首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Tau is a family of microtubule-associated phosphoproteins in which isoform variation is produced by alternative splicing of a single gene and posttranslational modifications. Tau isoforms that include exon 10 are overexpressed in frontotemporal dementia and progressive supranuclear palsy. Therefore, we examined the expression of tau mRNA splice variants during axonal regeneration and abortive regeneration. Previous work in our laboratory demonstrated that expression of exon 10 tau isoforms during regeneration and abortive regeneration was altered and partially recapitulated the developmental patterns of tau isoform expression. Using RT-PCR, we examined the alternative splicing of exons 2 and 3 in tau during early postnatal development and regeneration in the rat spinal cord. The levels of tau lacking exons 2 and 3 were high on the day of birth and rapidly declined. Conversely, tau isoforms containing exon 2 or exons 2 and 3 first appeared at low levels and steadily increased. During axonal regeneration, the levels of all three tau mRNA isoforms were significantly lower 7 days after injury. In a model of abortive regeneration, all of the tau isoforms were elevated 14 and 42 days postinjury. The relative levels of exon 2 and 3 tau splice variants were not altered during regeneration or abortive regeneration as occurred during development. These results suggest that tau isoform expression following neuronal injury does not recapitulate the developmental pattern and is not independently regulated as in development. Our previous results together with these data suggest that alterations in tau mRNA isoform expression that occur in neurodegeneration are not secondary to axonal injury but may be a more primary event underlying cytoskeletal derangement.  相似文献   

3.
5-HT4 receptors mediate several physiological effects of 5-HT, particularly in the central nervous system (CNS), heart and gut. Recently, several C-terminal splice variants of the human 5-HT4 (h5-HT4) receptor have been described, namely h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g). Previous tissue distribution data suggest some degree of specificity in the mRNA expression patterns of the different h5-HT4 receptor splice variants. However, comparison of the mRNA expression profiles of these splice variants is difficult due to the non-quantitative methods used, and in addition, there is very limited data on the expression of each splice variant in human CNS subregions. In the present study we used a single technique, TaqMan real time quantitative RT-PCR, to investigate the mRNA distribution of 5-HT4 receptor C-terminal splice variants in multiple human CNS and peripheral tissues. Using a primer/probe set that amplified all 5-HT4 splice variants (5-HT4pan), the highest CNS expression of 5-HT4 receptor mRNA was observed in basal ganglia, amygdala and hippocampus, consistent with previous studies. h5-HT4(a), h5-HT4(b), h5-HT4(c) and h5-HT4(g) were predominantly expressed in various CNS tissues, compared to most peripheral tissues, but there were differences in expression levels and distribution patterns of each variant. The distribution profile and expression levels observed for the 5-HT4(b) splice variant were virtually identical to that obtained with the 5-HT4pan primer/probe set, whilst the other splice variants were expressed at much lower levels and with different expression patterns obtained with both 5-HT4(b) and 5-HT4pan primer/probe sets. Highest levels of 5-HT4(g) were observed in the hypothalamus and cortex, whilst the 5-HT4(a) variant was highest in the amygdala. 5-HT4(c) expression was highest in the pituitary gland whilst 5-HT4(d) mRNA was only detected in the small intestine at very low levels and not in the CNS. In conclusion, we have shown quantitative differences in the mRNA distribution profiles of the 5-HT4 receptor C-terminal splice variants in human CNS subregions as well as peripheral tissues. In addition, our data suggests that the h5-HT4(b) variant is the most predominant form of the 5-HT4 receptor in humans.  相似文献   

4.
5.
6.
7.
8.
The regional distribution of alternatively spliced messenger RNA encoding the N -methyl-D-aspartate (NMDA) receptor R1 subunit (NMDAR1) variants was examined by in situ hybridization in the rat lumbar spinal cord. Splice-specific oligonucleotide probes [recognizing full-length mRNA (NMDAR1-1), deletion exon 21 (NMDAR1-2), deletion exon 22 (NMDAR1-3), combined deletion exons 21 and 22 (NMDAR1-4) and mRNA which lacks (NMDAR1-a) or contains exon 5 (NMDAR1-b)] detected marked differences in abundance and distribution of N- and C-terminal spliced variants. The NMDAR1-a, NMDAR1-2 and NMDAR1-4 mRNAs were evenly distributed throughout all laminae of the dorsal and ventral horns. In the superficial dorsal horn NMDAR1-b mRNA was preferentially detected in laminae II inner and III, while NMDAR1-1 mRNA was restricted to laminae I to III. Large neurons in laminae IV and V contained mainly NMDAR1-a, NMDAR1-2 and NMDAR1-4 mRNAs and occasionally NMDAR1-b. The NMDAR1-3 variant was only detected in very low abundance, being restricted to occasional cells in lamina I and II. In the ventral horn, motor neurons showed strong signals for NMDAR1-a, NMDAR1-b, NMDAR1-2 and NMDAR1-4 mRNAs. Serial sectioning through large motor neurons permitted the detection of multiple splice variants in single neurons. Analysis of the subcellular distribution of the mRNAs revealed that the NMDAR1-1 mRNA was almost exclusively found in the cell nucleus, NMDAR1-a mRNA was largely in the cytoplasm, while all other splice variants showed a homogeneous distribution between nucleus and cytoplasm. Comparison of the in situ hybridization images with functional analyses of heteromeric recombinant receptors will be necessary to ascertain whether splice variants of the NMDAR1 receptor subunit can account for some of the known electrophysiological properties of spinal cord neurons under physiological and pathophysiological conditions.  相似文献   

9.
10.
Members of the myelin-associated oligodendrocytic basic protein (MOBP) family constitute the third most abundant protein in CNS myelin. Although MOBP localizes to the major dense line (MDL) of CNS myelin, the function of the individual isoforms is unknown. Alternative splicing of pre-Mobp mRNA gives rise to six characterized splice variants in both the mouse and the rat. These splice variants share a common N-terminal encoded in Mobp exon 3 comprising 68 amino acids. The predicted protein isoforms differ in their C-termini. Sequence analysis of intron 3 revealed the presence of a putative initiation codon followed by an open reading frame (ORF) encoding 53 amino acids that extends in frame into Mobp exon 4 yielding a predicted MOBP isoform comprising 155 amino acids, designated MOBP155. This newly characterized isoform possessing a novel N-terminus shares a common C-terminus with MOBP170. Mobp170 message is detectable at low abundance throughout myelinogenesis. In contrast, the novel splice variant encoding MOBP155 is expressed at modest levels late in CNS development, coincident with the expression of the abundant splice variant, Mobp81A. Immunostaining of Cos7 cells transiently expressing an epitope-tagged MOBP155 suggested that most of the product was translocated to mitochondria. Although Mobp155 and Mobp170 encode a common predicted C-terminus they have different expression profiles and their products are targeted to mitochondria and the nucleus, respectively, in transiently transfected Cos7 cells.  相似文献   

11.
Neuroglycan C (NGC) is a transmembrane chondroitin sulfate proteoglycan with an EGF module. We studied the expression of NGC in the human brain, mainly in the hippocampus, and confirmed some observations by conducting experiments using rat brain. In humans, NGC mRNA was expressed exclusively in the brain, especially in the immature brain. The telencephalon, including the hippocampus and neocortex, showed strong mRNA expression. NGC was immunolocalized to neuropils in the hippocampus and neocortex of the adult rat. RT-PCR experiments showed that four splice variants (NGC-I, -II, -III, and -IV) were expressed in the adult human hippocampus. By Western blotting, the expression as proteins of all splice variants except NGC-II was confirmed in the adult rat hippocampus. NGC-IV, which was first found in the present study, had the shortest cytoplasmic domain among the four variants. NGC-IV mRNA was expressed by neurons, but not by astrocytes, in culture prepared from the fetal rat hippocampus, suggesting that NGC-IV plays a role specific to neurons. In addition, the human NGC gene, which is registered as CSPG5, comprised six exons and was approximately 19 kb in size. In exon 2, a single nucleotide polymorphism resulting in Val188Gly in the NGC ectodomain was observed.  相似文献   

12.
There is evidence suggesting reciprocal trophic interactions between photoreceptors and the retinal pigmented epithelium (RPE), but the factors involved have not been identified. In this study, we investigated the hypothesis that one or more known neurotrophic factors act upon the RPE. Cultured human and freshly isolated bovine RPE cells demonstrated saturable specific binding for [125I]labeled BDNF, NT-4/5 and NT-3 with little specific binding for CNTF and none for NGF. Cross-competition experiments showed that BDNF is the preferred ligand and cross-linking of [125I]BDNF resulted in a doublet at 160 kd that was increased in RPE cells incubated in all-trans retinoic acid. There was basal phosphorylation of a 145 kd protein recognized by an anti-trk antibody that was increased in RPE cells pulsed with BDNF. RT-PCR with primers spanning the transmembrane domain demonstrated that RPE cells express trkB mRNA lacking a region homologous to exon 9 of chicken trkB, a splice variant that has been demonstrated to preferentially interact with BDNF. Northern blots demonstrated that cultured RPE cells also express mRNA for BDNF. BDNF did not stimulate proliferation or increase survival of RPE cells in serum-free medium, but promoted a differentiated morphology and increased the expression of cellular retinaldehyde binding protein, a marker of the differentiated state in RPE cells. An RPE cell line that spontaneously shows differentiated features showed a high level of BDNF mRNA. These data demonstrate that RPE cells express a short splice variant of trkB whose activation correlates with expression of differentiated characteristics and the cells themselves are capable of producing a ligand for the receptors. Signaling through trkB could play a role in differentiation of RPE cells during development and maintenance of the differentiated state in adult RPE.  相似文献   

13.
14.
15.
16.
17.
Three splice variants of the mouse metabotropic glutamate receptor 1, mGluR1E55, mGluR1a and mGluR1b, have been isolated from mouse brain cDNA libraries. The sequences of mGluR1a and mGluR1b are similar to those from rat and human. mGluR1E55 is a novel splice variant. mGluR1E55 has two additional exons. One is 80-bp long at the 5' untranslational region. The other (E55) is 110-bp long at the cysteine-rich region after the ligand-binding domain and before the seven-transmembrane domain. Insertion of the E55 exon results in an inframe stop codon. The predicted protein product contains only the extracellular domain of the receptor and may be secreted.  相似文献   

18.
Expression of T-type calcium channel splice variants in human glioma   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号