首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung tissue from 76 deceased asbestos cement workers (seven with mesothelioma) exposed to chrysotile asbestos and small amounts of amphiboles, has been studied by transmission electron microscopy, together with lung tissue from 96 controls. The exposed workers with mesothelioma had a significantly higher total content of asbestos fibre in the lungs than those without mesothelioma, who in turn, had higher concentrations than the controls (medians 189, 50, and 29 x 10(6) fibres/g (f/g]. Chrysotile was the major type of fibre. The differences were most pronounced for the amphibole fibres (62, 4.7, and 0.15 f/g), especially crocidolite (54, 1.8 and less than 0.001 f/g), but were evident also for tremolite (2.9, less than 0.001, and less than 0.001 f/g) and anthophyllite (1.7, less than 0.001, and less than 0.001 f/g). For amosite, there was no statistically significant difference between lungs from workers with and without mesothelioma; the lungs of workers had, however, higher concentrations than the controls. Strong correlations were found between duration of exposure and content of amphibole fibres in the lungs. Asbestos bodies, counted by light microscopy, were significantly correlated with the amphibole but not with the chrysotile contents. Fibrosis was correlated with the tremolite but not the chrysotile content in lungs from both exposed workers and controls. Overall, similar results were obtained using fibre counts and estimates of mass.  相似文献   

2.
Lung tissue from 76 deceased asbestos cement workers (seven with mesothelioma) exposed to chrysotile asbestos and small amounts of amphiboles, has been studied by transmission electron microscopy, together with lung tissue from 96 controls. The exposed workers with mesothelioma had a significantly higher total content of asbestos fibre in the lungs than those without mesothelioma, who in turn, had higher concentrations than the controls (medians 189, 50, and 29 x 10(6) fibres/g (f/g]. Chrysotile was the major type of fibre. The differences were most pronounced for the amphibole fibres (62, 4.7, and 0.15 f/g), especially crocidolite (54, 1.8 and less than 0.001 f/g), but were evident also for tremolite (2.9, less than 0.001, and less than 0.001 f/g) and anthophyllite (1.7, less than 0.001, and less than 0.001 f/g). For amosite, there was no statistically significant difference between lungs from workers with and without mesothelioma; the lungs of workers had, however, higher concentrations than the controls. Strong correlations were found between duration of exposure and content of amphibole fibres in the lungs. Asbestos bodies, counted by light microscopy, were significantly correlated with the amphibole but not with the chrysotile contents. Fibrosis was correlated with the tremolite but not the chrysotile content in lungs from both exposed workers and controls. Overall, similar results were obtained using fibre counts and estimates of mass.  相似文献   

3.
A review of the literature on chronic inhalation studies in which rats were exposed to mineral fibres at known fibre number concentrations was undertaken to examine the specific roles of fibre length and composition on the incidences of both lung cancer and mesothelioma. For lung cancer, the percentage of lung tumours (y) could be described by a relation of the form y = a + bf + cf2, where f is the concentration of fibre numbers and a, b, and c are fitted constants. The correlation coefficients for the fitted curves were 0.76 for > 5 microns f/ml, 0.84 for > 10 microns f/ml, and 0.85 for > 20 microns f/ml. These seemed to be independent of fibre type. It has been shown that brief inhalation exposures to chrysotile fibre produces highly concentrated fibre deposits on bifurcations of alveolar ducts, and that many of these fibres are phagocytosed by the underlying type II epithelial cells within a few hours. Churg has shown that both chrysotile and amphibole fibres retained in the lungs of former miners and millers do not clear much with the years since last exposure. Thus, lung tumours may be caused by that small fraction of the inhaled fibres that are retained in the interstitium below small airway bifurcations where clearance processes are ineffective. By contrast, for mesothelioma, the (low) tumour yields seemed to be highly dependent upon fibre type. Combining the data from various studies by fibre type, the percentage of mesotheliomas was 0.6% for Zimbabwe (Rhodesian) chrysotile, 2.5% for the various amphiboles as a group, and 4.7% for Quebec (Canadian) chrysotile. This difference, together with the fact that Zimbabwe chrysotile has 2 to 3 orders of magnitude less than tremolite than Quebec chrysotile, provides support for the hypothesis that the mesotheliomas that have occurred among chrysotile miners and millers could be largely due to their exposures to tremolite fibres. The chrysotile fibres may be insufficiently biopersistent because if dissolution during translocation from their sites of deposition to sites where more durable fibres can influence the transformation or progression to mesothelioma.  相似文献   

4.
A 41-year-old man was found to have a malignant mesothelioma of the pleura. During childhood in Corsica, he had been exposed at home to chrysotile ore from the Canari mine. Analysis of lung mineral content revealed background levels of chrysotile but an elevated level of tremolite and actinolite asbestos. The latter had a geometric mean length of 3.7 μm, a value considerably longer than we have found for tremolite and actinolite from Quebec chrysotile miners but roughly the same as the mean length of amosite and crocidolite in workers with occupational amphibole exposure. No tremolite or actinolite fibers of length greater than 8 μm microns and width less than 0.25 μm were observed. The mean aspect ratio of the tremolite and actinolite fibers was 7, a value similar to that found in chrysotile miners with mesothelioma but considerably less than the mean aspect ratio of amosite and crocidolite from those with occupational expsoure. These data suggest that long-fiber tremolite is a potential mesothelial carcinogen in humans, and that fiber length is more important than fiber aspect ratio in this regard.  相似文献   

5.
Twenty cases of mesothelioma among miners of the township of Asbestos, Quebec, Canada, have been reported. To further explore the mineral characteristics of various fibrous material, we studied the fibrous inorganic content of postmortem lung tissues of 12 of 20 available cases. In each case, we measured concentrations of chrysotile, amosite, crocidolite, tremolite, talc-anthophyllite, and other fibrous minerals. The average diameter, length, and length-to-diameter ratio of each type of fiber were also calculated. For total fibers > 5 μm, we found > 1,000 asbestos fibers per mg tissue (f/mg) in all cases; tremolite was above 1,000 f/mg in 8 cases, chrysotile in 6 cases, crocidolite in 4 cases, and talc anthophyllite in 5 cases. Among cases with asbestos fibers, the tremolite count was highest in 7 cases, chrysotile in 3 cases, and crocidolite in 2 cases. The geometric mean concentrations of fibers ? 5 μm were in the following decreasing order: tremolite > crocidolite > chrysotile > other fibers > talc-anthophyllite > amosite. For total fibers < 5 μm, we found > 1,000 fibers per mg tissue (f/mg) in all cases; tremolite was above 1,000 f/mg in 12 cases, chrysotile in 8 cases, crocidolite in 7 cases, and talc-anthophyllite in 6 cases. Tremolite was highest in 8 cases, chrysotile in 2 cases, and crocidolite and amosite in 2 cases. The geometric mean concentrations of fibers < 5 μm were in the following decreasing order: tremolite > other fibers > chrysotile > crocidolite > talc-anthophyllite > amosite. We conclude, on the basis of the lung burden analyses of 12 mesothelioma cases from the Asbestos township of Quebec, that the imported amphibole (crocidolite and amosite) were the dominant fibers retained in the lung tissue in 2/12 cases. In 10/12 cases, fibers from the mine site (chrysotile and tremolite) were found at highest counts; tremolite was clearly the highest in 6, chrysotile in 2, and 2 cases had about the same counts for tremolite and chrysotile. If a relation of fiber burden-causality of mesothelioma is accepted, mesothelioma would be likely caused by amphibole contamination of the plant in 2/12 cases and by the mineral fibers (tremolite and chrysotile) from the mine site in the 10 other cases.  相似文献   

6.
It has been suspected for many years that amphibole fibres in the tremolite series, a low level contaminant of chrysotile asbestos, may contribute disproportionately to the incidence of mesothelioma and perhaps other exposure-related cancers. A cohort of some 11000 Quebec chrysotile workers, 80% of whom have now died, provided the opportunity to examine this hypothesis further. An analysis was made of deaths from mesothelioma (21), cancers of the lung (262), larynx (15), stomach (99), and colon and rectum (76), in men employed by the largest company in Thetford Mines, with closely matched referents. Risks were estimated by logistic regression for these five cancers in two groups of mines—five mines located centrally and ten mines located peripherally; tremolite contamination had been demonstrated to be some four times higher in the former than in the latter. Odds ratios for work in the central mines were raised substantially and significantly for mesothelioma and lung cancer, but not for the gastric, intestinal or laryngeal cancer sites. In the peripheral mines, there was little or no evidence of increased risk for any of the five cancers. The hypothesis that, because of the difference in distribution of fibrous tremolite, cancer risks in the central area would be greater than in the periphery was thus substantiated. That the explanation may lie in the greater biopersistence of amphibole fibres than chrysotile is important in framing policies for the use and control of asbestos and is directly relevant to the selection of man-made mineral fibre substitutes.  相似文献   

7.
Tremolite is nearly ubiquitous and represents the most common amphibole fiber in the lungs of urbanites. Tremolite asbestos is not mined or used commercially but is a frequent contaminant of chrysotile asbestos, vermiculite, and talc. Therefore, individuals exposed to these materials or to end-products containing these materials may be exposed to tremolite. We have had the opportunity to do asbestos body counts and mineral fiber analysis on pulmonary tissue from five mesothelioma cases and two asbestosis cases with pulmonary tremolite burdens greater than background levels. There were no uncoated amosite or crocidolite fibers detected in any of these cases. Three patients were occupationally exposed to chrysotile asbestos; two patients had environmental exposures (one to vermiculite and one to chrysotile and talc) and one was a household contact of a shipyard worker. The tremolite burdens for the asbestosis cases were one to two orders of magnitude greater than those for the mesothelioma cases. Our study confirms the relationship between tremolite exposure and the development of asbestos-associated diseases. Furthermore, the finding of relatively modest elevations of tremolite content in some of our mesothelioma cases suggests that, at least for some susceptible individuals, moderate exposures to tremolite-contaminated dust can produce malignant pleural mesothelioma.  相似文献   

8.
We analyzed chrysotile and chrysotile-associated amphibole (largely tremolite) asbestos fibers in 21 workers exposed to various types of processed (milled) chrysotile ore, 20 long-term chrysotile miners, and 20 members of the general population (controls). Significantly greater amounts of both chrysotile and tremolite were found in processed-ore workers and miners than in controls. On average, the mean fiber lengths and aspect ratios for the mining and processed-ore-exposed workers were similar and were significantly greater than the values seen in the controls; within the processed-ore group, there was a marked variation in these parameters, and some workers appeared to be exposed to fairly long, thin fibers. It was found empirically that the fiber size data, and to a lesser extent the concentration data, could be used to classify workers accurately into those with processed-ore exposure and controls. We conclude that fiber sizes in the lungs of processed-ore-exposed workers are similar to those of chrysotile miners and are considerably longer than those found in the general population; some processed-ore workers have longer fibers which might be responsible for higher disease incidences in certain working groups; tremolite accompanies chrysotile in a variable proportion of workers exposed to processed chrysotile products and might be important in the genesis of mesothelioma in such workers; and mineralogic analysis will usually detect exposure even when chrysotile has largely disappeared from lung tissue.  相似文献   

9.
Retention patterns in lung tissue (determined by transmission electron microscopy and energy dispersive spectrometry) of chrysotile, tremolite, and crocidolite fibres were analysed in 69 dead asbestos cement workers and 96 referents. There was an accumulation of tremolite with time of employment. Among workers who died within three years of the end of exposure, the 13 with high tremolite concentrations had a significantly longer duration of exposure than seven in a low to intermediate category (medians 32 v 20 years; p = 0.018, one sided). Crocidolite showed similar patterns of accumulation. In workers who died more than three years after the end of exposure, there were no correlations between concentrations of amphibole fibres and time between the end of exposure and death. Chrysotile concentrations among workers who died shortly after the end of exposure were higher than among the referents (median difference in concentrations 13 million fibres (f)/g dry weight; p = 0.033, one sided). No quantitative differences in exposure (duration or intensity) could be shown between workers with high and low to intermediate concentrations. Interestingly, all seven workers who had had a high intensity at the end of exposure (> 2.5 f/ml), had low to intermediate chrysotile concentrations at death, whereas those with low exposure were evenly distributed (31 subjects in both concentration categories); hence, there was a dependence between last intensity of exposure and chrysotile concentration (p = 0.014). Among 14 workers with a high average intensity of exposure, both those (n = 5) with high tissue concentrations of chrysotile and those (n = 10) with high tissue concentrations of tremolite fibres had more pronounced fibrosis than those with low to intermediate concentrations (median fibrosis grades for chrysotile: 2 v 1, p = 0.021; for tremolite: 2 v 0.5, p = 0.012). Additionally, workers who died shortly after the end of exposure with high concentrations of chrysotile and crocidolite had smoked more than those with low intermediate concentrations (medians for chrysotile 35 v 15 pack-years, p = 0.030; for crocidolite 37 v 15 pack-years, p = 0.012). The present data indicate that chrysotile has a relatively rapid turnover in human lungs, whereas the amphiboles, tremolite and crocidolite, have a slower turnover. Further, chrysotile retention may be dependent on dose rate. Chrysotile and crocidolite deposition and retention may be increased by tobacco smoking; chrysotile and tremolite by fibrosis.  相似文献   

10.
Analysis of amphibole asbestos in chrysotile and other minerals   总被引:3,自引:0,他引:3  
Chrysotile asbestos and many other mineral raw materials contain amphibole minerals which may be asbestiform. There is currently no analytical method which will detect the presence of amphibole at sufficiently low limits to preclude the possibility of inadvertent exposure of persons handling these materials to hazardous airborne fibre concentrations. A method of chemical digestion of chrysotiles has been tested with regard to the determination of their tremolite contaminant content and this has been applied to a range of chrysotile and other minerals. The method improves the sensitivity of the amphibole analysis at least 10-fold giving detection limits of 0.01-0.05% in chrysotile by X-ray diffractometry (XRD). The difficulties arising from compositional and morphological variations are discussed in the context of the potential hazards from airborne fibres and the relative values of analyses by XRD, infrared spectrophotometry (IR) and electron microscopy. It is concluded that XRD and IR are useful as screening methods for the detection of amphibole in chrysotile but other materials should be analysed by optical or electron microscopy.  相似文献   

11.
Mortality reports on asbestos exposed cohorts which gave information on exposure levels from which (as a minimum) a cohort average cumulative exposure could be estimated were reviewed. At exposure levels seen in occupational cohorts it is concluded that the exposure specific risk of mesothelioma from the three principal commercial asbestos types is broadly in the ratio 1:100:500 for chrysotile, amosite and crocidolite respectively. For lung cancer the conclusions are less clear cut. Cohorts exposed only to crocidolite or amosite record similar exposure specific risk levels (around 5% excess lung cancer per f/ml.yr); but chrysotile exposed cohorts show a less consistent picture, with a clear discrepancy between the mortality experience of a cohort of xhrysotile textile workers in Carolina and the Quebec miners cohort. Taking account of the excess risk recorded by cohorts with mixed fibre exposures (generally<1%), the Carolina experience looks uptypically high. It is suggested that a best estimate lung cancer risk for chrysotile alone would be 0.1%, with a highest reasonable estimate of 0.5%. The risk differential between chrysotile and the two amphibole fibres for lunc cancer is thus between 1:10 and 1:50.Examination of the inter-study dose response relationship for the amphibole fibres suggests a non-linear relationship for all three cancer endpoints (pleural and peritoneal mesotheliomas, and lung cancer). The peritoneal mesothelioma risk is proportional to the square of cumulative exposure, lung cancer risk lies between a linear and square relationship and pleural mesothelioma seems to rise less than linearly with cumulative dose. Although these non-linear relationships provide a best fit ot the data, statistical and other uncertainties mean that a linear relationship remains arguable for pleural and lung tumours (but not or peritoneal tumours).Based on these considerations, and a discussion fo the associated uncertainties, a series of quantified risk summary statements for different elvels of cumulative exposure are presented.  相似文献   

12.
BACKGROUND: Exposure to chrysotile dust has been associated with the development of mesothelioma and recent studies have implicated contaminating tremolite fibers as the likely etiological factor. Tremolite also contaminates talc, the most common non-asbestos mineral fiber in our control cases. METHODS: We examined 312 cases of mesothelioma for which fiber burden analyses of lung parenchyma had been performed by means of scanning electron microscopy to determine the content of tremolite, non-commercial amphiboles, talc and chrysotile. The vast majority of these patients were exposed to dust from products containing asbestos. RESULTS: Tremolite was identified in 166 of 312 cases (53%) and was increased above background levels in 81 cases (26%). Fibrous talc was identified in 193 cases (62%) and correlated strongly with the tremolite content (P < 0.0001). Chrysotile was identified in only 32 cases (10%), but still correlated strongly with the tremolite content (P < 0.0001). Talc levels explained less of the tremolite deviance for cases with an increased tremolite level than for cases with a normal range tremolite level (22 versus 42%). In 14 cases (4.5%) non-commercial amphibole fibers (tremolite, actinolite and/or anthophyllite) were the only fiber types found above background. CONCLUSIONS: We conclude that tremolite in lung tissue samples from mesothelioma victims derives from both talc and chrysotile and that tremolite accounts for a considerable fraction of the excess fiber burden in end-users of asbestos products.  相似文献   

13.
Recently published analyses have shown that the risks of mesothelioma and lung cancer in Quebec chrysotile miners and millers were related to estimated level of fibrous tremolite in the mines where they had worked. An analysis has therefore been made of radiographic changes in men who in 1965 were employed by companies in Thetford Mines where the same question could be examined for fibrogenicity. Of 294 men who met the necessary requirements, 129 had worked in six centrally located mines, where the tremolite content was thought to be high, 81 in 10 peripheral mines where it was thought to be low and 84 in both. The median prevalence of small parenchymal opacities (> or = 1/0) in chest radiographs read by six readers was higher among men ever than never employed in the central mines (13.6% against 7.4%), despite the fact that the mean cumulative exposure was lower in the former (430 mpcf.y vs 520 mpcf.y). After accounting by logistic regression for cigarette smoking, age, smoking-age interaction and cumulative exposure, the adjusted odds ratio for central mine employment was 2.44 (95% lower bound: 1.06). Together with other surveys of asbestos miners and millers, this study suggests that amphibole fibres, including tremolite, are more fibrogenic than chrysotile, perhaps to the same extent that they are carcinogenic, though the data available were not sufficient to address the latter question.  相似文献   

14.
Mesothelioma has not been found in South African chrysotile miners and millers despite decades of producing about 100000 tons of the mineral per year. One possible explanation for the scarcity or absence of the cancer may be a relative lack of contaminating fibrous tremolite, an amphibole that variably occurs with chrysotile ores. The fibre content in the lungs of nine former chrysotile mine workers was ascertained by transmission electron microscopy. Despite fairly long service in most cases (median 9.5 yr; range 32-4 yr) the concentrations of chrysotile fibres were relatively low: only two cases exceeded 1.14 million fibres/g dried lung. Tremolite fibre levels were even lower: less than 1 million fibres/g dried lung in all but one case. Tremolite fibre concentrations exceeded those of chrysotile in only two cases. These results support the contention that South African chrysotile is not heavily contaminated by tremolite.  相似文献   

15.
Ten chrysotile bulk samples originating from six Chinese chrysotile mines were studied for amphibole fibres. Five of the mines operate on ultramafic rocks whereas one exploits a dolomite-hosted deposit. The asbestos fibre content in lung tissue was examined from seven deceased workers of the Shenyang asbestos plant using these raw materials. The bulk samples were pretreated with acid/alkali-digestion, and thereafter, scanning and transmission electron microscopy, X-ray microanalysis, selected area electron diffraction and X-ray powder diffractometry were used to identify the minerals. Sample preparation of lung tissue involved drying and low-temperature ashing.All of the bulk samples contained amphibole fibres as an impurity. The amphibole asbestos contents were between 0.002 and 0.310 w-%. Tremolite fibres were detected in every sample but anthophyllite fibres were present only in the sample originating from the dolomite-hosted deposit. In comparison, anthophyllite (71%), tremolite (9%) and chrysotile (10%) were the main fibre types in the lung tissue samples indicating faster pulmonary clearance of chrysotile fibres. The total levels ranged from 2.4 to 148.3 million fibres (over 1 microm in length) per gram of dry tissue, and they were consistent with heavy occupational exposure to asbestos.  相似文献   

16.
The issue of whether exposure to chrysotile asbestos alone, without contamination from amphibole asbestos, causes lung cancer and mesothelioma was investigated in a 25-year longitudinal study (1972-1996) in Chongqin, China. The study cohort comprised 515 male asbestos plant workers exposed to chrysotile only; the control cohort included 650 non-dust-exposed workers. The results of analysis in which the proportional hazards model was used indicated that mortality due to all causes, all cancers, and lung cancer was related to asbestos exposure; the relative risks, adjusted for age and smoking, were 2.9, 4.3, and 6.6, respectively. Fiber concentrations in the raw material section and the textile section of the plant were 7.6 and 4.5 fibers/ml, respectively. Because of differences between the study and control plants, the authors also compared various sections of the asbestos plant that had different levels of dust exposure. The adjusted relative risk of lung cancer was 8.1 for workers exposed to high versus low levels of asbestos. Two cases of malignant mesothelioma, one pleural and the other peritoneal, were found in the asbestos cohort. These results suggest that heavy exposure to pure chrysotile asbestos alone, with negligible amphibole contamination, can cause lung cancer and malignant mesothelioma in exposed workers.  相似文献   

17.
Background: Fibrous tremolite is a widespread amphibole asbestiform mineral, airborne fibres of which constitute an environmental hazard in Libby, Montana, northern California, and elsewhere.

Aims: To determine excess risk from lung cancer, mesothelioma, and all-cause mortality in a cohort of men exposed to tremolite, but no other form of asbestos.

Methods: Mortality by certified cause and various measures of exposure to tremolite and related amphibole fibres was assessed in a cohort of 406 vermiculite mineworkers in Libby, Montana, employed before 1963 and followed until 1999.

Results: Total deaths were: lung cancer 44 (SMR 2.40), non-malignant respiratory disease (NMRD) 51 (SMR 3.09), all causes 285 (SMR 1.27); included among the total were 12 deaths ascribed to mesothelioma (4.21% of all deaths). Adjusted linear increments in relative risks (per 100 f/ml.y), estimated by Poisson regression, were: lung cancer (0.36, 95% CI 0.03 to 1.20), NMRD (0.38, 95% CI 0.12 to 0.96), and all deaths (0.14, 95% CI 0.05 to 0.26).

Conclusions: The all-cause linear model would imply a 14% increase in mortality for mine workers exposed occupationally to 100 f/ml.y or about 3.2% for a general population exposed for 50 years to an ambient concentration of 0.1 f/ml. Amphibole fibres, tremolite in particular, are likely to be disproportionately responsible for cancer mortality in persons exposed to commercial chrysotile, but to what extent cannot be readily assessed.

  相似文献   

18.
The excess risk of tumours exposed to asbestos were previously compared with the results of rat inhalation experiments. It could be demonstrated that humans at the workplace suffer from a tumour risk at fibre concentrations which are 300 times lower than those needed in the rat inhalation model to produce the same risk. However, the estimation of human risk was based on the study of workers at a chrysotile textile factory, whereas animal experimental results were related to exposure to amphiboles. Since for this comparison the risk of cancer due to exposure to amosite or crocidolite fibres at the workplace is of interest, quantitative exposure-response relationships for lung cancer and mesothelioma for the white workforce of South African amosite and crocidolite mines were discussed. On comparing the risk of lung cancer in this study with the risk of lung cancer for chrysotile textile workers, it can be concluded, that the risk of lung cancer and mesothelioma from crocidolite and amosite was higher than in the chrysotile textile factory.It could be also demonstrated, on the basis of a study of the lung burden of mesothelioma cases and of controls, that a significantly increased odds ratio of about 5 was established at amphibole concentrations of between 0.1 and 0.2 f μg−1 dry lung (WHO fibres longer than 5 μm from TEM analysis). On the other hand, carcinogenic response was observed at a fibre concentration 6000 times higher in animal inhalation experiments with crocidolite asbestos (SEM analysis of WHO fibres). As a result of these findings, it has been concluded that inhalation studies in rats are not sufficiently sensitive for the detection of hazards and risks to humans exposed to man-made fibres.  相似文献   

19.
OBJECTIVES: The relation between lifetime cumulative exposure to asbestos, pathological grade of pulmonary fibrosis, and lung burden of asbestos at death, was explored in a necropsy population of former workers in a chrysotile asbestos textile plant in South Carolina. METHODS: Estimates of cumulative, mean, and peak exposures to asbestos were available for 54 workers. Necropsy records and lung tissue samples were obtained from hospital files. Matched control cases were selected from consecutive necropsies performed at the same hospitals. The extent and severity of pulmonary fibrosis was graded on tissue sections. Mineral fibres in lung tissue were characterised by transmission electron microscopy combined with x ray spectroscopy. RESULTS: A significant positive correlation (r = 0.67, P < 0.0001) was found between lifetime cumulative exposure to asbestos and total lung burden of asbestos fibres. This relation was also found for the individual types of asbestos associated with the exposure: chrysotile and tremolite. Pulmonary fibrosis was correlated with both cumulative exposure to asbestos (r = 0.60, P < 0.01) and the concentration of asbestos fibres in the lung (r = 0.62, P < 0.0001). The concentration of tremolite fibres in the lung provided a better estimate of lung fibrosis than did the concentration of chrysotile. Asbestosis was usually present in asbestos textile workers with more than 20 fibre-years cumulative exposure. The lengths and aspect ratios of chrysotile asbestos, but not amphibole asbestos, were greater in the lungs of asbestos fibre workers than in the control population. Textile workers with lung cancer had significantly greater cumulative exposures and fibrosis scores than workers without lung cancer. CONCLUSIONS: Both cumulative exposure to asbestos and lung fibre burden are strongly correlated with severity of asbestosis. The data also support the hypothesis that the high prevalence of asbestosis and lung cancer in this population resulted from exposure to long fibres of chrysotile asbestos in the workplace.  相似文献   

20.
OBJECTIVES: Our study aimed to determine the lung tissue concentration of asbestos and other mineral fibres by type and length in persons with mesothelioma aged 50 yr or less at time of diagnosis, compared to controls of similar age and geographical region. In this age group it was thought that most, but not all, work-related exposures would have been since 1970, when the importation of crocidolite, but not amosite, was virtually eliminated. METHODS: Eligible cases were sought from recent reports by chest physicians to the SWORD occupational disease surveillance scheme. Lung tissue samples were obtained at autopsy from 69 male and four female cases, and mineral fibres identified, sized and counted by electron microscopy. Fibre concentrations per microg dry tissue were compared with similar estimates from a control series of autopsies of sudden or accidental deaths. Unadjusted, and adjusted odds ratios calculated by logistic regression, assessed relative risk in relation to fibre type, length and concentration. RESULTS: Unadjusted and adjusted odds ratios increased steadily with concentration of crocidolite, amosite, tremolite and all amphiboles combined. There was also some increase with chrysotile, but well short of statistical significance. Incremental risk examined in a linear model was as highly significant for all amphiboles together as individually. Short, medium and long amphibole fibres were all associated with increased risk in relation to length. Mullite and iron fibres were significant predictors of mesothelioma when considered without adjustment for confounding by amphiboles, but, after adjustment, were weak and far from statistically significant. CONCLUSIONS: In this young age group, amosite and crocidolite fibres could account for about 80% of cases of mesothelioma, and tremolite for some 7%. The contribution of chrysotile, because of low biopersistence, cannot be reliably assessed at autopsy, but to the extent that tremolite is a valid marker, our results suggest that it was small. The steep linear trend in odds ratio shown by amphiboles combined indicates that their effects may be additive, with increased risk from the lowest detectable fibre level. Non-asbestos mineral fibres probably made no contribution to this disease. Contrary to expectation, however, some 90% of cases were in men who had started work before 1970; this was so whether or not amosite or crocidolite was found in lung tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号