首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of the flocculus region of the cerebellum to horizontal gaze pursuit was studied in squirrel monkeys. When the head was free to move, the monkeys pursued targets with a combination of smooth eye and head movements; with the majority of the gaze velocity produced by smooth tracking head movements. In the accompanying study we reported that the flocculus region was necessary for cancellation of the vestibuloocular reflex (VOR) evoked by passive whole body rotation. The question addressed in this study was whether the flocculus region of the cerebellum also plays a role in canceling the VOR produced by active head movements during gaze pursuit. The firing behavior of 121 Purkinje (Pk) cells that were sensitive to horizontal smooth pursuit eye movements was studied. The sample included 66 eye velocity Pk cells and 55 gaze velocity Pk cells. All of the cells remained sensitive to smooth pursuit eye movements during combined eye and head tracking. Eye velocity Pk cells were insensitive to smooth pursuit head movements. Gaze velocity Pk cells were nearly as sensitive to active smooth pursuit head movements as they were passive whole body rotation; but they were less than half as sensitive ( approximately 43%) to smooth pursuit head movements as they were to smooth pursuit eye movements. Considered as a whole, the Pk cells in the flocculus region of the cerebellar cortex were <20% as sensitive to smooth pursuit head movements as they were to smooth pursuit eye movements, which suggests that this region does not produce signals sufficient to cancel the VOR during smooth head tracking. The comparative effect of injections of muscimol into the flocculus region on smooth pursuit eye and head movements was studied in two monkeys. Muscimol inactivation of the flocculus region profoundly affected smooth pursuit eye movements but had little effect on smooth pursuit head movements or on smooth tracking of visual targets when the head was free to move. We conclude that the signals produced by flocculus region Pk cells are neither necessary nor sufficient to cancel the VOR during gaze pursuit.  相似文献   

2.
A series of studies were carried out to investigate the role of the cerebellar flocculus and ventral paraflocculus in the ability to voluntarily cancel the vestibuloocular reflex (VOR). Squirrel monkeys were trained to pursue moving visual targets and to fixate a head stationary or earth stationary target during passive whole body rotation (WBR). The firing behavior of 187 horizontal eye movement-related Purkinje (Pk) cells in the flocculus region was recorded during smooth pursuit eye movements and during WBR. Half of the Pk cells encountered were eye velocity Pk cells whose firing rates were related to eye movements during smooth pursuit and WBR. Their sensitivity to eye velocity during WBR was reduced when a visual target was not present, and their response to unpredictable steps in WBR was delayed by 80-100 ms, which suggests that eye movement sensitivity depended on visual feedback. They were insensitive to WBR when the VOR was canceled. The other half of the Purkinje cells encountered were sensitive to eye velocity during pursuit and to head velocity during VOR cancellation. They resembled the gaze velocity Pk cells previously described in rhesus monkeys. The head velocity signal tended to be less than half as large as the eye velocity-related signal and was observable at a short ( approximately 40 ms) latency when the head was unpredictably accelerated during ongoing VOR cancellation. Gaze and eye velocity type Pk cells were found to be intermixed throughout the ventral paraflocculus and flocculus. Most gaze velocity Pk cells (76%) were sensitive to ipsilateral eye and head velocity, but nearly half (48%) of the eye velocity Pk cells were sensitive to contralateral eye velocity. Thus the output of flocculus region is modified in two ways during cancellation of the VOR. Signals related to both ipsilateral and contralateral eye velocity are removed, and in approximately half of the cells a relatively weak head velocity signal is added. Unilateral injections of muscimol into the flocculus region had little effect on the gain of the VOR evoked either in the presence or absence of visual targets. However, ocular pursuit velocity and the ability to suppress the VOR by fixating a head stationary target were reduced by approximately 50%. These observations suggest that the flocculus region is an essential part of the neural substrate for both visual feedback-dependent and nonvisual mechanisms for canceling the VOR during passive head movements.  相似文献   

3.
The vestibuloocular reflex (VOR) functions to stabilize gaze when the head moves. The flocculus region (FLR) of the cerebellar cortex, which includes the flocculus and ventral paraflocculus, plays an essential role in modifying signal processing in VOR pathways so that images of interest remain stable on the retina. In squirrel monkeys, the firing rate of most FLR Pk cells is modulated during VOR eye movements evoked by passive movement of the head. In this study, the responses of 48 FLR Purkinje cells, the firing rates of which were strongly modulated during VOR evoked by passive whole body rotation or passive head-on-trunk rotation, were compared to the responses generated during compensatory VOR eye movements evoked by the active head movements of eye-head saccades. Most (42/48) of the Purkinje cells were insensitive to eye-head saccade-related VOR eye movements. A few (6/48) generated bursts of spikes during saccade-related VOR but only during on-direction eye movements. Considered as a population FLR Pk cells were <5% as responsive to the saccade-related VOR as they were to the VOR evoked by passive head movements. The observations suggest that the FLR has little influence on signal processing in VOR pathways during eye-head saccade-related VOR eye movements. We conclude that the image-stabilizing signals generated by the FLR are highly dependent on the behavioral context and are called on primarily when external forces unrelated to self-generated eye and head movements are the cause of image instability.  相似文献   

4.
Summary Squirrel monkeys were trained to cancel their vestibulo-ocular reflex (VOR) by fixating a visual target that was head stationary during passive vestibular stimulation. The monkeys were seated on a vestibular turntable, and their heads were restrained. A small visual target (0.2°) was projected from the vestibular turntable onto a tangent screen. The monkeys' ability to suppress their VOR by fixating a head stationary target while the turntable was moving was compared to their ability to pursue the target when it was moved in the same manner.Squirrel monkeys were better able to suppress their VOR when the turntable was moved at high velocities than they were able to pursue targets that were moving at high velocities. The gaze velocity gain during VOR cancellation began to decrease when the head velocity was above 80°/s, and was greater than 0.6 when the head velocity was above 150°/s. However, gaze velocity gain during smooth pursuit decreased significantly when the target velocity was greater than 60°/s, and was less than 0.4 when the target velocity was 150°/s or more.The latency of VOR suppression was significantly shorter than the latency of smooth pursuit while the monkey was cancelling its VOR. When an unpredictable step change in head acceleration was generated while the monkey was cancelling its VOR, the VOR evoked by the head acceleration step began to be suppressed shortly after the initiation of the step ( 30 ms). On the other hand, the latency of the smooth pursuit eye movement elicited when the visual target was accelerated in the same manner during VOR cancellation was 100 ms. The comparison between these two results suggests that the monkeys did not use visual information related to target motion to suppress their VOR at an early latency.The monkeys' ability to suppress the VOR evoked by an unexpected change in head acceleration depended on the size of the head acceleration step. The VOR evoked by unexpected step changes in head acceleration was progressively less suppressed at an early latency as the size of the acceleration step increased, and was not suppressed at an early latency when the step change in head acceleration was greater than 500°/s2.During smooth pursuit eye movements, unexpected step changes in head acceleration evoked a VOR that was suppressed at an early latency ( 50 ms) if the head movement was in the same direction as the ongoing smooth pursuit eye movement. The amount of early VOR suppression increased as the pursuit eye velocity increased.We conclude that squirrel monkeys utilize a fast, non-visual mechanism for cancelling their VOR while they are fixating a visual target and their head is moving. This non-visual mechanism appears to be turned on when the head is moving and the monkey is fixating a head stationary target. The mechanism probably utilizes a voluntarily gated vestibular signal to cancel the signals in VOR pathways at the level of the extraocular motorneurons. Although the VOR cancellation mechanism is not capable of completely suppressing the VOR evoked by large unexpected changes in head acceleration, we suggest that it is capable of suppressing the VOR generated by most voluntary head movements during combined eye and head gaze pursuit and that the function of this gated VOR cancellation system is to extend the range and accuracy of eye-head tracking movements.  相似文献   

5.
The generation of primate smooth pursuit eye movements involves two processes. One process transforms the direction and speed of target motion into a motor command and the other regulates the strength, or "gain," of the visual-motor transformation. We have conducted a behavioral analysis to identify the signals that modulate the internal gain of pursuit. To test whether the modulatory signals are related to eye velocity in the orbit or in the world (gaze velocity), we used brief perturbations of target motion to probe the gain of pursuit during tracking conditions that used head rotation to dissociate eye and gaze velocity. We found that the responses to perturbations varied primarily as a function of gaze velocity. To further understand the gaze velocity signals that control internal pursuit gain, we used adaptive modification of the gain of the vestibulo-ocular reflex (VOR) to dissociate physical gaze velocity from the component of gaze velocity that is driven by visual inputs. After VOR adaptation, perturbation responses were altered; the smallest perturbation responses now occurred during tracking conditions that required nonzero physical gaze velocity. However, perturbation responses during tracking conditions that mimicked the modified VOR were still enhanced relative to those obtained during fixation. We conclude that the signals that modulate the internal gain of pursuit are modified by VOR adaptation so that they are rendered intermediate between physical and visually driven gaze velocity. Similar changes in the gaze velocity signal have been reported in the cerebellar floccular complex following adaptive modification of the VOR and could be present in other brain areas that carry putative gaze velocity signals.  相似文献   

6.
To track a slowly moving object during whole body rotation, smooth-pursuit and vestibularly induced eye movements must interact to maintain the accuracy of eye movements in space (i.e., gaze), and gaze movement signals must eventually be converted into eye movement signals in the orbit. To understand the role played by the cerebellar vermis in pursuit-vestibular interactions, in particular whether the output of the vermis codes gaze-velocity or eye-velocity, we examined simple-spike activity of 58 Purkinje (P-) cells in lobules VI-VII of head-stabilized Japanese monkeys that were trained to elicit smooth-pursuit eye movements and cancel their vestibuloocular reflex (VOR) during passive whole body rotation around horizontal, vertical, or oblique axes. All pursuit-sensitive vermal P-cells also responded during VOR cancellation, and the majority of them had peak modulation near peak stimulus velocity. The directions of maximum modulation during these two tasks were distributed in all directions with a downward preponderance. Using standard criteria, 40% of pursuit-sensitive vermal P-cells were classified as gaze-velocity. Other P-cells were classified either as eye/head-velocity group I (36%) that had similar preferred directions during pursuit and VOR cancellation but that had larger responses during VOR x1 when gaze remained stationary, or as eye/head-velocity group II (24%) that had oppositely directed or orthogonal eye and head movement sensitivity during pursuit and VOR cancellation. Eye/head-velocity group I P-cells contained cells whose activity was correlated with eye velocity. Modulation of many P-cells of the three groups during VOR x1 could be accounted for by the linear addition of their modulations during pursuit and VOR cancellation. When monkeys fixated a stationary target, over half of the P-cells tested, including gaze-velocity P-cells, discharged in proportion to the velocity of retinal motion of a second spot. These observations are in a striking contrast to our previous results for floccular vertical P-cells. Because we used identical tasks, these differences suggest that the two cerebellar regions are involved in very different kinds of processing of pursuit-vestibular interactions.  相似文献   

7.
The vestibuloocular reflex (VOR) generates compensatory eye movements to stabilize visual images on the retina during head movements. The amplitude of the reflex is calibrated continuously throughout life and undergoes adaptation, also called motor learning, when head movements are persistently associated with image motion. Although the floccular-complex of the cerebellum is necessary for VOR adaptation, it is not known whether this function is localized in its anterior or posterior portions, which comprise the ventral paraflocculus and flocculus, respectively. The present paper reports the effects of partial lesions of the floccular-complex in five macaque monkeys, made either surgically or with stereotaxic injection of 3-nitropropionic acid (3-NP). Before and after the lesions, smooth pursuit eye movements were tested during sinusoidal and step-ramp target motion. Cancellation of the VOR was tested by moving a target exactly with the monkey during sinusoidal head rotation. The control VOR was tested during sinusoidal head rotation in the dark and during 30 degrees/s pulses of head velocity. VOR adaptation was studied by having the monkeys wear x2 or x0.25 optics for 4-7 days. In two monkeys, bilateral lesions removed all of the flocculus except for parts of folia 1 and 2 but did not produce any deficits in smooth pursuit, VOR adaptation, or VOR cancellation. We conclude that the flocculus alone probably is not necessary for either pursuit or VOR learning. In two monkeys, unilateral lesions including a large fraction of the ventral paraflocculus produced small deficits in horizontal and vertical smooth pursuit, and mild impairments of VOR adaptation and VOR cancellation. We conclude that the ventral paraflocculus contributes to both behaviors. In one monkey, a bilateral lesion of the flocculus and ventral paraflocculus produced severe deficits smooth pursuit and VOR cancellation, and a complete loss of VOR adaptation. Considering all five cases together, there was a strong correlation between the size of the deficits in VOR learning and pursuit. We found the strongest correlation between the behavior deficits and the size of the lesion of the ventral paraflocculus, a weaker but significant correlation for the full floccular complex, and no correlation with the size of the lesion of the flocculus. We conclude that 1) lesions of the floccular complex cause linked deficits in smooth pursuit and VOR adaptation, and 2) the relevant portions of the structure are primarily in the ventral paraflocculus, although the flocculus may participate.  相似文献   

8.
The vestibuloocular reflex (VOR) effectively stabilizes the visual world on the retina over the wide range of head movements generated during daily activities by producing an eye movement of equal and opposite amplitude to the motion of the head. Although an intact VOR is essential for stabilizing gaze during walking and running, it can be counterproductive during certain voluntary behaviors. For example, primates use rapid coordinated movements of the eyes and head (gaze shifts) to redirect the visual axis from one target of interest to another. During these self-generated head movements, a fully functional VOR would generate an eye-movement command in the direction opposite to that of the intended shift in gaze. Here, we have investigated how the VOR pathways process vestibular information across a wide range of behaviors in which head movements were either externally applied and/or self-generated and in which the gaze goal was systematically varied (i.e., stabilize vs. redirect). VOR interneurons [i.e., type I position-vestibular-pause (PVP) neurons] were characterized during head-restrained passive whole-body rotation, passive head-on-body rotation, active eye-head gaze shifts, active eye-head gaze pursuit, self-generated whole-body motion, and active head-on-body motion made while the monkey was passively rotated. We found that regardless of the stimulation condition, type I PVP neuron responses to head motion were comparable whenever the monkey stabilized its gaze. In contrast, whenever the monkey redirected its gaze, type I PVP neurons were significantly less responsive to head velocity. We also performed a comparable analysis of type II PVP neurons, which are likely to contribute indirectly to the VOR, and found that they generally behaved in a quantitatively similar manner. Thus our findings support the hypothesis that the activity of the VOR pathways is reduced "on-line" whenever the current behavioral goal is to redirect gaze. By characterizing neuronal responses during a variety of experimental conditions, we were also able to determine which inputs contribute to the differential processing of head-velocity information by PVP neurons. We show that neither neck proprioceptive inputs, an efference copy of neck motor commands nor the monkey's knowledge of its self-motion influence the activity of PVP neurons per se. Rather we propose that efference copies of oculomotor/gaze commands are responsible for the behaviorally dependent modulation of PVP neurons (and by extension for modulation of the status of the VOR) during gaze redirection.  相似文献   

9.
Passive rotation of the trunk with respect to the head evoked cervico-ocular reflex (COR) eye movements in squirrel monkeys. The amplitude of the reflex varied both within and between animals, but the eye movements were always in the same direction as trunk rotation. In the dark, the COR typically had a gain of 0.3–0.4. When animals fixated earth-stationary targets during low-frequency passive neck rotation or actively tracked moving visual targets with head movements, the COR was suppressed. The COR and vestibulo-ocular reflex (VOR) summed during passive head-on-trunk rotation producing compensatory eye movements whose gain was greater than 1.0. The firing behavior of VOR-related vestibular neurons and cerebellar flocculus Purkinje cells was studied during the COR. Passive neck rotation produced changes in firing rate related to neck position and/or neck velocity in both position-vestibular-pause neurons and eye-head-vestibular neurons, although the latter neurons were much more sensitive to the COR than the former. The neck rotation signals were reduced or reversed in direction when the COR was suppressed. Flocculus Purkinje cells were relatively insensitive to COR eye movements. However, when the COR was suppressed, their firing rate was modulated by neck rotation. These neck rotation signals summed with ocular pursuit signals when the head was used to pursue targets. We suggest that the neural substrate that produces the COR includes central VOR pathways, and that the flocculus plays an important role in suppressing the reflex when it would cause relative movement of a visual target on the retina. Electronic Publication  相似文献   

10.
Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.  相似文献   

11.
Adaptive changes were induced in the vestibuloocular reflex (VOR) of monkeys by oscillating them while they viewed the visual scene through optical devices ("spectacles") that required changes in the amplitude of eye movement during head turns. The "gain" of the VOR (eye velocity divided by head velocity) during sinusoidal oscillation in darkness underwent gradual changes that were appropriate to reduce the motion of images on the retina during the adapting procedures. Bilateral ablation of the flocculus and ventral paraflocculus caused a complete and enduring loss of the ability to undergo adaptive changes in the VOR. Partial lesions caused a substantial but incomplete loss of the adaptive capability. We conclude that the flocculus is necessary for adaptive changes in the monkey's VOR. Further experiments in normal animals determined the types of stimuli that were necessary and/or sufficient to cause changes in VOR gain. Full-field visual stimulation was not necessary to induce adaptive changes in the VOR. Monkeys tracked a small spot in conditions that elicited the same combination of eye and head movements seen during passive oscillation with spectacles. The gain of the VOR showed changes 50-70% as large as those produced by the same duration of oscillation with spectacles. Since the effective tracking conditions cause a consistent correlation of floccular output with vestibular inputs, these data are compatible with our previous suggestion that the flocculus may provide signals used by the central nervous system to compute errors in the gain of the VOR. Prolonged sinusoidal optokinetic stimulation with the head stationary caused only a slight increase in VOR gain. Left-right reversal of vision and eye movement during sinusoidal vestibular oscillation caused decreases in VOR gain. In rabbits, both of these stimulus conditions produced large increases in the gain of the VOR, which implied that eye velocity signals were used instead of vestibular inputs to compute errors in the VOR. Our different results argue that vestibular signals are necessary for computing errors in VOR gain in the monkey. The species difference may reflect the additional role that smooth pursuit eye movements play in stabilizing gaze during head turns in monkeys.  相似文献   

12.
Summary The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated in ten patients with bilateral peripheral vestibular disease. Ten normal subjects served as controls. In the patients active, combined eye-head tracking (EHT) was significantly better than smooth pursuit (SP) with the eyes alone with a target frequency of 1.0 Hz. Normal subjects pursued equally well with SP and with active EHT. The gain of compensatory eye movements during active head rotation in darkness was also measured. Compensatory eye movements in labyrinthine-deficient patients (attributable to residual vestibulo-ocular reflex (VOR), cervico-ocular reflex (COR) and pre-programmed eye movements) were always less than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the VOR (or compensatory eye movements) during EHT. A model that proposes summation of an internal smooth pursuit command and VOR/ compensatory eye movements accounted for the findings in normal subjects and labyrinthine-deficient patients. In seven labyrinthine-deficient patients and nine normal subjects, passive EHT was measured during en bloc rotation while they viewed a head-fixed target. With a target frequency of 1.0 Hz, both subjects and patients showed significantly better tracking during passive EHT than during SP. Normal subjects also showed superior tracking during passive EHT compared with active EHT. These findings support the notion that during passive EHT, parametric gain changes contribute to modulation of the VOR.  相似文献   

13.
To understand how the simian floccular lobe is involved in vertical smooth pursuit eye movements and the vertical vestibuloocular reflex (VOR), we examined simple-spike activity of 70 Purkinje (P) cells during pursuit eye movements and passive whole body rotation. Fifty-eight cells responded during vertical and 12 during horizontal pursuit. We classified P cells as vertical gaze velocity (VG) if their modulation occurred for movements of both the eye (during vertical pursuit) and head (during pitch VOR suppression) with the modulation during one less than twice that of the other and was less during the target-fixed-in-space condition (pitch VOR X1) than during pitch VOR suppression. VG P cells constituted only a minority of vertical P cells (19%). Other vertical P cells that responded during pitch VOR suppression were classified as vertical eye and head velocity (V/) P cells (48%), regardless of the synergy of their response direction during smooth pursuit and VOR suppression. Vertical P cells that did not respond during pitch VOR suppression but did respond during rotation in vertical planes other than pitch were classified as off-pitch V/ P cells (33%). The mean eye-velocity and eye-position sensitivities of the three types of vertical P cells were similar. One-third (2/7 VG, 2/11 V/, 6/13 off-pitch V/), in addition, showed eye position sensitivity during saccade-free fixations. Maximal vestibular activation directions (MADs) were examined during VOR suppression by applying vertical whole body rotation with the monkeys oriented in different vertical planes. The MADs for VG P cells and V/ P cells with eye and vestibular sensitivity in the same direction were distributed near the pitch plane, suggesting convergence of bilateral anterior canal inputs. In contrast, MADs of off-pitch V/ P cells and V/ P cells with oppositely directed eye and vestibular sensitivity were shifted toward the roll plane, suggesting convergence of anterior and posterior canal inputs of the same side. Unlike horizontal G P cells, the modulation of many VG and V/ P cells when the target was fixed in space (pitch VOR X1) was not well predicted by the linear addition of their modulations during vertical pursuit and pitch VOR suppression. These results indicate that the populations of vertical and horizontal eye-movement P cells in the floccular lobe have markedly different discharge properties and therefore may be involved in different kinds of processing of vestibular-oculomotor interactions.  相似文献   

14.
The gain (ratio of eye velocity to head velocity) of the initial horizontal vestibulo-ocular reflex (VOR) was calculated in 12 normal subjects over 350 ms during impulsive, unpredictable whole body rotation under three conditions: (1) darkness; (2) visual enhancement of the VOR, while the subjects fixated a stationary target; and (3) visual cancellation of the reflex, while subjects fixated a target that rotated with the head. The gain of the initial 80 ms of compensatory eye movement increased significantly during visual fixation in 5 subjects and decreased during attempted VOR cancellation in 3 subjects, when compared with VOR gain in darkness. Compensatory vestibular smooth eye movements were slowed, becoming curved at the onset of VOR cancellation, at mean latencies ranging from 78 to 149 ms in individual subjects (group mean 128 ms). At about 190 ms, quick phases moved the eyes in the same direction as head and target motion. The subsequent vestibular eye movements were about 50% slower than the initial smooth eye movements, indicating more effective cancellation. Visual enhancement of the VOR can occur prior to the onset of pursuit, providing evidence that fixation and smooth pursuit are distinct ocular motor systems. Visual cancellation of the VOR also begins prior to smooth pursuit initiation and becomes more effective after the latency of smooth pursuit.  相似文献   

15.
We usually move both our eyes and our head when pursuing a high-speed moving object. However, the vestibulo-ocular reflex (VOR), evoked by head motion, seems to disturb smooth pursuit eye movement because the VOR stabilizes the gaze against head motion. To determine whether head motion is advantageous for pursuing a high-speed moving object, we examined dynamic visual acuity (DVA) for a high-speed (80°/s) rightward moving object with and without active linear rightward head motion (HM) at a maximum of 50 cm/s in nine healthy subjects. Furthermore, we analyzed eye and head movements to investigate the contribution of linear VOR (LVOR) and smooth eye movement under these conditions. In most subjects, active linear head motion improved DVA for a high-speed moving object. Subjects with higher DVA scores under HM had robust rightward gaze (eye + head) velocities (>60 cm/s), i.e., rightward smooth eye movements (>10°/s). With the head stationary (HS), faster smooth eye movements (>40°/s) were generated when the subjects pursued a high-speed moving object. They also showed anticipatory smooth eye movements under conditions HM and HS. However, the level of suppression of their LVOR abilities was equal to that of the others. These results suggest that the ability to generate anticipatory smooth pursuit eye movements for following a high-speed moving object against the LVOR is a determining factor for improvement of DVA under HM.  相似文献   

16.
The vestibulo-ocular reflex (VOR) is classically associated with stabilizing the visual world on the retina by producing an eye movement of equal and opposite amplitude to the motion of the head. Here we have directly measured the efficacy of VOR pathways during voluntary combined eye-head gaze shifts by recording from individual vestibular neurons in monkeys whose heads were unrestrained. We found that the head-velocity signal carried by VOR pathways is reduced during gaze shifts in an amplitude-dependent manner, consistent with results from behavioral studies in humans and monkeys. Our data support the hypothesis that the VOR is not a hard-wired reflex, but rather a pathway that is modulated in a manner that depends on the current gaze strategy.  相似文献   

17.
Under natural conditions, the vestibular and pursuit systems work synergistically to stabilize the visual scene during movement. How translational vestibular signals [translational vestibuloocular reflex (TVOR)] are processed in the premotor pathways for slow eye movements continues to remain a challenging question. To further our understanding of how premotor neurons contribute to this processing, we recorded neural activities from the prepositus and rostral medial vestibular nuclei in macaque monkeys. Vestibular neurons were tested during 0.5-Hz rotation and lateral translation (both with gaze stable and during VOR cancellation tasks), as well as during smooth pursuit eye movements. Data were collected at two different viewing distances, 80 and 20 cm. Based on their responses to rotation and pursuit, eye-movement-sensitive neurons were classified into position-vestibular-pause (PVP) neurons, eye-head (EH) neurons, and burst-tonic (BT) cells. We found that approximately half of the type II PVP and EH neurons with ipsilateral eye movement preference were modulated during TVOR cancellation. In contrast, few of the EH and none of the type I PVP cells with contralateral eye movement preference modulated during translation in the absence of eye movements; nor did any of the BT neurons change their firing rates during TVOR cancellation. Of the type II PVP and EH neurons that modulated during TVOR cancellation, cell firing rates increased for either ipsilateral or contralateral displacement, a property that could not be predicted on the basis of their rotational or pursuit responses. In contrast, under stable gaze conditions, all neuron types, including EH cells, were modulated during translation according to their ipsilateral/contralateral preference for pursuit eye movements. Differences in translational response sensitivities for far versus near targets were seen only in type II PVP and EH cells. There was no effect of viewing distance on response phase for any cell type. When expressed relative to motor output, neural sensitivities during translation (although not during rotation) and pursuit were equivalent, particularly for the 20-cm viewing distance. These results suggest that neural activities during the TVOR were more motorlike compared with cell responses during the rotational vestibuloocular reflex (RVOR). We also found that neural responses under stable gaze conditions could not always be predicted by a linear vectorial addition of the cell activities during pursuit and VOR cancellation. The departure from linearity was more pronounced for the TVOR under near-viewing conditions. These results extend previous observations for the neural processing of otolith signals within the premotor circuitry that generates the RVOR and smooth pursuit eye movements.  相似文献   

18.
We investigated the effect of visually mediated eye movements made before velocity-step horizontal head rotations in eleven normal human subjects. When subjects viewed a stationary target before and during head rotation, gaze velocity was initially perturbed by approximately 20% of head velocity; gaze velocity subsequently declined to zero within approximately 300 ms of the stimulus onset. We used a curve-fitting procedure to estimate the dynamic course of the gain throughout the compensatory response to head rotation. This analysis indicated that the median initial gain of compensatory eye movements (mainly because of the vestibulo-ocular reflex, VOR) was 0. 8 and subsequently increased to 1.0 after a median interval of 320 ms. When subjects attempted to fixate the remembered location of the target in darkness, the initial perturbation of gaze was similar to during fixation of a visible target (median initial VOR gain 0.8); however, the period during which the gain increased toward 1.0 was >10 times longer than that during visual fixation. When subjects performed horizontal smooth-pursuit eye movements that ended (i.e., 0 gaze velocity) just before the head rotation, the gaze velocity perturbation at the onset of head rotation was absent or small. The initial gain of the VOR had been significantly increased by the prior pursuit movements for all subjects (P < 0.05; mean increase of 11%). In four subjects, we determined that horizontal saccades and smooth tracking of a head-fixed target (VOR cancellation with eye stationary in the orbit) also increased the initial VOR gain (by a mean of 13%) during subsequent head rotations. However, after vertical saccades or smooth pursuit, the initial gaze perturbation caused by a horizontal head rotation was similar to that which occurred after fixation of a stationary target. We conclude that the initial gain of the VOR during a sudden horizontal head rotation is increased by prior horizontal, but not vertical, visually mediated gaze shifts. We postulate that this "priming" effect of a prior gaze shift on the gain of the VOR occurs at the level of the velocity inputs to the neural integrator subserving horizontal eye movements, where gaze-shifting commands and vestibular signals converge.  相似文献   

19.
Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets while they sat upright in a standard primate chair and assumed a more natural sitting posture in a custom-designed chair. In both postures, gaze shifts were characterized by the sequential onset of eye, head, and body movements, which could be described by predictable relationships. Body motion made a small but significant contribution to gaze shifts that were > or =40 degrees in amplitude. Furthermore, as gaze shift amplitude increased (40-120 degrees ), body contribution and velocity increased systematically. In contrast, peak eye and head velocities plateaued at velocities of approximately 250-300 degrees /s, and the rotation of the eye-in-orbit and head-on-body remained well within the physical limits of ocular and neck motility during large gaze shifts, saturating at approximately 35 and 60 degrees , respectively. Gaze shifts initiated with the eye more contralateral in the orbit were accompanied by smaller body as well as head movement amplitudes and velocities were greater when monkeys were seated in the more natural body posture. Taken together, our findings show that body movement makes a predictable contribution to gaze shifts that is systematically influenced by factors such as orbital position and posture. We conclude that body movements are part of a coordinated series of motor events that are used to voluntarily reorient gaze and that these movements can be significant even in a typical laboratory setting. Our results emphasize the need for caution in the interpretation of data from neurophysiological studies of the control of saccadic eye movements and/or eye-head gaze shifts because single neurons can code motor commands to move the body as well as the head and eyes.  相似文献   

20.
We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20-25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号