首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Memory consolidation during sleep: a neurophysiological perspective   总被引:9,自引:1,他引:9  
In the awake brain, information about the external world reaches the hippocampus via the entorhinal cortex, whereas during sleep the direction of information flow is reversed: population bursts initiated in the hippocampus invade the neocortex. We suggest that neocortico-hippocampal transfer of information and the modification process in neocortical circuitries by the hippocampal output take place in a temporally discontinuous manner associated with the wake-sleep cycle. Loading the hippocampus with neocortical information may happen fast during the aroused state of the hippocampus associated with theta/gamma oscillations. On the other hand, transfer of the stored representations to neocortical areas is carried by discrete quanta of co-operative neuronal bursts (called sharp wave bursts) initiated in the hippocampus during slow wave sleep. The spatio-temporal participation of principal cells in sharp waves is determined by experience-induced changes in the CA3 recurrent collateral matrix. The co-operative, converging pre-synaptic activity can induce localized fast spikes and associated calcium influx in the apical dendrites of CA1 pyramidal cells, a necessary condition for the induction of synaptic plasticity. In addition, the subcortical effects of hippocampal sharp wave bursts may be critical in the release of various hormones which, in turn, may affect synaptic plasticity. These observations suggest that sleep patterns in the limbic system are essential for the preservation of experience-induced synaptic modifications.  相似文献   

2.
Hippocampal network patterns of activity in the mouse   总被引:7,自引:0,他引:7  
Genetic engineering of the mouse brain allows investigators to address novel hypotheses in vivo. Because of the paucity of information on the network patterns of the mouse hippocampus, we investigated the electrical patterns in the behaving animal using multisite silicon probes and wire tetrodes. Theta (6-9 Hz) and gamma (40-100 Hz) oscillations were present during exploration and rapid eye movement sleep. Gamma power and theta power were comodulated and gamma power varied as a function of the theta cycle. Pyramidal cells and putative interneurons were phase-locked to theta oscillations. During immobility, consummatory behaviors and slow-wave sleep, sharp waves were present in cornu ammonis region CA1 of the hippocampus stratum radiatum associated with 140-200-Hz "ripples" in the pyramidal cell layer and population burst of CA1 neurons. In the hilus, large-amplitude "dentate spikes" occurred in association with increased discharge of hilar neurons. The amplitude of field patterns was larger in the mouse than in the rat, likely reflecting the higher neuron density in a smaller brain. We suggest that the main hippocampal network patterns are mediated by similar pathways and mechanisms in mouse and rat.  相似文献   

3.
During slow wave sleep and consummatory behaviors, electroencephalographic recordings from the rodent hippocampus reveal large amplitude potentials called sharp waves. The sharp waves originate from the CA3 circuitry and their generation is correlated with coherent discharges of CA3 pyramidal neurons and dependent on activities mediated by AMPA glutamate receptors. To model sharp waves in a relatively large hippocampal circuitry in vitro, we developed thick (1 mm) mouse hippocampal slices by separating the dentate gyrus from the CA2/CA1 areas while keeping the functional dentate gyrus-CA3-CA1 connections. We found that large amplitude (0.3-3 mV) sharp wave-like field potentials occurred spontaneously in the thick slices without extra ionic or pharmacological manipulation and they resemble closely electroencephalographic sharp waves with respect to waveform, regional initiation, pharmacological manipulations, and intracellular correlates. Through measuring tissue O2, K+, and synaptic and single cell activities, we verified that the sharp wave-like potentials are not a consequence of anoxia, nonspecific elevation of extracellular K+ and dissection-related tissue damage. Our data suggest that a subtle but crucial increase in the CA3 glutamatergic activity effectively recruits a population of neurons thus responsible for the generation of the sharp wave-like spontaneous field potentials in isolated hippocampal circuitry.  相似文献   

4.
The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at >20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population.  相似文献   

5.
A detailed analysis of the differential expression of a nuclear enzyme, DNA topoisomerase (topo) IIbeta, was performed in the rat hippocampal pyramidal layer. Three-dimensional (3-D) reconstruction from serial sections immunostained with anti-topo IIbeta antibody showed that the immunoreactivity was apparently weak in the entire CA3 region. Almost all CA1 pyramidal cells showed similar immunoreactivity to that seen in the dentate granular cells, the subicular neurons, and the cerebral neocortical neurons. In addition, immunoblotting analysis in the adult dorsal hippocampus showed that the expression level of topo IIbeta in the CA3 was significantly lower than that in the CA1 region. The dissociation in the expression level between CA1 and CA3 occurred in postnatal days 4 (P4) through P6. The present finding suggests that the enzyme is possibly involved in activities of the hippocampal pyramidal neurons.  相似文献   

6.
Following prolonged stimulation of the perforant path input to the dentate gyrus, long-lasting changes occur in the synaptic responses and cell properties of cells in the fascia dentata. The present study describes the effects of sustained stimulation on the major population of cells innervated by the dentate granule cells: are CA3 pyramidal cells of hippocampus. In 46% of slices from rat, sustained stimulation of perforant path was followed by spontaneous, synchronized, rhythmic bursting activity in area CA3 pyramidal cells that was evident for several hours. These bursts could be recorded extracellularly in the pyramidal cell layer, throughout the hilar region, and even in the granule cell layer. With intracellular recording, all of the cells of the fascia dentata were found to be affected by the pyramidal cell bursts. Hyperpolarizing, inhibitory postsynaptic potential (IPSP)-like events occurred in all granule cells tested during the CA3 pyramidal cell burst. In contrast, spiny hilar "mossy" cells discharged synchronously with the pyramidal cells, as did some of the "fast spiking" interneurons. However, most interneurons only depolarized a few millivolts during the pyramidal cell burst. These results show that sustained stimulation of the perforant path is followed by a period of hyperexcitability in area CA3 of the hippocampus, and that hyperexcitability in area CA3 influences the activity of the cells in the fascia dentata.  相似文献   

7.
Cortical malformations resulting from aberrant brain development can be associated with mental retardation, dyslexia, and intractable forms of epilepsy. Despite emerging interest in the pathology and etiology of cortical malformations, little is known about the phenotype of cells within these lesions. In utero exposure to the DNA methylating agent methylazoxymethanol acetate (MAM) during a critical stage in neurodevelopment results in animals with distinct clusters of displaced neurons in hippocampus, i.e. nodular heterotopia. Here we examined the molecular and electrophysiological properties of cells within hippocampal heterotopia using rats exposed to MAM during gestation. Molecular analysis revealed that heterotopic cells do not express mRNA markers normally found in hippocampal pyramidal cells or dentate granule cells (SCIP, Math-2, Prox-1, neuropilin-2). In contrast, Id-2 mRNA, normally abundant in Layer II-III supragranular neocortical neurons but not in CA1 pyramidal neurons, was prominently expressed in hippocampal heterotopia. Current-clamp analysis of the firing properties of heterotopic neurons revealed a striking similarity with supragranular cortical neurons. In particular, both cells were characterized by small hyperpolarizing 'sag' potentials, high input resistance values, slow spike-train afterhyperpolarizations, and the absence of a depolarizing afterpotential. Normotopic CA1 pyramidal neurons (e.g. pyramidal cells with normal lamination adjacent to a heterotopia) in the MAM brain exhibited molecular and electrophysiological properties that were nearly identical to those of age-matched CA1 pyramidal neurons from control rats.We conclude that neuronal heterotopiae in the hippocampus of MAM-exposed rats are comprised of neurons with a Layer II-III supragranular cortex phenotype. The MAM model, therefore, may serve as a useful tool in examination of the factors influencing aberrant brain development and epilepsy.  相似文献   

8.
The mammalian hippocampus displays a peculiar pattern of fast (≈200 Hz) network oscillations superimposed on slower sharp waves. Such sharp wave–ripple complexes (SPW–R) have been implicated in memory consolidation. We have recently described a novel and unique method for studying SPW–R in naive slices of murine hippocampus. Here, we used this model to analyse network and cellular mechanisms of this type of network activity. SPW–R are usually generated within area CA3 but can also originate within the isolated CA1 region. Cellular synchronisation during SPW–R requires both excitatory and inhibitory synaptic transmission as well as electrical coupling, the latter being particularly important for the high-frequency component. Extracellular and intracellular recordings revealed a surprisingly strong inhibition of most CA1 pyramidal cells during SPW–R. A minority of active cells, however, increases action potential frequency and fires in strict synchrony with the field ripples. This strong separation between members and non-members of the network may serve to ensure a high signal-to-noise ratio in information processing during sharp wave–ripple complexes.  相似文献   

9.
Synchronous activities of neuronal populations are often initiated in a pacemaker region and spread to recruit other regions. Here we examine factors that define a pacemaker site. The CA3a region acts as the pacemaker for disinhibition induced synchrony in guinea pig hippocampal slices and CA3b is a follower region. We found CA3a pyramidal cells were more excitable and fired in bursts more frequently than CA3b cells. CA3a cells had more complex dendritic arbors than CA3b cells especially in zones targetted by recurrent synapses. The product of the density of pyramidal cell axon terminals and dendritic lengths in innervated zones predicted a higher recurrent synaptic connectivity in the CA3a than in the CA3b region. We show that some CA3a cells but few CA3b cells behave as pacemaker cells by firing early during population events and by recruiting follower cells to fire. With a greater excitability and enhanced synaptic connectivity these CA3a cells may also possess initiating functions for other hippocampal ensemble activities initiated in this region.  相似文献   

10.
CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC.  相似文献   

11.
In the cat hippocampus bursts of positive sharp waves (PSWs) appeared sporadically almost exclusively during slow wave sleep. The PSW burst was most often found in cell-rich areas in the CA1 and subiculum, and its occurrence was almost synchronized in different regions. An individual burst was usually composed of 3-5 PSWs of about 10 msec duration and showed a considerable fluctuation in amplitude. It was occasionally followed by a negative-going deflection of large amplitude and long duration (post-PSW negativity). The amplitude of PSWs and post-PSW negativity in the CA1 was high in the area giving a large sized-evoked response after stimulation of the contralateral CA3. The spike discharge rate during the burst was two or three times higher than that during the period just preceding the burst, but the discharge never occurred in the positive phase of the PSWs. During the initial part of the post-PSW negativity the high firing probability was maintained. Even when the PSW burst was not followed by a detectable post-PSW negativity, the firing probability during the period corresponding to the post-PSW negativity was still significantly higher than the pre-PSW period. It was suggested that the PSW bursts and post-PSW negativity were triggered off in cell-rich areas by diffuse excitatory inputs impinging possibly upon the hippocampal pyramidal cells and subicular principal cells. The rhythmic PSWs may be post-synaptic inhibitory potentials produced on the somata of those cells after activation of recurrent interneuronal circuits.  相似文献   

12.
Earlier studies indicate a crucial role for the interconnected network of intrinsically bursting CA3 pyramidal neurons in the generation of in vivo hippocampal sharp waves (SPWs) and their proposed neonatal in vitro counterparts, the giant depolarizing potentials (GDPs). While mechanisms involving ligand- and voltage-gated channels have received lots of attention in the generation of CA3 network events in the immature hippocampus, the contribution of ion-transport mechanisms has not been extensively studied. Here, we show that bumetanide, a selective inhibitor of neuronal Cl uptake mediated by the Na+–K+–2Cl cotransporter isoform 1 (NKCC1), completely and reversibly blocks SPWs in the neonate (postnatal days 7–9) rat hippocampus in vivo , an action also seen on GDPs in slices (postnatal days 1–8). These findings strengthen the view that GDPs and early SPWs are homologous events. Gramicidin-perforated patch recordings indicated that NKCC1 accounts for a large (∼10 mV) depolarizing driving force for the GABAA current in the immature CA3 pyramids. Consistent with a reduction in the depolarization mediated by endogenous GABAA-receptor activation, bumetanide inhibited the spontaneous bursts of individual neonatal CA3 pyramids, but it slightly increased the interneuronal activity as seen in the frequency of spontaneous GABAergic currents. An inhibitory effect of bumetanide was seen on the in vitro population events in the absence of synaptic GABAA receptor-mediated transmission, provided that a tonic GABAA receptor-mediated current was present. Our work indicates that NKCC1 expressed in CA3 pyramidal neurons promotes network activity in the developing hippocampus.  相似文献   

13.
Neural unit activity and EEGs were recorded from inferior temporal regions of three rhesus macaques chronically implanted with "hyperdrives" holding 12 individually movable tetrodes. Recordings were made from each monkey over a period of approximately 3 mo, while the electrodes were moved by small increments through the hippocampus and neighboring structures. After recording, the monkeys were necropsied, and the brains were sectioned and Nissl-stained, permitting identification of individual electrode tracks. The results establish that hippocampal pyramidal cells are "complex spike cells," firing at overall average rates of approximately 0.3 Hz, with spike trains consisting of long periods of silence interspersed with bursts of activity. The results also establish that the monkey hippocampal EEG shows "sharp wave" events consisting of a high-frequency "ripple" oscillation ( approximately 110 Hz) together with a large slow-wave EEG deflection lasting several hundred milliseconds. The evidence suggests that monkey sharp waves are probably generated mainly in the CA1 region and that sharp waves are associated with an inactive/drowsy-or-sleeping behavioral state, which is also associated with increased hippocampal pyramidal cell activity and increased hippocampal EEG amplitude. The results of this initial study of ensembles of primate hippocampal neurons are consistent with previous studies in rodents and consistent with the hypothesis that theories and models of hippocampal memory function developed on the basis of rat data may be applicable to a wide range of mammalian species.  相似文献   

14.
T Satoh  T Yokota  S Kitayama 《Sleep》1991,14(1):2-4
During slow-wave sleep, extracellular potassium ion activity in the dorsal hippocampus of the cat was comparable to that during quiet wakefulness. During rapid eye movement (REM) sleep, it showed a gradual increase by 0.2-0.3 mM in the CA1 pyramidal layer and its close vicinity. No phasic increase was observed when REM bursts occurred. The enhanced K+ activity during REM sleep is considered to reflect the overall activity of the neurons in the pyramidal layer.  相似文献   

15.
During quiet wakefulness and sleep, and under anesthesia, the membrane potentials of neocortical pyramidal neurons show synchronous, slow oscillations, so-called up-down states (UDS), that can be detected in the local field potential (LFP). The influence of this synchronized, spontaneous neocortical activity on the hippocampus is largely unknown. We performed the first in vivo whole-cell recordings from hippocampal dorsal CA1 interneurons and found that their membrane potentials were phase-locked to neocortical up-down states with a small delay. These results provide strong evidence for cortico-hippocampal interaction and suggest that neocortical activity drives hippocampal interneurons during UDS.  相似文献   

16.
1. Paired extra- and intracellular recording was used to study the activity of neurons in the dentate hilus and their interaction with CA3/CA4 pyramidal neurons and granule cells during picrotoxin- or 4-aminopyridine (4-AP)-induced rhythmical activity in the guinea pig hippocampal slice. 2. Picrotoxin induced synchronous repetitive population spikes in the CA3, CA4, and hilar region, but no extracellular activity in the granule cell layer. 4-AP induced rhythmically occurring positive field-potential waves in the CA3, CA4, and granular layer coincident to negative/positive field potentials in the hilus. 3. Picrotoxin-induced activity originated in the CA3 area and subsequently appeared in the CA4 and hilar region, whereas 4-AP-induced activity appeared simultaneously in all subfields. 4. Blockade of fast glutamatergic excitation by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) blocked the picrotoxin-induced activity but not the 4-AP-induced activity. 5. Focal application of tetrodotoxin (TTX) between area CA3 and CA4 blocked picrotoxin-induced activity in the CA4 and hilar region but decoupled 4-AP-induced activity in the CA3 area. 6. Under intracellular recording, picrotoxin induced bursts in CA3, CA4, and hilar neurons but K-dependent slow IPSPs in granule cells. 4-AP induced rhythmically occurring burst in hilar neurons synchronous to Cl- and K-dependent IPSPs in CA3, CA4, and granule cells. 7. Comparison of picrotoxin- and 4-AP-induced rhythmical burst activity reveals that many hilar neurons are excited by CA3/CA4 pyramidal neurons in addition to the well-known excitation by granule cells and perforant path fibers, and that, in turn, many hilar neurons inhibit CA3, CA4, and granule cells.  相似文献   

17.
Intracellular recording and staining was applied to study non-pyramidal neurons in the guinea-pig hippocampus. To avoid accidental impalement of pyramidal or granule cells, two hippocampal regions known to be devoid of pyramidal or granule cells were chosen. In transverse and longitudinal slices, neurons of the deep hilar region (zone 4 of Amaral3), and in transverse slices, neurons of the stratum lacunosum-moleculare (CA3) were impaled. The intracellular staining with Lucifer Yellow revealed that of 20 neurons stained in these zones all were non-pyramidal neurons. Hilar neurons, situated just below the granular layer, differed from granule cells and CA3 neurons with respect to their action potential waveform and their current/voltage relationship. In contrast to granule cells, hilar neurons exhibited spontaneous bursts in the presence of bicuculline (25 microM). In all neurons impaled in the hilar region and the stratum lacunosum-moleculare (n = 42), inhibitory postsynaptic potentials could be elicited. These inhibitory postsynaptic potentials were blocked by bicuculline. In transverse slices, perforant path stimulation elicited inhibition preceding excitation in hilar neurons and excitation preceding inhibition in granule cells. Since non-pyramidal neurons are likely to be inhibitory neurons, our data suggest that GABAergic neurons in the hilus or in the stratum lacunosum-moleculare are controlled by inhibitory GABAergic synapses. This was verified by immunocytochemistry using antibodies against glutamate decarboxylase, the gamma-aminobutyric acid synthetizing enzyme. In both hippocampal regions studied, glutamate decarboxylase-positive synaptic terminals on glutamate decarboxylase-positive cells were observed. It is concluded that disinhibition is an important feature of information processing in the hippocampus, and that disinhibition is mediated by GABAergic synapses on GABAergic neurons.  相似文献   

18.
Correlated neuronal activity is ubiquitous in developing nervous systems, where it may introduce spatiotemporal coherence and contribute to the organization of functional circuits. In this report, we used voltage-sensitive dyes and optical imaging to examine the spatiotemporal pattern of a spontaneous network activity, giant depolarizing potentials (GDPs), in rat hippocampal slices during the first postnatal week. The propagation pattern of the GDP is closely correlated to the anatomical organization of the network. In the hilus, where mossy cells and interneurons are not organized in layers, GDPs propagate at the same velocity in all directions. In CA3 and CA1, the activation is synchronous along the axis of the pyramidal cells' dendritic tree. The velocity of wave propagation is significantly different in three hippocampal subfields: it is slowest in the hilus, faster in CA3, and fastest in CA1. The velocity of horizontal propagation (along the axis of the pyramidal layer) has a large variation from trial to trial, suggesting that the horizontal velocity is determined to some extent by dynamic network factors. Imaging revealed that each GDP event is initiated from a small focus. The location of the initiation focus differs from event to event. All together, our data suggest that GDP is a propagating excitation wave, initiated from a small site, and propagating to the whole hippocampus. The spatiotemporal patterns of the wave in CA3 and CA1 areas show better synchrony along the pyramidal cell dendritic trees and progressive activation along the axis of the pyramidal cell layer.  相似文献   

19.
Hippocampal tissue derived from 12-, 20-, 25- and 34-mm rat fetuses was placed in a cavity formed by unilateral aspiration of the fimbria-fornix and the overlying neocortical tissue in adult rats. From 4 to 6 months after transplantation the rats were equipped with chronic recording and stimulating electrodes. Single cell activity of the transplant was monitored during running in a wheel, drinking, and sleeping. Both complex-spike cells (n = 151) and single-spike cells (n = 80) were recorded from the graft. A portion of the neurons changed their firing rates and discharge patterns as a function of ongoing behavior. About half of the single-spike cells increased their firing frequency during running. Fifteen per cent of the single-spike cells fired rhythmically at about 8 Hz during running, and the paradoxical phase of sleep and the discharge pattern correlated with rhythmic slow activity (theta) recorded concurrently from the contralateral (intact) hippocampus. These patterns were most frequently obtained from grafts of 20- and 25-mm (16 to 18 embryonic days) fetuses. Graft neurons could be activated by stimulating the ipsilateral hippocampus or the ipsilateral perforant path, with latencies of 8-30 ms. The most common electrical pattern in grafts of all groups was the synchronous bursts of several neighboring cells and concurrent electroencephalogram sharp-waves. Sharp-waves occurred during all behaviors. Large amplitude, high-frequency electroencephalogram spindles (14-18 Hz and 30-50 Hz) and associated neuronal bursts were recorded in grafts of 12-, 20-, and 25-mm fetuses. Based on these findings we suggest that both subcortical afferents and host hippocampal afferents send axons to hippocampal grafts and form viable synaptic connections with a portion of the neurons in the graft. The frequently encountered population bursts are explained by assuming that excitatory collaterals in the graft are more potent in the graft than in the normal hippocampus, and/or GABAergic inhibition is less efficient in the graft.  相似文献   

20.
The hippocampus sends efferent fibers to the subiculum, which projects to the entorinal cortex. Previous studies suggest that the hippocampal CA1 area may receive a projection back from the subiculum. This hypothesis was tested using whole cell recording from CA1 pyramidal cells while subicular neurons were selectively stimulated with focal flash photolysis of caged glutamate, which avoids stimulation of fibers of passage. Control experiments showed that focal flash stimulations caused direct glutamate-mediated depolarizations and bursts of action potentials in the recorded CA1 pyramidal cells, but only when the stimulation targeted the somatodendritic regions of a neuron, not the axons. To block GABA(A)-mediated inhibition and isolate local excitatory circuits, bicuculline was applied to minislices containing only the isolated CA1 area and the subiculum. Of 24 CA1 pyramidal cells, 25% (6 of 24) consistently generated repetitive excitatory postsynaptic currents (EPSCs) in response to flash stimulation in the subiculum. The responsive neurons were located 200-500 microm from the distal end of CA1 and 400-1,100 microm from the stimulation sites in subiculum, suggesting excitatory synaptic projections from the subicular neurons to CA1 pyramidal cells. This study provides new electrophysiological evidence that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. Thus a reciprocal excitatory synaptic circuit connects the subiculum and the CA1 area in the normal adult rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号