in four overlapping PCR fragments and tested by allele-specific oligonucleotide (ASO) for the two common mutations 459+1G→A and P426L. These mutations were found in only 28.6% of the alleles studied. The remaining alleles were analyzed by chemical mismatch cleavage (CMC) and automatic sequencing. In addition to five previously reported mutations (459+1G→a, A212V, R244C, R390W, P426L), 10 novel mutations were identified: 9 missense mutations (S95N, G119R, D152Y, R244H, S250Y, A314T, R384C, R496H, K367N) and one 8 bp deletion in exon 1, the first mutation reported in this exon. These methods allowed us to identify 76% of the alleles tested. Genotype-phenotype correlations could be established for some of these mutations. These results confirm the heterogeneity of mutations causing MLD and suggest that CMC is a reliable and informative screening method for point mutation detection in the arylsulfatase A gene. Hum Mutat 9:234–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Human chitotriosidase (Chit) is a member of the chitinase family and it is synthesized by activated macrophages. Recently, a genetic polymorphism was found to be responsible for the common deficiency in Chit activity, frequently encountered in different populations. We analyzed the Chit gene in some ethnic groups from the Mediterranean and African areas, to evaluate whether the Chit gene polymorphism correlates with the changes in environmental features and the disappearance of parasitic diseases. We found a heterozygote frequency for the duplication of 24 bp in exon 10 of 44% in Sicily and 32.71% in Sardinia, whereas those homozygous Chit deficient were 5.45 and 3.73%, respectively. In contrast, in Benin and Burkina Faso, both mesoendemic regions for Plasmodium falciparum malaria and other infections due to intestinal parasites, a low incidence of Chit mutation was found (heterozygous 0 and 2%, respectively) and no subject was homozygous for Chit deficiency. Our results provide evidence of the fact that the low frequency or the absence of mutant Chit gene may represent a protective factor in the population still living in disadvantaged environmental conditions. The present study suggests that the disappearance of parasitic diseases and the improved environmental conditions may have ensued the occurrence of a high percentage of 24-bp mutation in Sicily, in Sardinia and in other Mediterranean countries, whereas in the sub-Saharan regions (Benin and Burkina Faso), the widespread parasitic diseases and the poor social status have contributed to maintenance of the wild-type Chit gene.  相似文献   

9.
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness, presenile cataracts, and/or progressive nephritis leading to end-stage renal failure. No consistent correlations have been identified between the 27 different MYH9 mutations identified so far and the variable clinical evolution of the disease. We have evaluated 108 consecutive MYH9-RD patients belonging to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC-IIA (responsible for 70% of MYH9-RD cases). We concluded that mutations at residue 1933 do not induce kidney damage or cataracts and cause deafness only in the elderly, those in position 702 result in severe thrombocytopenia and produce nephritis and deafness at a juvenile age, while alterations at residue 1424 or 1841 result in intermediate clinical pictures. These findings are relevant not only to patients' clinical management but also to the elucidation of the pathogenesis of the disease.  相似文献   

10.
Several different mutations in the KCNQ4 K+ channel gene are responsible for autosomal dominant nonsyndromic hearing impairment (DFNA2). Here we describe two additional families originating from Europe and Japan with a KCNQ4 missense mutation (W276S) that was previously found in one European family. We compared the disease-associated haplotype of the three W276S-bearing families using closely linked microsatellite markers and intragenic single nucleotide polymorphisms. Differences between the haplotypes were found, excluding a single founder mutation for the families. Therefore, the W276S mutation has occurred three times independently, and most likely represents a hot spot for mutation in the KCNQ4 gene.  相似文献   

11.
MYH9-related disease (MYH9-RD) is a rare autosomal dominant disorder caused by mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIA. Patients present with congenital macrothrombocytopenia and inclusion bodies in neutrophils and might develop sensorineural deafness, presenile cataract, and/or progressive nephropathy leading to end-stage renal failure. In two families with macrothrombocytopenia we identified a novel c.3485G > C mutation in the last nucleotide of exon 25. Bioinformatic tools for splice site prediction and minigene functional test predicted splicing anomalies of exon 25. However, analysis of RNA purified from patient’s peripheral blood did not allowed us to detect any anomalies, suggesting that RNA processing is correct at least in this tissue. Therefore, we concluded that c.3485G > C leads to a novel missense mutation (p.Arg1162Thr) of myosin-9, which resulted to be slightly degraded in patient platelets. A precise definition of the effect of mutations is fundamental to improve our knowledge into the pathogenetic mechanisms responsible for the disease.  相似文献   

12.
We report on a father and daughter with a partial 9p duplication, dup(9)(p22p24). Their phenotype, albeit mild, is characteristic of partial trisomy 9p. Fluorescence in situ hybridisation (FISH) was used to characterise further and confirm the G banding finding. This is the first reported instance of trisomy 9p occurring in two successive generations. The duplicated segment in these two patients is among the smallest segments reported. Comparison of our two patients and 144 reported patients with trisomy 9p (partial or complete trisomy) suggests that the 9p22 region may be responsible for the observed phenotype in 9p duplication cases.  相似文献   

13.
Pelizaeus-Merzbacher disease (PMD) is a rare X-linked recessive disorder with a prototype of a dysmyelinating leukodystrophy that is caused by a mutation in the proteolipid protein 1 (PLP1) gene on the long arm of the X chromosome in band Xq22. This mutation results in abnormal expression or production of PLP. We here present a Korean boy with spastic quadriplegia, horizontal nystagmus, saccadic gaze, intentional tremor, head titubation, ataxia, and developmental delay. The brain magnetic resonance imaging (MRI) showed abnormally high signal intensities in the white matter tract, including a subcortical U fiber on the T2-weighted and fluid attenuated inversion recovery (FLAIR) image. The chromosomal analysis was normal; however, duplication of the PLP1 gene in chromosome Xq22 was detected when the multiplex ligation-dependent probe amplification (MLPA) method was used. We also investigated the pedigree for a genetic study related to PMD. This case suggests that the duplication mutation of the PLP1 gene in patients with PMD results in a mild clinical form of the disorder that mimics the spastic quadriplegia of cerebral palsy.  相似文献   

14.
15.
Familial Hypertrophic Cardiomyopathy (FHC) constitutes a genetic disease of the sarcomere characterized by a Mendelian pattern of inheritance. A variety of different mutations affecting the at least eight sarcomeric gene products has been identified and the majority of them appear to function through a dominant negative mechanism. Family history analysis and genetic counseling have been widely adopted as integral tools for the evaluation and management of individuals with Hypertrophic Cardiomyopathy (HCM). Genetic testing of the disease has been progressively released into the clinical mainstream, thus rendering the development of novel and potent molecular diagnostic protocols an inevitable task. To this direction, we have evolved an integrated PCR-based molecular protocol, which through the utilization of novel “exonic” primers allows, among others, the structural analysis of the 13th exon of the human β-myosin heavy chain gene locus (MYH7) mainly characterized by the critical for HCM Arginine residue 403 (R403). Interestingly, through a DNA sequencing approach, a single nucleotide substitution from “G” to “T” was detected in the adjacent 13th intron, thus divulging the versatile potential of the present molecular protocol to clinical practice.  相似文献   

16.
A 23-nucleotide tandem duplication (GGACCTTGAAAGTACTC-GGGACC) was found within exon 3 of the beta-galactosidase gene in a patient with infantile-form GM1-gangliosidosis, which generated a premature stop codon after translation of 36 amino acids. Homologous sequences at the area of duplication suggested that the mutation resulted from an unequal crossover. A single base substitution 316Trp----Cys was found in the other allele. Family study showed that the duplication was transmitted from his father and the base substitution from his mother.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号