首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophysiological investigation of neurones located in the cervical enlargement of the spinal cord was performed in eight-chloralose anaesthetized cats. Neurones were recorded intracellularly or extracellularly and identified by antidromic stimulation. The main purpose of the study was to test whether these neurones give off collateral branches ascending to the inferior cerebellar peduncle and descending to the sacral segments (S1/S2). Recordings were made from 78 neurones located in medial and central parts of Rexed's laminae VII and VIII of C6/C7 segments. Four subpopulations could be distinguished from their patterns of propriospinal or supraspinal projections: (a) ascending/descending neurones with axons ascending to RB and descending to S1/S2 (23%); (b) ascending/descending neurones projecting to RB and the level of Th13 (14%); (c) propriospinal neurones descending to Th13 (15%); (d) propriospinal neurones descending to S1/S2 (48%). Within these groups, ipsilateral, contralateral and bilateral descending projections were observed. The mean axonal conduction velocities for descending and ascending collaterals of bidirectional neurones were 59 and 39 m/s, respectively. Results suggest that parallel transmission of information to supraspinal and spinal centres plays an important role in the process of movement coordination.  相似文献   

2.
Branching neurones in the cervical enlargement of the spinal cord were electrophysiologically studied in alpha-chloralose anaesthetized cats with the method of antidromic activation of axons. Stimulating electrodes were placed bilaterally at levels of lower thoracic and sacral segments and in the lateral reticular nucleus (LRN), ipsilaterally to the recording sites in C6/C7 segments. Thirty-nine out of a total one hundred neurones could be classified as bidirectional neurones with both descending and ascending collaterals. In the remaining cases only long descending projections to spinal segments were found. Comparison of conduction velocities measured in descending branches revealed no significant differences between individual neurones. On the other hand, descending collaterals of double direction neurones conducted impulses considerably faster than their axonal branches ascending to LRN. Our results suggest that parallel transmission of information to various, spinal or supraspinal centres of the nervous system is more common than reported before.  相似文献   

3.
Ascending projections of sacral spinal cord neurones (S1-S2) to the dorsal accessory olivary nucleus (DAO) were electrophysiologically investigated in 3 adult cats under deep alpha-chloralose anaesthesia. Antidromic action potentials were recorded extracellularly from 19 cells following stimulation of their axons in both the contralateral dorsal accessory olivary nucleus (coDAO) and the contralateral lateral funiculus at the level of lower thoracic segments (Th13). Two groups of neurones were identified in the gray matter of S1-S2 segments: one distributed in the medial part of Rexed's laminae VI and VII (n = 5), the other located in the ventromedial part of lamina VIII (n = 14). Axonal conduction velocities of neurones investigated were comprised in the range 32-55 m/s. A significant decrease of conduction velocity was observed in each case when distal and proximal parts of the axon were compared. Our research confirmed anatomical data concerning spino-olivary neurones originating from sacral segments. However, we suggest that axons of this pathway give off collaterals to other spinal or supraspinal centres.  相似文献   

4.
1. Ascending tract neurones located in the dorsal horn of sacral segments of the spinal cord have been investigated by extracellular and intracellular recording in the anaesthetized cat. The aim was to determine whether information from group II afferents that terminate within the sacral segments is conveyed to supraspinal structures and which types of neurones are involved. 2. A considerable proportion of ascending tract neurones found in the dorsal horn in the same segments as the pudendal (Onuf's) motor nucleus were excited by group II muscle afferents. The great majority (93%) of these neurones had axons ascending in ipsilateral funiculi. Spinocervical tract neurones constituted the largest proportion (82%) of such neurones, while very few spinocerebellar tract and propriospinal neurones and no postsynaptic dorsal column neurones were found among them. 3. In addition to activation by group II muscle afferents all of the neurones were strongly excited by cutaneous afferents. The most potent excitation was evoked by afferents of the posterior biceps-semitendinosus and gastrocnemius muscle nerves and by afferents of the cutaneous femoris, sural and pudendal nerves. The latencies of intracellularly recorded excitatory potentials were indicative of a high incidence of monosynaptic coupling between the afferents and ascending tract neurones. 4. The highly effective monosynaptic excitation of spinocervical tract neurones in the sacral segments by group II afferents is in contrast to the weak disynaptically mediated actions of group II afferents on such neurones in the L6-L7 segments but comparable to the actions of group II afferents on ascending tract neurones in the midlumbar segments. 5. Both the patterns of peripheral input and the latencies of synaptic actions in ascending tract neurones were similar to those in interneurones at the same locations (accompanying report). Similar information is therefore likely to be processed by both categories of neurones. 6. The role of sacral spinocervical tract neurones as a system for transmitting information from group II muscle afferents to supraspinal centres and the potential contribution of this system to the perception of limb position are discussed.  相似文献   

5.
Cerebellar and reticular projections of neurones located in sacral segments of the spinal cord were electrophysiologically investigated in alpha-chloralose anaesthetized cats. Antidromic action potentials were recorded following stimulation of the contralateral restiform body (coRB), contralateral gigantocellular nucleus (coGRN) as well as ipsi- and contralateral lateral funiculus of the 13th thoracic segment (iTh13 and coTh13). Eighty-seven neurones were found in the medial lamina VII and lamina VIII of the gray matter of S1 and S2 segments. Their axons ascended in lateral funiculi on the contralateral side and in 46 cases also on the ipsilateral side of the spinal cord. A projection to coRB was found in 20 neurones, to coGRN in 10 and dual projections to both coRB and coGRN in 20 neurones. Axons of the remaining 37 cells were found to ascend to the level of Th13 only. Conduction velocities of neurones investigated were comprised in the range 35-83 m/s and no significant differences were found between particular groups. However, an evident decrease in conduction was observed in most neurones when comparing proximal to distal parts of their axons, suggesting the possibility of more extensive divergence than indicated in this study. The pattern of projections revealed that the information from the periphery is conveyed in parallel to various supraspinal and possibly also spinal centres.  相似文献   

6.
Summary Recording was made in the C3-C4 segments from cell bodies of propriospinal neurones identified by their antidromic activation from more caudal segments. Monosynaptic excitatory effects from descending motor pathways and primary afferents were investigated by electrical stimulation of higher motor centres and peripheral nerves in the forelimb and neck.The cell bodies were located mainly laterally in Rexed's layer VII. Threshold mapping for single axons showed that they descend in the lateroventral part of the lateral funicle. Antidromic stimulation at different spinal cord levels showed that some neurones terminated in the forelimb segments, others in the thoracic cord or in the lumbar segments. Terminal slowing of the conduction velocity suggested axonal branching over some segments.Monosynaptic EPSPs were evoked in the neurones by stimulation of the contralateral pyramid, red nucleus and dorsal tegmentum-superior colliculus. It is concluded that corticospinal, rubrospinal and tectospinal fibres project directly to both short and long propriospinal neurones. There was marked frequency potentiation in tectospinal synapses. Convergence from two descending tracts was common and in half of the tested cells all three tracts contributed monosynaptic excitation. Experiments with collision of descending volleys and antidromic volleys from the brachial segments demonstrated that the corticospinal and rubrospinal monosynaptic projection to the propriospinal neurones is by collaterals from fibres continuing to the forelimb segments.Stimulation of cervical primary afferents in the dorsal column gave monosynaptic EPSPs in somewhat less than half of the tested propriospinal neurones. The further analysis with stimulation of forelimb nerves and C2-C3 dorsal rami showed that monosynaptic EPSPs may be evoked from low threshold cutaneous and group I muscle afferents in the forelimb and from C2-C3 neck afferents entering close to the spinal ganglia, possibly from joint receptors. Convergence from cervical afferents and at least two of the above descending tracts was common.It is postulated that the propriospinal neurones previously indirectly defined by their action on motoneurones as relaying disynaptic excitation from higher motor centres to forelimb motoneurones (Illert et al., 1977) belong to those neurones of the C3-C4 propriospinal systems which terminate in the cervical enlargement. The function of the neurones projecting beyond the upper thoracic segments is discussed.Supported by the Deutsche ForschungsgemeinschaftIBRO/UNESCO Fellow  相似文献   

7.
The location of cells of origin of propriospinal and ascending supraspinal fibers has been determined by injecting horseradish peroxidase (HRP) unilaterally into various parts of the spinal cord of the lizard Lacerta galloti. The distribution of retrogradely labeled cells after unilateral high spinal cord injections suggests that ascending supraspinal fibers are derived from neurons in the following areas: in the cervical intumescence in most areas of the spinal gray, particularly ipsilaterally, in thoracic and lumbar segments, in deeper situated areas, especially contralaterally. The presence of cells of origin of long descending propriospinal pathways has been demonstrated following HRP-injections into the lumbar intumescence.  相似文献   

8.
In continuation of previous electrophysiological studies on the location of ascending tract neurones within the second sacral segment of the feline spinal cord, the spinoreticular projections of these neurones have been investigated. Following electrical stimulation of the axonal terminals of 37 spinoreticular neurons via a tungsten electrode placed stereotactically in the contralateral nucleus reticularis gigantocellularis, antidromic potentials from their cell bodies were recorded with glass microelectrodes both extra- and intracellularly. The axons of these neurones were additionally excited from the dorsolateral funiculi of the contralateral (n = 37) and ipsilateral (n = 30) side at the lowermost thoracic spinal level. The latencies of antidromic excitation from the brainstem to the second sacral segment ranged from 3.2 to 11.8 ms (mean, 5.9 ms), whereas the corresponding axonal conduction velocities were between 27.1 and 100 m/s. The neurones examined in this study were found to be situated in the medial lamina VII of Rexed and the area adjacent to the central canal (n = 13), the medial lamina VIII (n = 12), medial laminae V and VI (n = 10) and in laminae II and III (n = 2). Three medium-sized (40-60 microm) of triangular- or oval-shaped neurones were visualized in medial laminae VII and VIII following the intracellular labelling with horseradish peroxidase.  相似文献   

9.
目的 利用神经示踪技术探讨SD大鼠长下行脊髓固有神经元及其轴突投射的解剖位置.方法 将荧光金(FG)注射入第1腰髓(L1)节段逆行标记大鼠下行脊髓固有神经元(DPNs)胞体;将顺行神经示踪剂生物素葡聚糖胺(BDA)注射到脊髓第3和第4颈髓处标记此处的DPNs胞体及其长下行脊髓固有束(LDPT).固定取材与切片染色后,检...  相似文献   

10.
Summary Experiments were performed on rats to determine whether primary afferents from the upper cervical region terminate directly on Spinothalamic and propriospinal neurones. The central terminations of primary afferents from the upper cervical region were identified by diffusely filling their axons with horseradish peroxidase. Spinothalamic neurones or propriospinal neurones were identified in the same experimental animals by using retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Approximately 3–11 % of Spinothalamic cells in laminae 4–6 of spinal segments C2–4 received apparent synaptic contacts from primary afferents on the soma or primary dendrites. Approximately 18–36% of propriospinal neurones with axons descending to lower thoracic or lumbar levels received apparent synaptic contacts on the soma or primary dendrites. These data provide anatomical evidence that Spinothalamic and long propriospinal neurones in the upper cervical cord are excited directly by primary afferents. The data also help to clarify the neural circuitry underlying somatic sensation and reflex movements evoked by neck receptors.  相似文献   

11.
The locations of 249 cell bodies of the ascending tract neurones in the grey matter of S1-S3 segments of the spinal cord were reconstructed by histochemical staining, after their axons (or axonal collaterals) at the level of the Thl3 segment were injected with horseradish peroxidase (HRP). In three cats in which the injections of HRP were restricted to the lateral part of the lateral funiculi (llf), about 84% of 159 retrogradely labelled cells were found on the contralateral side, while about 16% were located ipsilaterally. They were the most numerous in S2, S3 and S1 segments, respectively, and the neurones were distributed mainly in the lateral laminae I-VII, medial laminae V, VI and lamina VIII. In three other animals in which the injections of the marker were limited to the dorsal part of the lateral funiculi (dlf), 84 of the 90 ascending tract neurones were found to be distributed in the S2 and S3 segments both ipsi- (lateral laminae III-V) and contralaterally, (lateral laminae IV and V as well as the medial laminae VII and VIII) in similar numbers. The remaining six of the 90 cells with only contralateral projections at the dorsolateral funiculus at Thl3 were scattered within the S1 segment. These data are consistent with the results of studies on sacral spinocerebellar, spinothalamic and spinoreticular projections, as well as the localization of sacral spinocervical and priopriospinal neurones. They may also imply the importance of the bilateral fiber course of the neurones of origin of ascending tracts in the S2 and S3 segments within the dorsolateral funiculus.  相似文献   

12.
The axonal pathway, conduction velocities, and locations of the cell bodies of utricular nerve-activated vestibulospinal neurons were studied in decerebrated or anesthetized cats using the collision test of orthodromic and antidromic spikes. For orthodromic stimulation, bipolar tungsten electrodes were placed on the utricular nerve and the other vestibular nerve branches were transected. Monopolar tungsten electrodes were positioned on both sides of the upper cervical segments (C2–4), caudal end of the cervical enlargement (C7-T1), and from the lower thoracic to the upper lumbar segments (T12-L3) and were used for antidromic stimulation of the spinal cord. Another monopolar electrode was also placed in the oculomotor nucleus to study whether utricular nerve-activated vestibulospinal neurons have ascending branches to the oculomotor nucleus. Of the 173 vestibular neurons orthodromically activated by the stimulation of the utricular nerve, 46 were second-order vestibulospinal neurons and 5 were third-order neurons. The majority of the utricular nerve-activated vestibulospinal neurons were located in the rostral part of the descending vestibular nucleus and the caudal part of the ventral lateral nucleus. Seventy-three percent of the utricular nerve-activated vestibulospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Approximately 80% of these neurons reached the cervicothoracic junction, but a few reached the upper lumbar spinal cord. Twenty-seven percent of the utricular nerve-activated vestibulospinal neurons descended through the medial vestibulospinal tract or the contralateral vestibulospinal tracts. Those axons terminated mainly in the upper cervical segments. Almost none of the utricular nerve-activated vestibular neurons had ascending branches to the oculomotor nucleus.  相似文献   

13.
Summary A previously described disynaptic pathway from cortex to forelimb motoneurones whose intercalated neurones were excited both from other descending pathways and from forelimb afferents (Illert et al., 1976a, b) has been further analysed, mainly with respect to the location of the relay cells and their axons.Disynaptic EPSPs evoked in forelimb motoneurones by stimulation of the pyramid remained after complete transection of the corticospinal tract in C5 rostral to the forelimb segments but were abolished after a more rostral transection of the tract in the C2 segment. Corresponding findings were made with disynaptic rubral EPSPs after transection of the rubrospinal tract in these segments. It is concluded that disynaptic cortico-motoneuronal and rubro-motoneuronal excitation is relayed by propriospinal neurones originating in the C3–C4 segments. Other lesion experiments revealed that the axons of these propriospinal neurones descend to forelimb motoneurones in the ventrolateral part of the lateral funicle.Spatial facilitation of transmission from the corticospinal and rubrospinal tracts after transection of them in C5 occurred with a time course showing monosynaptic convergence from these pathways on common propriospinal neurones.Facilitation of disynaptic pyramidal EPSPs from the dorsal tegmentum remained after transection of the corticospinal tract at C5 but was abolished after a transection at C2. It is postulated that corticospinal and presumed tectospinal fibres converge onto common neurones in the propriospinal relay but evidence is also given for a more rostral relay (probably bulbar) with a similar convergence.The oligo- (probably mono-)synaptic facilitation of the disynaptic pyramidal EPSP evoked by volleys in cutaneous and group I muscle afferents from the forelimb likewise remained after a C5 transection of the corticospinal tract but was abolished after an additional C5 lesion in the dorsal column. It is concluded that propriospinal relay cells receive excitatory action from forelimb afferents ascending in the dorsal column. Spatial facilitation experiments using three tests revealed that propriospinal neurones monosynaptically excited from both corticospinal and rubrospinal fibres also receive excitation from cutaneous forelimb afferents.It is postulated that the propriospinal relay provides an important route for fast activation of forelimb motoneurones from the brain. The convergent monosynaptic excitation from several important motor centres in the brain is considered in relation to the general problem of the functional relationship between higher motor centres. The convergent action from forelimb afferents is taken to suggest that a descending command for a forelimb movement can be modified from the forelimb while on its way to the motoneurones.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

14.
Area X (the tenth area) of the spinal cord is a region surrounding the central canal and extending throughout the spinal cord length. Using anterograde and retrograde labeling techniques, ascending propriospinal projections to area X were examined in the rat. For anterograde tracing of axons, biotinylated dextran was injected into middle-thoracic, lumbar, or sacral-caudal segments. Unilateral injections resulted in bilateral labeling of terminals in area X of all segments rostral to the injections. The distribution of labeled terminals was conspicuous in regions dorsal and lateral to the central canal. The labeled axons were derived from the ventrolateral and the lateral cord. They coursed through lamina VII, giving off terminal axons. While giving off terminal axons in area X, they coursed further rostrally or caudally along the central canal or crossed over the central canal to terminate in the contralateral area X. Possible cells of origin of these ascending afferents were examined after injections of wheat germ agglutinin-horseradish peroxidase into regions surrounding the central canal (area X) at the cervical or thoracic level. Retrogradely labeled neurons were consistently seen in area X, and laminae VII and VIII of the thoracic and lumbar segments. The present study shows that ascending propriospinal axons project to area X of all spinal levels rostral to the cells of origin and suggests that some of these afferents may originate from neurons in area X and laminae VII and VIII. Based on previous data, it is surmised that area X functions, through these intricate interconnections, as a site for integration or modulation of somatic or nociceptive and visceroceptive sensation. Received: 3 July 1997 / Accepted: 8 October 1997  相似文献   

15.
Regeneration of long spinal axons in the rat   总被引:10,自引:0,他引:10  
Summary To investigate regeneration of long spinal axons, the right lateral column of the rat spinal cord was cut at high cervical, low cervical, midthoracic or lumbar level, and one end of an autologous sciatic nerve segment was grafted to the spinal cord at the site of incision. Three to six months after operation, the origin of axons in the grafts was traced retrogradely with horseradish peroxidase injected into the grafts and, in some cases, anterogradely with radioautography of tritiated amino acids injected into the brainstem. Axons from each of the major lateral spinal tracts arising in the brainstem as well as axons ascending from the lower spinal cord succeeded in growing into low cervical grafts. However, long descending axons rarely regenerated after midthoracic or lumbar injury; axons ascending from lumbar segments of the spinal cord usually failed to enter high cervical grafts. Differences in axonal regrowth at the four segmental levels were not simply attributable to dwindling of axonal number in fibre tracts. Axonal regeneration from Clarke's column or the red nucleus was observed only with lesions causing atrophy of many neurons.There was no obvious example of a fibre tract in the lateral spinal columns from which axons failed to regenerate nor from which axons regenerated exceptionally well. Under the conditions of these experiments, the distance from cell body to injury appeared to be an important determinant of axonal regeneration.  相似文献   

16.
Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the lesioned spinal cord.  相似文献   

17.
(1) Spikes of single neurons were extracellularly recorded in the medial vestibular nucleus (MVN) in decerebrate cats and were functionally identified as secondary type I neurons by observing their responses to horizontal rotation and monosynaptic activation after stimulation of the ipsilateral vestibular nerve. Axonal projection of these neurons was examined by their antidromic responses to stimulation of the contralateral abducens nucleus, the spinal cord, and the ascending and descending MLF. (2) Almost all secondary type I vestibular neurons which sent their axon to the contralateral abducens nucleus were antidromically activated from the descending MLF at the level of the obex as well. Nearly half of these neurons sent their collateral axon to the level of C1 segment in the spinal cord and approximately one third to the ascending MLF close to the oculomotor complex. (3) The mean conduction velocity was 29 m/s for descending collateral axons and 30 m/s for ascending collateral axons. (4) Systematic tracking for antidromic microstimulation in the contralateral abducens nucleus and spinal gray matter at C2-C3 suggested that collateral axons of single type I vestibular neurons gave off local branches in the abducens nucleus and the motoneuron pool in the upper cervical gray matter. Existence of terminal branches in the neck motoneuron pool was confirmed by intraaxonal staining with horseradish peroxidase (HRP). (5) Neurons which projected to both the contralateral abducens nucleus and the spinal cord were located in a fairly localized region in the ventrolateral part of the rostral MVN. Neurons which projected to the contralateral abducens nucleus and not to the spinal cord were located in a rostrocaudally wider area in the ventrolateral MVN. Neurons projecting to the spinal cord and not to the contralateral abducens nucleus were located in the widest area in the rostrocaudal direction, covering almost the whole extent of the rostral half of the MVN.  相似文献   

18.
19.
Intracellular recording and injection of horseradish peroxidase (HRP) were made in neurones located medially in lamina VII and in lamina VIII of the forelimb segments (C6-Th1). The cells received disynaptic excitation from the contralateral pyramid after corticospinal transection in C5/C6 and monosynaptic excitation from the ipsilateral lateral reticular nucleus. The pyramidal excitation was facilitated by a conditioning volley evoked from the contralateral nucleus ruber, which suggests convergence of cortico- and rubrospinal fibres on the intercalated neurones. It is proposed that laminae VII and VIII neurones receive a collateral input from the same excitatory C3-C4 propriospinal neurones which project to motoneurones and/or Ia inhibitory interneurones. Reconstruction of HRP-stained lamina VII and VIII neurones revealed ipsi- and contralateral ascending and/or descending axonal projections and termination in laminae VII and VIII in the forelimb segments.  相似文献   

20.
The lateral reticular nucleus in the cat   总被引:1,自引:0,他引:1  
Intracellular recordings were obtained from 204 neurones in the lateral reticular nucleus (LRN). LRN neurones contacted by the bVFRT were identified by the responses evoked on stimulation of descending fibres in the contralateral ventral quadrant of the spinal cord (cVQ) at cervical (C5cVQ) and lumbar (L2cVQ) levels. Stimulation of the cVQ evoked excitatory or inhibitory responses in 124 of the 204 LRN neurones. EPSPs were evoked in 45, IPSPs in 52 and both EPSPs and IPSPs in 27 LRN neurones. The shortest latencies of the responses evoked from the cVQ indicated that both EPSPs and IPSPs were disynaptic. This finding was confirmed by direct stimulation of the ascending fibres in the ipsilateral ventrolateral funiculus at C3 (C3iVLF) or L1 (L1iVLF). In most LRN neurones activated or inhibited from the cVQ, stimulation of the iVLF evoked similar responses at a monosynaptic latency. These results indicate that the bVFRT consists of roughly equally large groups of excitatory and inhibitory neurones monosynaptically connected with the LRN. Excitatory and inhibitory bVFRT neurones had similar peripheral receptive fields and termination areas in the LRN. LRN neurones were divided into those contacted by cervical bVFRT neurones and lumbar bVFRT neurones. The former group consisted of LRN neurones responding to C5cVQ stimulation at latencies below 5 ms, whereas the latter group contained LRN neurones responding to stimulation of the L2cVQ. Cervical bVFRT neurones projected to most parts of the LRN whereas the projection of lumbar bVFRT neurones were confined to the ventrolateral part of the nucleus. Excitatory and inhibitory vVFRT neurones of each group had similar termination areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号