首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
背景:已有多种纤维被用于提高磷酸钙骨水泥的强度及抗断裂性能。 目的:了解明胶联合壳聚糖纤维对磷酸钙骨水泥力学性能的影响,寻找较为合适的配比。 方法:采用2×4析因设计,将质量比为0(蒸馏水),5%的明胶,体积比为0,10%,30%和50%的壳聚糖纤维分别混入磷酸钙骨水泥,检测复合物的抗弯曲强度,扫描电子显微镜观察各组试样断口形态并进行电子能谱分析。 结果与结论:各明胶组间抗弯强度差异有非常显著性意义(P < 0.001);各体积比纤维间抗弯强度差异有非常显著性意义(P < 0.001),其中5%明胶和30%壳聚糖纤维构成的复合物抗弯曲强度最大,达 12.31 MPa。以蒸馏水为液相的磷酸钙骨水泥固化后,表面可见不规则颗粒,平均微孔直径小于5 μm,添加明胶后颗粒似乎黏在一起,微孔直径与前者相似,但是数目少于前者。磷酸钙骨水泥-5%明胶-30%纤维复合物的断口扫描可见拔出纤维的表面黏附有大量颗粒,磷酸钙骨水泥-蒸馏水-30%纤维复合物拔出纤维表面的颗粒明显减少。表明明胶与壳聚糖纤维可提高磷酸钙骨水泥的抗弯曲强度,5%明胶和30%壳聚糖纤维为这种增强模式较为合适的比例。  相似文献   

2.
Poly(methyl methacrylate) (PMMA) bone cements have a long and successful history of use for implant fixation, but suffer from a relatively low fracture and fatigue resistance which can result in failure of the cement and the implant. Fiber or particulate reinforcement has been used to improve mechanical properties, but typically at the expense of the pre-cured cement viscosity, which is critical for successful integration with peri-implant bone tissue. Therefore, the objective of this study was to investigate the effects of zirconia fiber reinforcement on the fatigue life of acrylic bone cements while maintaining a relatively low pre-cured cement viscosity. Sintered straight or variable diameter fibers (VDFs) were added to a PMMA cement and tested in fully reversed uniaxial fatigue until failure. The mean fatigue life of cements reinforced with 15 and 20 vol% straight zirconia fibers was significantly increased by ~40-fold, on average, compared to a commercial benchmark (Osteobond?) and cements reinforced with 0–10 vol% straight zirconia fibers. The mean fatigue life of a cement reinforced with 10 vol% VDFs was an order of magnitude greater than the same cement reinforced with 10 vol% straight fibers. The time-dependent viscosity of cements reinforced with 10 and 15 vol% straight fibers was comparable to the commercial benchmark during curing. Therefore, the addition of relatively small amounts of straight and variable diameter zirconia fibers was able to substantially improve the fatigue resistance of acrylic bone cement while exhibiting similar handling characteristics compared to current commercial products.  相似文献   

3.
This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 μm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer’s instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.  相似文献   

4.
This paper presents the results of a brief experimental investigation to determine the effects of graphite fiber additives on the flexuaral, compressive, and exothermal characteristics of surgical bone cement. The materials used in the investigation were polymethyl-methacrylate (PMM) and chopped graphite (GY70) fibers. Both fiber reinforced and unrein-forced beam and cylinder specimens were fabricated and tested. The unreinforced specimens were used to develop baseline data. Comparison of static test data indicated that the graphite fiber additives yielded a twofold increase in stiffness without compromising the flexural strength of the material. The compressive strength decreased significantly, however, as a result of poor specimen compaction and the resulting presence of voids. The maximum exothermic temperature developed in the fiber reinforced specimens was approximately half that of the basic PMM. It is concluded that graphite fiber reinforcement is beneficial in improving certain mechanical and thermal properties of surgical bone cement. However, considerable effort remains to produce a clinically usable graphite fiber reinforced bone cement.  相似文献   

5.
The apparent mechanical properties of hydroxyapatite (HA) whisker reinforced polyetherketoneketone (PEKK) scaffolds were evaluated in unconfined, uniaxial compression to investigate the effects of the porosity (75%, 82.5% and 90%), HA content (0, 20 and 40 vol%) and mold temperature (350, 365 and 375 C). Increased porosity resulted in a non-linear decrease in the elastic modulus and yield strength for both reinforced and unreinforced PEKK scaffolds, as expected. The increase in elastic modulus and yield strength with increased relative density followed a power-law, similar to trabecular bone and other open-cell foams. HA whisker reinforcement generally resulted in an increased elastic modulus from 0 to 20 vol% HA and a subsequent decrease from 20 to 40 vol% HA, while the yield strength and strain were decreased in scaffolds with 40 vol% HA compared to those with 0 or 20 vol% HA. Increased mold temperature resulted in an increased elastic modulus, yield strength and yield strain. These effects enabled the mechanical properties to be tailored to mimic human trabecular bone. The elastic modulus was greater than 50 MPa, and the yield strength was greater than 0.5 MPa, for scaffolds with 75% porosity at all combinations of reinforcement level and mold temperature. Scaffolds with 75% porosity and 20 vol% HA molded at 375 C exhibited a mean elastic modulus and yield strength of 149 MPa and 2.2 MPa, respectively, which was the highest of the conditions investigated in this study and similar to human vertebral trabecular bone. Therefore, HA whisker reinforced PEKK scaffolds may be advantageous for permanent implant fixation, including interbody spinal fusion.  相似文献   

6.
Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to low mechanical properties. In this study, we investigated the effectiveness of a chitosan fiber reinforcement approach to enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of fiber/scaffold mass ratio, fiber mechanical properties and fiber length on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced, heart valve scaffold achieved leaflet tensile strength values of 220±17 kPa, comparable to the radial values of human pulmonary valve leaflets. Additionally, the effects of 2 mm fibers were found to be up to threefold greater than 10 mm fibers at identical mass ratios. Heparin crosslinking of fibers produced a reduction in fiber strength, and thus failed to produce additional improvements to fiber-reinforced scaffold properties. Despite this reduction in fiber strength, heparin-modified fibers still improved the mechanical properties of reinforced scaffolds, but to a lesser extent than unmodified fibers. The results demonstrate that chitosan fiber reinforcement can be used to achieve porous chitosan scaffold strength approaching that of tissue, and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement.  相似文献   

7.
Calcium phosphate cement (CPC) is a widely used bone substitute in the clinic; however, the low strength of CPC limits its utilization. In this study, we investigated mechanical influences of chitosan fiber combined with gelatin on CPC, and examined the biocompatibility of the new composite with rat bone marrow stromal cells. Compared to the fiber impregnated in phosphate buffered saline (80.5 MPa), our study showed that tensile strength of chitosan fiber increased 106 and 114% with the impregnation of gelatin at the mass fraction 5 and 10%, although this increase was not statistically significant. It was demonstrated by Fourier transform infrared spectroscopy that the characteristic absorption bands of chitosan were changed with the addition of gelatin. The optimal flexural strength enhancement was obtained when CPC was reinforced with fiber at volume fraction of 30% and gelatin at mass fraction of 5% (maximum: 12.31 MPa). The fiber morphology was more compact when the chitosan fibers impregnated with gelatin at mass fraction of 5 or 10% than chitosan alone. The fracture analysis showed that the new CPC-chitosan fiber-gelatin composite presented many remnants of CPC adhered to fibers. Short minimum essential medium extract test showed no cell growth inhibition after the addition of the new composite. Rat bone marrow stromal cells retain the ability to spread and grow on the composite. Our studies demonstrated that the flexural strength is greatly increased by using CPC incorporated with proper ratio of CF and gelatin. More over, the new composite demonstrated biocompatibility in vitro.  相似文献   

8.
《Biomaterials》1987,8(1):42-45
Changes in the flexural and/or tensile strength of plates and rods made of PGA/PLA copolymer submerged in water for a period of 4 wk were investigated. During this time, the effects of PGA/PLA fibre self-reinforcement, carbon fibre reinforcement and gold plating on tensile and/or flexural strength were examined. The results were used for evaluation of the surgical applications of PGA/PLA copolymer and its composites.The initial tensile strength of non-reinforced material was 45 Mpa and its flexural strength was 150 MPa: the flexural strength of self-reinforced material was 265 MPa. The tensile strength of carbon fibre reinforced material was 90 MPa and its flexural strength 190 MPa. The initial strengths of plated end unplated samples were the same but plating delayed the loss of the mechanical strength of carbon fibre reinforced samples.After 4 wk the flexural strength of self-reinforced and carbon fibre reinforced samples was decreased to the level of cancellous bone (10–20 MPa) while the flexural strength of non-reinforced samples was below that level (≲ 5 MPa).The results suggested that self-reinforced PGA/PLA composites may be used for the treatment of fractures in cancellous bone. Positive animal experiments led to clinical studies in vivo. These studies showed that there was no difference in outcome between 2 groups of patients with displaced fractures of the ankle treated with metallic implants or PGA/PLA fibre self-reinforced implants, respectively. Self-reinforced biodegradable implants are now used routinely in Helsinki University Central Hospital.  相似文献   

9.
To function properly in the rigorous tissue environment, implanted scaffolds for tissue engineering are required to meet certain standards of strength and mechanical integrity. However, the soft nature and moisture condition of biomaterials impose great challenges to many existing techniques and instrumentations for measuring their mechanical properties at micro/nano scale. In this work, we demonstrate the testing methodologies of micro/nano fiber reinforced type I collagens, and obtain basic mechanical property data of two types of modified collagens-micro carbon fiber reinforced collagen (MCFR) and nano collagen fiber reinforced collagen (NCFR). Results show that mechanical properties of collagen tissues can be enhanced by reinforcing nano collagen fibers but weakened by micro carbon fiber reinforcements. Mechanisms are discussed on how natures of reinforcing fibers affect reinforcement to the collagen matrix, as well as how reinforcements behave within the collagen matrix in response to mechanical strain.  相似文献   

10.
Calcium phosphate cement (CPC) sets to form hydroxyapatite and has been used in medical and dental procedures. However, the brittleness and low strength of CPC prohibit its use in many stress-bearing locations, unsupported defects, or reconstruction of thin bones. Recent studies incorporated fibers into CPC to improve its strength. In the present study, a novel methodology was used to combine the reinforcement with macroporosity: large-diameter resorbable fibers were incorporated into CPC to provide short-term strength, then dissolved to create macropores suitable for bone ingrowth. Two types of resorbable fibers with 322 microm diameters were mixed with CPC to a fiber volume fraction of 25%. The set specimens were immersed in saline at 37 degrees C for 1, 7, 14, 28 and 56d, and were then tested in three-point flexure. SEM was used to examine crack-fiber interactions. CPC composite achieved a flexural strength 3 times, and work-of-fracture (toughness) nearly 100 times, greater than unreinforced CPC. The strength and toughness were maintained for 2-4 weeks of immersion, depending on fiber dissolution rate. Macropores or channels were observed in CPC composite after fiber dissolution. In conclusion, incorporating large-diameter resorbable fibers can achieve the needed short-term strength and fracture resistance for CPC while tissue regeneration is occurring, then create macropores suitable for vascular ingrowth when the fibers are dissolved. The reinforcement mechanisms appeared to be crack bridging and fiber pullout, the mechanical properties of the CPC matrix also affected the composite properties.  相似文献   

11.
Reinforcement of a self-setting calcium phosphate cement with different fibers   总被引:11,自引:0,他引:11  
A water-based calcium phosphate cement (CPC) has been used in a number of medical and dental procedures due to its excellent osteoconductivity and bone replacement capability. However, the low tensile strength of CPC prohibits its use in many unsupported defects and stress-bearing locations. Little investigation has been carried out on the fiber reinforcement of CPC. The aims of the present study, therefore, were to examine whether fibers would strengthen CPC, and to investigate the effects of fiber type, fiber length, and volume fraction. Four different fibers were used: aramid, carbon, E-glass, and polyglactin. Fiber length ranged from 3-200 mm, and fiber volume fraction ranged from 1.9-9.5%. The fibers were mixed with CPC paste and placed into molds of 3 x 4 x 25 mm. A flexural test was used to fracture the set specimens and to measure the ultimate strength, work-of-fracture, and elastic modulus. Scanning electron microscopy was used to examine specimen fracture surfaces. Fiber type had significant effects on composite properties. The composite ultimate strength in MPa (mean +/- SD; n = 6) was (62+/-16) for aramid, (59+/-11) for carbon, (29+/-8) for E-glass, and (24+/-4) for polyglactin, with 5.7% volume fraction and 75 mm fiber length. In comparison, the strength of unreinforced CPC was (13+/-3). Fiber length also played an important role. For composites containing 5.7% aramid fibers, the ultimate strength was (24+/-3) for 3 mm fibers, (36+/-13) for 8 mm fibers, (48 +/-14) for 25 mm fibers, and (62+/-16) for 75 mm fibers. At 25 mm fiber length, the ultimate strength of CPC composite was found to be linearly proportional to fiber strength. In conclusion, a self-setting calcium phosphate cement was substantially strengthened via fiber reinforcement. Fiber length, fiber volume fraction, and fiber strength were found to be key microstructural parameters that controlled the mechanical properties of CPC composites.  相似文献   

12.
Fracture resistance of prosthesis is an important clinical concern. This property is directly related to transverse strength. Strengthening of prostheses may result from reinforcement with various fiber types. This study evaluated the effect of fiber type on the transverse strength of a commercially available autopolymerizing resin that is used for repairing prosthesis. The resin was reinforced with woven form, chopped form and longitudinal form, and no reinforcement was used. Uniform samples were made from autopolymerizing resin. In total, twenty-four bar-shaped specimens (60 x 10 x 4 mm) were reinforced with glass fibers. Nine specimens were prepared without fiber. A three-point loading test was used to measure transverse strength, maximal deflection, and modulus of elasticity. The Kruskal-Wallis analysis of variance was used to examine differences between the four groups. Although the results of the analysis between these groups showed no statistical significances, the transverse strength, maximal deflection and modulus of elasticity increased more with fiber than without the fiber group. This finding may be of clinical significance. Because the addition of fiber reinforcement enhanced the physical properties of the processed material, specially woven form glass fiber was superior to the other forms.  相似文献   

13.
Fracture resistance of provisional restorations is an important clinical concern. This property is directly related to transverse strength. Strengthening of provisional fixed partial dentures may result from reinforcement with various fiber types. This study evaluated the effect of fiber type and water storage on the transverse strength of a commercially available provisional resin under two different conditions. The denture resin was reinforced with either glass or aramid fiber or no reinforcement was used. Uniform samples were made from a commercially available autopolymerizing provisional fixed partial denture resin. Sixteen bar-shaped specimens (60 x 10 x 4 mm) were reinforced with pre-treated epoxy resin-coated glass fibers, with aramid fibers, or with no fibers. Eight specimens of each group, with and without fibers, were tested after 24 h of fabrication (immediate group), and after 30-day water storage. A three-point loading test was used to measure the transverse strength, the maximal deflection, and the modulus of elasticity. The Kruskal-Wallis Analysis of Variance was used to examine differences among the three groups, and then the Mann-Whitney U Test and Wilcoxon Signed Ranks Test were applied to determine pair-wise differences. The transverse strength and the maximal deflection values in the immediate group and in the 30-day water storage group were not statistically significant. In the group tested immediately, the elasticity modulus was found to be significant (P = 0.042). In the 30-day water storage group, all the values were statistically insignificant. The highest transverse strength was displayed by the glass-reinforced resin (66.25MPa) in the immediate group. The transverse strength value was 62.04MPa for the unreinforced samples in the immediate group. All the specimens exhibited lower transverse strength with an increase in water immersion time. The transverse strength value was 61.13 MPa for the glass-reinforced resin and was 61.24 MPa for the unreinforced resin. The aramid-reinforced resin decreased from 62.29 to 58.77 MPa. The addition of fiber reinforcement enhanced the physical properties (the transverse strength, the maximal deflection, the modulus of elasticity) of the processed material over that seen with no addition of fiber. Water storage did not statistically affect the transverse strength of the provisional denture resin compared to that of the unreinforced resin. The transverse strength was lowered at water storage but it was not statistically significant. The transverse strength was enhanced by fiber addition compared to the unreinforced resin. The glass fiber was superior to the other fiber. Also the modulus of elasticity was enhanced by fiber addition compared to the unreinforced resin.  相似文献   

14.
Porous 75:25 poly(D,L-lactide-co-glycolide) scaffolds reinforced with polyglycolide fibers were prepared with mechanical properties tailored for use in articular cartilage repair. Compression testing was performed to investigate the influence of physiological testing conditions, manufacturing method, anisotropic properties due to predominant fiber orientation, amounts of fiber reinforcement (0 to 20 wt, %), and viscoelasticity via a range of strain rates. Using the same testing modality, the mechanical properties of the scaffolds were compared with pig and goat articular cartilage. Results showed that mechanical properties of the scaffolds under physiological conditions (aqueous, 37 degrees C) were much lower than when tested under ambient conditions. The manufacturing method and anisotropy of the scaffolds significantly influenced the mechanical properties. The compressive modulus and yield strength proportionally increased with increasing fiber reinforcement up to 20%. From 0.01 to 10 mm/mm/min strain rate, the compressive modulus increased in a logarithmic fashion, and the yield strength increased in a semi-log fashion. The compressive modulus of the non-reinforced scaffolds was most similar to the pig and goat articular cartilage when compared using similar testing conditions and modality, but the improvement in yield strength using the stiffer scaffolds with fiber reinforcement could provide needed structural support for in vivo loads.  相似文献   

15.
In this work, a comparative study between the morphology, the thermal and the mechanical properties of poly(ɛ-caprolactone) (PCL)-based electrospun fiber mats reinforced with both MgO and Mg(OH)2 nanoparticles, is carried out. Both MgO and Mg(OH)2 nanoparticles have been added in a range of concentrations such as 0.5, 1, 5, 10, 20 wt% with respect to the PCL matrix, with the aim of improving their mechanical properties in comparison with neat PCL electrospun fibers. From the morphological point of view, electrospun fibers are randomly collected and an increase in the average fiber diameter with the addition of nanoparticles is observed. The addition of both types of nanoparticles lower the onset degradation temperature as well as the maximum degradation temperature of neat ePCL of about 50 °C with the higher content of nanoparticles. Furthermore, PCL electrospun nanofiber mats show a degree of crystallinity of 53%, which is quite high. However, the addition of 20 wt% of both MgO and Mg(OH)2 lowers the crystallinity of the reinforced electrospun fibers to 50% and 43% for PCL + MgO 20 wt% and Mg(OH)2 20 wt%, respectively.  相似文献   

16.
Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted composite fibers with low concentration of nanometal were comparable to those for the control PP yarns. Extruded composite fibers that contained 0.72% silver and 0.60% zinc nanoparticles had outstanding antibacterial efficacy as documented by the percentage count reduction growth of Escherichia coli and Staphylococcus aureus. Fibers containing silver particles had improved antistatic properties.  相似文献   

17.
Kong YM  Bae CJ  Lee SH  Kim HW  Kim HE 《Biomaterials》2005,26(5):509-517
The biocompatibility of zirconia-alumina (ZA) nano-composites in load-bearing applications such as dental/orthopedic implants was significantly enhanced by the addition of bioactive HA. The ZA matrix was composed of nano-composite powder obtained from the Pechini process and had higher flexural strength than conventionally mixed zirconia-alumina composite. Because the ZA nano-composite powder effectively decreased the contact area between HA and zirconia for their reaction during the sintering process, the HA-added ZA nano-composites contained biphasic calcium phosphates (BCP) of HA/TCP and had higher flexural strength than conventionally mixed ZA-HA composite. From the in vitro test with osteoblastic cell-lines, the proliferation and the differentiation (as expressed by the alkaline phosphatase activity) of the cellular response on the HA-added ZA nano-composites gradually increased as the amount of HA added increased. From the mechanical and biological evaluations of the HA-added ZA nano-composites, 30HA (30 vol% HA + 70 vol% ZA) was found to be the optimal composition for load-bearing biological applications.  相似文献   

18.
Bioactive bone-repairing materials with mechanical properties analogous to those of natural bone can be obtained through the combination of bioactive ceramic fillers with organic polymers. Previously, we developed novel bioactive microspheres in a binary CaO-SiO2 system produced through a sol-gel process as filler for the fabrication of composites. In this study, we fabricate bioactive composites in which polyetheretherketone is reinforced with 0-50 vol% 30CaO x 70SiO2 (CS) microspheres. The prepared composites reinforced with CS particles form hydroxyapatite on their surfaces in simulated body fluid. The induction periods of hydroxyapatite formation on the composites decrease with increasing amount of CS particles. The mechanical properties of the composites are evaluated by three-point bending test. The composites reinforced with 20 vol% CS particles show 123.5 MPa and 6.43 GPa in bending strength and Young's modulus, respectively.  相似文献   

19.
Five types of posts from three different manufacturers (RTD, France, Carbotech, France and Ivoclar-Vivadent, Liechenstein) were subjected to three-point bending tests in order to obtain fatigue results, flexural strength and modulus. Transverse and longitudinal polished sections were examined by scanning electron microscopy and evaluated by computer-assisted image analysis. Physical parameters, including volume % of fibers, their dispersion index and coordination number, were calculated and correlated with mechanical properties. The weaker posts showed more fiber dispersion, higher resin contents, larger numbers of visible defects and reduced fatigue resistance. The flexural strength was inversely correlated with fiber diameter and the flexural modulus was weakly related to coordination number, volume % of fibers and dispersion index. The interfacial adhesion between the silica fibers and the resin matrix was observed to be of paramount importance.  相似文献   

20.
Because of its excellent osteoconductivity and bone-replacement capability, self-setting calcium phosphate cement (CPC) has been used in a number of clinical procedures. For more rapid resorption and concomitant osseointegration, methods were desired to build macropores into CPC; however, this decreased its mechanical properties. The aims of this study, therefore, were to use fibers to strengthen macroporous CPC and to investigate the effects of the pore volume fraction on its mechanical properties. Water-soluble mannitol crystals were incorporated into CPC paste; the set CPC was then immersed in water to dissolve mannitol, producing macropores. Mannitol/(mannitol + CPC powder) mass fractions of 0, 10, 20, 30, and 40% were used. An aramid fiber volume fraction of 6% was incorporated into the CPC-mannitol specimens, which were set in 3 mm x 4 mm x 25 mm molds and then fractured in three-point flexure to measure the strength, work of fracture, and modulus. The dissolution of mannitol created well-formed macropores, with CPC at 40% mannitol having a total porosity of a 70.8% volume fraction. Increasing the mannitol content significantly decreased the properties of CPC without fibers (analysis of variance; p < 0.001). The strength (mean +/- standard deviation; n = 6) of CPC at 0% mannitol was 15.0 +/- 1.8 MPa; at 40% mannitol, it decreased to 1.4 +/- 0.4 MPa. Fiber reinforcement improved the properties, with the strength increasing threefold at 0% mannitol, sevenfold at 30% mannitol, and nearly fourfold at 40% mannitol. The work of fracture increased by 2 orders of magnitude, but the modulus was not changed as a result of fiber reinforcement. A scanning electron microscopy examination of specimens indicated crack deflection and bridging by fibers, matrix multiple cracking, and frictional pullout of fibers as the reinforcement mechanisms. Macroporous CPCs were substantially strengthened and toughened via fiber reinforcement. This may help extend the use of CPCs with macropores for bony ingrowth to the repair of larger defects in stress-bearing locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号