首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Although differences in brain anatomy in autism have been difficult to replicate using manual tracing methods, automated whole brain analyses have begun to find consistent differences in regions of the brain associated with the social cognitive processes that are often impaired in autism. We attempted to replicate these whole brain studies and to correlate regional volume changes with several autism symptom measures.

Methods

We performed MRI scans on 24 individuals diagnosed with DSM-IV autistic disorder and compared those to scans from 23 healthy comparison subjects matched on age. All participants were male. Whole brain, voxel-wise analyses of regional gray matter volume were conducted using voxel-based morphometry (VBM).

Results

Controlling for age and total gray matter volume, the volumes of the medial frontal gyri, left pre-central gyrus, right post-central gyrus, right fusiform gyrus, caudate nuclei and the left hippocampus were larger in the autism group relative to controls. Regions exhibiting smaller volumes in the autism group were observed exclusively in the cerebellum. Significant partial correlations were found between the volumes of the caudate nuclei, multiple frontal and temporal regions, the cerebellum and a measure of repetitive behaviors, controlling for total gray matter volume. Social and communication deficits in autism were also associated with caudate, cerebellar, and precuneus volumes, as well as with frontal and temporal lobe regional volumes.

Conclusion

Gray matter enlargement was observed in areas that have been functionally identified as important in social-cognitive processes, such as the medial frontal gyri, sensorimotor cortex and middle temporal gyrus. Additionally, we have shown that VBM is sensitive to associations between social and repetitive behaviors and regional brain volumes in autism.  相似文献   

2.
Ke X  Hong S  Tang T  Zou B  Li H  Hang Y  Zhou Z  Ruan Z  Lu Z  Tao G  Liu Y 《Neuroreport》2008,19(9):921-925
Earlier studies have suggested abnormal brain volumes in autism, but inconsistencies exist. Using voxel-based morphometry, we compared global and regional brain volumes in 17 high-functioning autistic children with 15 matched controls. We identified significant reduction in left white matter volume and white/gray matter ratio in autism. Regional brain volume reductions were detected for right anterior cingulate, left superior parietal lobule white matter volumes, and right parahippocampal gyrus gray matter volume, whereas enlargements in bilateral supramarginal gyrus, right postcentral gyrus, right medial frontal gyrus, and right posterior lobe of cerebellum gray matter in autism. Our findings showed global and regional brain volumes abnormality in high-functioning autism.  相似文献   

3.
Posttraumatic stress disorder (PTSD) is associated with functional abnormalities within a neurocircuitry that includes the hippocampus, amygdala, and medial prefrontal cortex. Evidence of structural abnormalities within these regions, and their association with PTSD severity and symptom burden is, however, sparse. The present study evaluated the relation between indices of gray matter volume and PTSD symptom severity using voxel-based morphometry. Fifteen individuals meeting DSM-IV criteria for PTSD completed the Clinician Administered PTSD Scale and underwent structural magnetic resonance imaging. Greater PTSD severity and avoidance/numbing were correlated with increased gray matter volume of the right amygdala–hippocampal complex. Greater hyper-arousal was associated with reduced gray matter volume in the left superior medial frontal gyrus. Findings are consistent with current neurocircuitry models of PTSD, which posit that the disorder is associated with structural and functional variance within this distributed network.  相似文献   

4.
We tested whether in 85 healthy adults (18–29 years) there is a relationship between grey-matter (GM) volume and autism and ADHD symptom severity. The structural MRI findings and autism and ADHD self-reports revealed that autism and ADHD symptom severity was correlated with GM volume in the left inferior frontal gyrus. Autism symptom-severity was correlated with the left posterior cingulate, ADHD with the right parietal lobe, right temporal frontal cortex, bilateral thalamus, and left hippocampus/amygdala complex. Symptom severity of both disorders form a continuum extending into the general population, but it seems to be an oversimplification to typify psychiatric disorders such as autism and ADHD solely as extremes of brain structure abnormalities.  相似文献   

5.
Impairments in language and communication are core features of autism spectrum disorder (ASD). The anatomy of critical language areas has been studied in ASD with inconsistent findings. We used MRI to measure gray matter volume and asymmetry of Heschl’s gyrus, planum temporale, pars triangularis, and pars opercularis in 40 children and adolescents with ASD and 40 typically developing individuals, each divided into younger (7–11 years) and older (12–19 years) cohorts. The older group had larger left planum temporale volume and stronger leftward asymmetry than the younger group, regardless of diagnosis. The pars triangularis and opercularis together were larger in ASD than controls. Correlations between frontal language areas with language and symptom severity scores were significant in younger ASD children. Results suggest similar developmental changes in planum temporale anatomy in both groups, but group differences in pars triangularis and opercularis that may be related to language abilities and autism symptom severity.  相似文献   

6.
Previous literature has suggested an important role of inferior frontal gyrus, which mainly consists of Brodmann’s Area (BA) 44 and 45, in the pathophysiology of schizophrenia. While recent neuroimaging techniques have revealed differential functional correlates of BA 44 and 45 in healthy individuals, previous studies have not yet separately evaluated the gray matter volume reduction of BA 44 and 45 and their relationships to psychotic symptoms in patients with schizophrenia. In the present study, magnetic resonance images were obtained from 29 right-handed male patients with schizophrenia and from 29 age- and handedness-matched healthy male controls. The reliable manual tracing methodology was employed to measure the gray matter volume of BA 44 and BA 45. The severities of psychotic symptoms were evaluated using the five-factor model of positive and negative syndrome scale in the patient group. A significant gray matter volume reduction of both the BA 44 and BA 45 was found bilaterally in the patients with schizophrenia compared with the healthy controls. Among these inferior frontal sub-regions, reduced volume of right BA 45 revealed the largest effect size. In addition, the reduced volume of BA 45 in left hemisphere showed a significant association with the increased severity of delusional behavior, while the severity of disorganized and positive symptoms were correlated with the bilateral BA 45 volumes in the patient group. The findings support an important role of inferior frontal gyrus in the pathophysiology of schizophrenia. The present study further demonstrated that BA 45 might especially contribute to the production of psychotic symptoms in the patients with schizophrenia.  相似文献   

7.
Voxel-based morphometry (VBM) studies have reported abnormalities in brain regions involved in functions that are commonly impaired in autism spectrum disorders (ASD). However, little is known about brain structure anomalies in low-functioning (LF) young children with ASD. A VBM analysis was carried out to assess brain regions involved in ASD LF children, and a multiple regression analysis was used to examine the relationship between regional volume changes and autism symptom measures. Twenty-six LF ASD children (2–10 years) were compared with 21 controls. A VBM-Diffeomorphic Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL) was used to evaluate gray matter (GM) and white matter alterations, covaried with Intelligence Quotient, age, and total brain volume. The resulting altered regions were correlated with Autism Diagnostic Interview (ADI)-Revised and Autism Diagnostic Observation Schedule (ADOS)-Generic scores. GM bilateral reduction was noted in the cerebellum (Crus II and vermis) and in the hippocampi in ASD group. GM reduction was also detected in the inferior and superior frontal gyri, in the occipital medial and superior gyri, and in the inferior temporal gyrus of the left cerebral hemisphere. In the right hemisphere, GM reduction was found in the post-central cortex and in the occipital inferior gyrus. Multiple regression analysis showed a correlation between alterations in GM volume in the cerebellum (Crus II and vermis) and ADI-communication and ADOS-total (communication and interaction) scores. These findings seem to confirm that the cerebellum is involved in integrating and regulating emotional and cognitive functions which are impaired in ASD.  相似文献   

8.
Prader‐Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral symptoms including hyperphagia, disinhibition, and compulsive behavior. The behavioral problems in individuals with PWS are strikingly similar to those in patients with frontal pathologies, particularly those affecting the orbitofrontal cortex (OFC). However, neuroanatomical abnormalities in the frontal lobe have not been established in PWS. The aim of this study was to look, using volumetric analysis, for morphological changes in the frontal lobe, especially the OFC, of the brains of individuals with PWS. Twelve adults with PWS and 13 age‐ and gender‐matched control subjects participated in structural magnetic resonance imaging (MRI) scans. The whole‐brain images were segmented and normalized to a standard stereotactic space. Regional gray matter volumes were compared between the PWS group and the control group using voxel‐based morphometry. The PWS subjects showed small gray‐matter volume in several regions, including the OFC, caudate nucleus, inferior temporal gyrus, precentral gyrus, supplementary motor area, postcentral gyrus, and cerebellum. The small gray‐matter volume in the OFC remained significant in a separate analysis that included total gray matter volume as a covariate. These preliminary findings suggest that the neurobehavioral symptoms in individuals with PWS are related to structural brain abnormalities in these areas. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
While late-life depression (LLD) and amnestic mild cognitive impairment (aMCI), alone and in combination, is associated with an increased risk of incident Alzheimer's disease (AD), the neurobiological mechanisms of this link are unclear. We examined the main and interactive effects of LLD and aMCI on the gray matter (GM) volumes in 72 physically healthy participants aged 60 and older. Participants were separated into normal controls, cognitively normal depressed, non-depressed aMCI, and depressed aMCI groups. Optimized voxel-based morphometry estimated GM volumes. The main and interactive effects of LLD and aMCI, and of depressive symptoms and episodic memory deficits on the GM volumes were analyzed. While decreased GM volumes in the mood regulating circuitry structures were associated with depression, GM atrophy in regions essential for various cognitive performance were related to aMCI. LLD-aMCI interactions were associated with widespread subcortical and cortical GM volume loss of brain structures implicated in AD. The interactions between episodic memory deficits and depressive symptom severity are associated with volume loss in right inferior frontal gyrus/anterior insula and left medial frontal gyrus clusters. Our findings suggest that the co-existence of these clinical phenotypes is a potential marker for higher risk of AD.  相似文献   

10.
Autism is a neurodevelopmental disorder affecting cognitive, language, and social functioning. Although language and social communication abnormalities are characteristic, prior structural imaging studies have not examined language-related cortex in autistic and control subjects. Subjects included 16 boys with autism (aged 7-11 years), with nonverbal IQ greater than 80, and 15 age- and handedness-matched controls. Magnetic resonance brain images were segmented into gray and white matter; cerebral cortex was parcellated into 48 gyral-based divisions per hemisphere. Asymmetry was assessed a priori in language-related inferior lateral frontal and posterior superior temporal regions and assessed post hoc in all regions to determine specificity of asymmetry abnormalities. Boys with autism had significant asymmetry reversal in frontal language-related cortex: 27% larger on the right in autism and 17% larger on the left in controls. Only one additional region had significant asymmetry differences on post hoc analysis: posterior temporal fusiform gyrus (more left-sided in autism), whereas adjacent fusiform gyrus and temporooccipital inferior temporal gyrus both approached significance (more right-sided in autism). These inferior temporal regions are involved in visual face processing. In boys with autism, language and social/face processing-related regions displayed abnormal asymmetry. These structural abnormalities may relate to language and social disturbances observed in autism.  相似文献   

11.
Previous structural imaging studies of autistic individuals have identified gray matter abnormalities. It remains unclear, however, which abnormalities contribute to the etiology of autism and, among these abnormalities, which reflect genetic factors. Using voxel-based morphometry, we compared regional gray matter volume in 23 parents of autistic children to an age and sex-matched control sample. We identified relative local gray matter volume increases and decreases in the parent group that are consistent with previous research with autistic individuals. Further, differences were identified in regions that are functionally associated with social-cognitive and motor processes that are impaired in autism. This investigation constitutes the first whole-brain study of regional brain volume in the parents of autistic children, and suggests that a number of structural changes observed in autism may be familial.  相似文献   

12.
Schizophrenia is characterized by subtle but well-replicated total and regional (frontal and temporal) brain tissue volume deficits. Studies of individuals at-risk for developing schizophrenia suggest that the onset of brain volume decrement may closely pre-date overt manifestations of schizophrenia, making brain volume abnormalities potential predictors for early identification. In an ongoing longitudinal morphometric MRI study of young, nonpsychotic first- or second-degree relatives of schizophrenia probands, we compared brain volumes in 46 relatives who are still within age range for developing schizophrenia against comparison groups of 46 schizophrenia patients and 46 healthy volunteers without family history of schizophrenia. Relatives had similar brain volume abnormalities as schizophrenia patients albeit less severe. Relatives had significantly larger whole brain, frontal, temporal and parietal gray matter (GM) volumes than patients. Relatives also had significantly smaller frontal GM volumes than healthy volunteers. Both relatives and patients had significantly larger whole brain WM (specifically parietal WM) volumes compared to healthy volunteers. Abnormally greater WM volumes in relatives and patients are suggestive of genetically-mediated dysmaturation of the age-expected myelination during adolescence through mid adulthood. On prodromal symptoms assessed in relatives one year after MRI brain scans, initial GM deficits as well as larger WM volumes correlated significantly with greater severity of subsequent prodromal symptoms. Together with previous genetic high-risk studies of adolescent or young adult relatives, these findings indicate that premorbid MRI brain abnormalities may be of predictive value for the early identification of schizophrenia.  相似文献   

13.
OBJECTIVE: Imaging studies of schizophrenia have repeatedly demonstrated global abnormalities of cerebral and ventricular volumes. However, pathological changes at more local levels of brain organization have not yet been so clearly characterized because of the few brain regions of interest heretofore included in morphometric analyses as well as heterogeneity of patient samples. METHOD: Dual echo magnetic resonance imaging (MRI) data were acquired at 1.5 T from 27 right-handed patients who met DSM-IV criteria for schizophrenia with enduring negative symptoms and from 27 healthy comparison subjects. Between-group differences in gray and white matter volume were estimated at each intracerebral voxel after registration of the images in standard space. The relationship between clinical symptom scores and brain structure was also examined within the patient group. Spatial statistics and permutation tests were used for inference. RESULTS: Significant deficits of gray matter volume in the patient group were found at three main locations: 1) the left superior temporal gyrus and insular cortex, 2) the left medial temporal lobe (including the parahippocampal gyrus and hippocampus), and 3) the anterior cingulate and medial frontal gyri. The volume of these three regions combined was 14% lower in the patients relative to the comparison subjects. White matter deficits were found in similar locations in the left temporal lobe and extended into the left frontal lobe. The patient group showed a relative excess of gray matter volume in the basal ganglia. Within the patient group, basal ganglia gray matter volume was positively correlated with positive symptom scores. CONCLUSIONS: Anatomical abnormalities in these schizophrenic patients with marked negative symptoms were most evident in left hemispheric neocortical and limbic regions and related white matter tracts. These data are compatible with models that depict schizophrenia as a supraregional disorder of multiple, distributed brain regions and the axonal connections between them.  相似文献   

14.
Our study aimed to identify gray matter volume differences between panic disorder patients and healthy volunteers using optimized voxel-based morphometry. Gray matter volume was compared between 18 panic subjects and 18 healthy volunteers. Panic disorder severity scale (PDSS) and Zung self-rating anxiety scale (Z-SAS) were administered. Gray matter volumes of bilateral putamen were decreased in panic subjects relative to healthy comparison subjects (corrected P < 0.05). Decreased gray matter volume was also observed in the right precuneus, right inferior temporal gyrus, right inferior frontal gyrus, left superior temporal gyrus, and left superior frontal gyrus at a less conservative level of significance. PDSS score negatively correlated with gray matter volume in the left putamen, right putamen, right inferior frontal gyrus, and left superior frontal gyrus in panic subjects. The duration of illness negatively correlated with left putaminal gray matter volume. There was also a negative correlation between gray matter volume in right putamen and Z-SAS score in panic subjects. The current study reports a putaminal gray matter volume decrease in panic subjects, which may be related to the clinical severity of panic disorder.  相似文献   

15.
BACKGROUND: We sought to determine whether the brain dysmorphology previously observed cross-sectionally in people with schizophrenia progresses over time and whether such progression is related to the severity of the illness course. SUBJECTS AND METHODS: Men with chronic schizophrenia (n = 24) and control men (n = 25) received 2 brain magnetic resonance imaging scans, on average 4 years apart. Changes in brain volume were adjusted for head-repositioning error and expressed as slopes (cubic centimeters per year). Clinical course severity for the schizophrenic patients was assessed using the mean of time 1 and time 2 Brief Psychiatric Rating Scale (BPRS) scores and the percentage of time the patient was hospitalized during the interscan interval. RESULTS: Schizophrenic patients exhibited faster volume decline than control subjects in right frontal gray matter and bilateral posterior superior temporal gray matter, as well as faster cerebrospinal fluid volume expansion in right frontal sulci, left lateral ventricle, and bilateral prefrontal and posterior superior temporal sulci. Faster rates of frontal sulcal expansion were related to greater BPRS total and positive symptom scores and longer time hospitalized. Prefrontal gray matter decline and sulcal expansion were associated with greater BPRS negative symptom scores and longer time hospitalized. Temporal lobe gray matter decline was associated with greater BPRS total and negative symptom scores. CONCLUSIONS: This controlled study revealed that patients with chronic schizophrenia exhibited accelerated frontotemporal cortical gray matter decline and cortical sulcal and lateral ventricular expansion. Further, greater clinical severity was associated with faster rates of frontotemporal brain volume changes. These observations are consistent with a progressive pathophysiological process but need to be replicated in a larger sample.  相似文献   

16.
OBJECTIVE AND METHODS: Abnormalities of the neuroanatomy of the gray matter of the cingulate gyrus, especially its anterior segment, have been suggested to be an important characteristic of schizophrenia. In this study, T1-weighted magnetic resonance scans were collected in 53 individuals with schizophrenia and 68 comparison subjects matched for age, gender, race and parental socioeconomic status. We applied Labeled Cortical Mantle Distance Mapping to assess the volume, surface area and thickness of the cortical mantle within the anterior (AC) and posterior (PC) segments of the cingulate gyrus, excluding the paracingulate gyrus, and related these anatomical measures to measures of psychopathology and illness duration. RESULTS: After covarying for total cerebral volume, individuals with schizophrenia showed smaller AC gray matter volume (p=0.024), thickness (trend, p=0.081), but not surface area (p=0.16), than comparison subjects. Similar group differences were found for PC gray matter volume (p=0.0005) and thickness (trend, p=0.055), but not surface area (p=0.15). Across both groups, there was a significant L>R asymmetry in thickness of the AC, and a significant L>R asymmetry in the surface area of the PC. However, there were no significant group-by-hemisphere interactions. In the individuals with schizophrenia, thinning of the AC, but not the PC, was correlated with a longer duration of illness and a greater severity of psychotic symptoms. CONCLUSIONS: Individuals with schizophrenia showed smaller gray matter volumes across the entire cingulate gyrus, mostly due to a reduction in cortical mantle thickness. However, structural measures of the AC were more closely related to clinical features of the illness.  相似文献   

17.
首发精神分裂症患者的脑灰质减少   总被引:1,自引:0,他引:1  
目的 采用基于体素的形态学(VBM)分析方法对高分辨磁共振图像进行分析,研究首发精神分裂症患者大脑灰质变化,探讨患者脑灰质改变与临床症状之间的关系.方法 对符合CCMD-3诊断标准的首发精神分裂症患者以及健康志愿者各16例进行脑结构核磁共振扫描,并应用VBM进行脑灰质体积分析.所有患者均完成阳性与阴性症状量表(PANSS)评估.结果 与健康对照相比,患者组灰质密度降低的脑区有右侧小脑(t=5.17,P<0.001)、右侧顶上回(t=5.01,P<0.001)、左侧颞上回至岛叶被盖(t=4.79,P<0.001)、左侧额中回(t=4.71,P< 0.001)、左侧额下回(t=4.70,P<0.001)、右侧舌回(t=4.62,P< 0.001)、左侧海马杏仁体(t=4.11,P<0.001).患者组左侧Heschl's回的灰质密度与PANSS量表总分(r=-0.509,P=0.044)以及PANSS阳性症状量表得分(r=-0.554,P=0.026)呈显著负相关.结论 首发精神分裂症患者的脑灰质减少以左侧额、颞叶为主,其中左侧Heschl's回灰质变化与患者的精神病性症状有相关性.  相似文献   

18.
In Alzheimer's disease (AD), the loss of cerebral connectivity has been evidenced by numerous studies. There is growing evidence of attention related failures already in prodromal stages of AD; however, connectivity changes within attention networks have been rarely reported. Here we focused on effective connectivity of top-down attention control in patients with prodromal Alzheimer's disease (pAD). We scanned 15 pAD patients and 16 healthy elderly using the Attentional Network Task and determined effective connectivity within a cingulo-fronto-parietal network using Dynamic Causal Modeling. We related connectivity parameters to structural and behavioral parameters (gray matter volume as well as reaction time) to examine the relation between affected domains. Our analyses revealed that effective connectivity from the right middle frontal gyrus to the left superior parietal cortex as well as from the right to the left superior parietal gyrus was reduced in pAD patients. Furthermore, we found that, effective connectivity varied as a function of GM volume in the patient group: right middle frontal gray matter volume significantly correlated with connectivity from the right parietal cortex to the right middle frontal gyrus as well as from the middle frontal gyrus to the anterior cingulate cortex. In addition, inter-parietal connectivity was correlated to right and left parietal gray matter volume. We conclude that, at very early stages of AD, the reduction of effective connectivity in fronto-parietal circuits is related to regional gray matter volume and contributes to impairments in top-down attentional control.  相似文献   

19.
Obsessive-compulsive disorder (OCD) is known as a clinically heterogeneous disorder characterized by symptom dimensions. Although substantial numbers of neuroimaging studies have demonstrated the presence of brain abnormalities in OCD, their results are controversial. The clinical heterogeneity of OCD could be one of the reasons for this. It has been hypothesized that certain brain regions contributed to the respective obsessive-compulsive dimensions. In this study, we investigated the relationship between symptom dimensions of OCD and brain morphology using voxel-based morphometry to discover the specific regions showing alterations in the respective dimensions of obsessive-compulsive symptoms. The severities of symptom dimensions in thirty-three patients with OCD were assessed using Obsessive-Compulsive Inventory-Revised (OCI-R). Along with numerous MRI studies pointing out brain abnormalities in autistic spectrum disorder (ASD) patients, a previous study reported a positive correlation between ASD traits and regional gray matter volume in the left dorsolateral prefrontal cortex and amygdala in OCD patients. We investigated the correlation between gray and white matter volumes at the whole brain level and each symptom dimension score, treating all remaining dimension scores, age, gender, and ASD traits as confounding covariates. Our results revealed a significant negative correlation between washing symptom dimension score and gray matter volume in the right thalamus and a significant negative correlation between hoarding symptom dimension score and white matter volume in the left angular gyrus. Although our result was preliminary, our findings indicated that there were specific brain regions in gray and white matter that contributed to symptom dimensions in OCD patients.  相似文献   

20.
OBJECTIVE: To investigate structural abnormalities in bipolar disorder (BD) using optimized voxel-based morphometry (VBM) in closely matched patients and controls, and to examine the relationship of clinical features with regional gray matter (GM) volumes. METHODS: Twenty-four patients (six male) aged 19-59 years (mean=38.21 years, SD=11.04 years) with DSM-IV bipolar I disorder were compared with 25 control subjects, matched on age, sex, and years of education. VBM analyses were conducted on high-resolution T1-weighted brain magnetic resonance imaging to detect regional GM volume differences between groups, ensuring statistical correlation for age, sex and total intracranial volumes. Within the patient groups, regional GM changes were also investigated. RESULTS: Compared to controls, BD patients had increased GM volume in left parahippocampal gyrus and decreased GM volume in left middle temporal gyrus. Family history, psychotic symptoms and lithium status were associated with regional GM abnormalities in BD patients. CONCLUSIONS: This study presents evidence of gray matter volume abnormalities in adults with bipolar I disorder. Regional variation in relation to clinical factors suggests a neurobiological basis for clinical heterogeneity and posits the possibility of trait deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号