首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
2.
3.
4.
Nitric oxide synthase (NOS) and nitric oxide (NO) play important roles in ovulation. The purpose of this study was to investigate the changes of intrafollicular nitrate/nitrite concentration and NOS mRNA expression in preovulatory follicles during equine CG (eCG) and human CG (hCG) induced ovulation in immature rats. Immature Sprague-Dawley rats received 15 IU eCG and then 15 IU hCG 48 h later. Rats were killed immediately before, 5 h after or 10 h after hCG injection, and their preovulatory follicles were dissected. Follicular fluid, granulosa cell, and theca cell layers were collected from preovulatory follicles and assayed for NO or NOS mRNA or for in vitro incubation study. Nitrate/nitrite concentration in the follicular fluid decreased significantly 5 and 10 h after hCG injection. Inducible NOS (iNOS) mRNA expression, which was greater in granulosa cell than in the theca cell layer, decreased significantly 5 and 10 h after hCG injection. However, endothelial NOS (eNOS) mRNA expression was detected mainly in the theca cell layer and further increased 5 and 10 h after hCG injection but remained low in granulosa cells. In vitro treatment of granulosa cells with 10(-4) or 5x10(-4) M S-nitroso-L-acetyl penicillamine (NO donor) decreased progesterone production and increased DNA fragmentation. We concluded that the decrease in nitrate/nitrite concentration in preovulatory follicles after hCG injection was due mainly to decreased iNOS expression in granulosa cells. These changes in nitrate/nitrite concentration may prevent apoptosis in preovulatory follicles.  相似文献   

5.
6.
7.
8.
9.
H J Shaw  S G Hillier  J K Hodges 《Endocrinology》1989,124(4):1669-1677
Factors regulating LH/hCG responsiveness in primate granulosa cells were examined in the marmoset monkey (Callithrix jacchus). Granulosa cells were isolated and pooled from small antral (0.5-1.0 mm) and large preovulatory (greater than or equal to 2 mm) follicles from mid- to late follicular phase ovaries of cyclic marmosets. The cells from small and large follicles were cultured in serum-free medium for 48 h in the absence or presence of increasing concentrations of hCG (0.1-100 ng/ml) with or without 0.1 microM androgen [testosterone or 5 alpha-dihydrotestosterone (DHT]). Granulosa cells from small follicles were also cultured in the absence or presence of a constant concentration of human FSH (30 ng/ml) with or without androgen for 48 h before exposure to hCG for an additional 48 h. Steroidogenic responsiveness was assessed by measuring progesterone accumulation in culture medium and aromatase activity in washed monolayers. Granulosa cells from large follicles showed dose-dependent increases in both progesterone accumulation and aromatase activity in response to treatment with hCG. In contrast, granulosa cells from small follicles were unresponsive to hCG. However, pretreatment of granulosa cells from small follicles for 48 h with FSH stimulated hCG responsiveness. The effects of both testosterone and DHT on hCG-stimulated aromatase activity and progesterone accumulation by granulosa cells from large preovulatory follicles were inhibitory. Testosterone and DHT also suppressed basal (no hCG) progesterone accumulation in these cells, but had no effect on basal aromatase activity. The effects of androgens on FSH-induced hCG responsiveness in immature granulosa cells were variable. The results show a development-related increase in marmoset granulosa cell responsiveness to LH/hCG and provide evidence that FSH and androgens interact to regulate the onset and expression of this critical event during preovulatory follicular development in the primate ovary.  相似文献   

10.
11.
Despite ample evidence pointing to an obligatory involvement of progesterone in ovulation, the mechanisms responsible for the ovulation promoting effects of intrafollicular progesterone are unclear. The objectives of this study were to determine if ovulation, luteinization and the gonadotropin surge-induced regulation of select extracellular matrix-degrading enzymes and their inhibitors, and mRNAs for prostaglandin (PG) biosynthesis and metabolizing enzymes are blocked following suppression of the intrafollicular increase in progesterone. Bovine preovulatory follicles were injected with the 3 beta-hydroxysteroid dehydrogenase inhibitor trilostane or diluent and collected at 0, 12, and 24 h after GnRH induction of the preovulatory LH surge. Intrafollicular trilostane administration blocked the preovulatory increase in follicular fluid progesterone resulting in concentrations similar to those observed at time 0 post-GnRH injection. The preovulatory increase in follicular fluid PGE(2) and PGF(2alpha) was reduced in trilostane-treated follicles and accompanied by upregulation of prostaglandin dehydrogenase mRNA in the granulosal and thecal cells. However, follicle rupture was not blocked by inhibition of the preovulatory rise in intrafollicular progesterone, and normal serum progesterone concentrations were observed during subsequent luteal development. Effects of trilostane administration on preovulatory changes in mRNA abundance and protein/activity in preovulatory follicles for most regulators of extracellular matrix remodeling examined were distinct from changes previously observed following the inhibition of intrafollicular prostaglandin synthesis. Results suggest that the preovulatory increase in intrafollicular progesterone may not be obligatory for bovine follicle rupture, luteinization, or regulation of prominent matrix-degrading proteinases and their inhibitors associated with ovulation.  相似文献   

12.
Human granulosa-luteal cells were harvested from preovulatory Graafian follicles at the time of oocyte retrieval for in vitro fertilization after induction of follicle maturation by sequential injections of menopausal gonadotropins and hCG. Such highly differentiated granulosa cells produced large quantities of progesterone basally (6.8 pg/cell X 2 days) in monolayer culture. Human LH significantly increased progesterone biosynthesis after 6, 12, 48, 96, or 144 h in culture, with a maximal increase of 8- to 20-fold occurring at 96 h. The stimulatory effect of LH could be observed under serum-free conditions and was maximal in the presence of 4% serum. Human granulosa-luteal cells also exhibited significant stimulatory responses to hCG, prostaglandin E2, or the cAMP effectors 8-bromo cAMP, choleratoxin, or forskolin in serum-free incubations. Concentrations of 17 beta-estradiol that are attained physiologically in ovarian follicles in vivo markedly suppressed basal and LH (or cAMP)-stimulated progesterone production in vitro (maximal suppression, greater than 90%). The nonaromatizable androgen 5 alpha-dihydrotestosterone also inhibited progesterone production, but by no more than 45-50% even at supraphysiological concentrations. Estradiol's blockade of progesterone synthesis was associated with a corresponding increase in pregnenolone accumulation. The present studies indicate that human granulosa-luteal cells isolated from preovulatory follicles induced with exogenous gonadotropins and hCG secrete large quantities of progesterone in vitro. Such cells retain stimulatory responses to human LH, hCG, prostaglandin E2, and classical cAMP effectors in serum-free incubations. Moreover, physiological concentrations of 17 beta-estradiol suppress progesterone production, probably by inhibiting cellular conversion of pregnenolone to progesterone. Thus, the present in vitro system permits an investigation of hormone action in well differentiated, human granulosa-luteal cells isolated from preovulatory Graafian follicles that have a defined endocrine history of prior gonadotropin exposure in vivo.  相似文献   

13.
14.
Vascular endothelial growth factor (VEGF) expression pattern and blood vessel remodelling were evaluated during the transition from the preovulatory follicle to the corpus luteum (CL). To this end, prepubertal gilts were treated with equine chorionic gonadotrophin (eCG) to collect preovulatory follicles (60 h after eCG) and with human chorionic gonadotrophin (hCG) to obtain periovulatory follicles 18 h and 36 h later. The VEGF mRNA content was analysed by in situ hybridization, while protein localization in follicular fluid (FF) and in granulosa and theca compartments was evaluated by ELISA, immunohistochemistry or western blot. Blood vessel architecture and vascular area (VA) were investigated using immunohistochemistry for von Willenbrand Factor, a specific endothelial marker. Vascular remodelling was finally tested using Ki-67 immunocytochemistry as a proliferation marker, or alpha-smooth muscle actin (alpha-SMA) as a specific mural cell marker. eCG-treated follicles showed high VEGF levels and two concentric blood vessel networks composed of proliferating endothelial cells without any association with mural components. hCG injection inhibited VEGF synthesis in the granulosa compartment and, as a consequence, the protein fell within the FF. In parallel, endothelial cell proliferation stopped and the VA decreased. Close to ovulation, VEGF production restarted in both follicular compartments and VEGF mRNA content significantly increased in the theca layer. Changes in follicular VEGF secretion were observed; the protein disappeared from FF and was observed in the extracellular matrix. An active angiogenesis characterized the follicle; endothelial cell proliferation was associated with a recruitment of alpha-SMA-positive mural cells. The data presented in this work showed that, in the phases preceding ovulation, a complete vascular remodelling occurs, characterized by both an evident neovascularization and the appearance of blood vessels presenting smooth musculature which could be involved in CL formation after ovulation.  相似文献   

15.
IGF binding protein-4 (IGFBP-4) proteolytic degradation is a common feature of preovulatory follicles from human, ovine, bovine, porcine, and equine ovary. In all these species, the protease is a zinc-dependent metalloprotease and its ability to degrade IGFBP-4 is IGF dependent. The human intrafollicular IGFBP-4-degrading protease has recently been identified as pregnancy-associated plasma protein-A (PAPP-A). The aim of this study was to investigate whether PAPP-A is also involved in IGFBP-4 degradation in ovine, bovine, porcine, and equine preovulatory follicles and to study the expression of PAPP-A mRNA in bovine and porcine granulosa cells from different classes of follicles. Immunoneutralization and immunoprecipitation with polyclonal antibodies raised against human PAPP-A inhibited IGFBP-4 proteolytic degradation in preovulatory follicular fluid from the four species studied. As previously reported for the intrafollicular proteolytic activity degrading IGFBP-4, recombinant human PAPP-A generated in vitro 17- and 10-kDa IGFBP-4-proteolytic fragments. Recombinant PAPP-A activity was also shown to be IGF dependent and was inhibited by heparin-binding domain-containing peptides. In all mammalian species studied, the PAPP-A sequences showed high degree of identity. Moreover, the PAPP-A gene was localized on porcine chromosome 1 (1q29-1q213), in agreement with the localization of human PAPP-A gene on human chromosome 9q33.1. In bovine and porcine ovaries, real-time quantitative RT-PCR showed that PAPP-A mRNA expression in granulosa cells was maximal in fully differentiated follicles and was positively correlated with expression of P450 aromatase and LH receptor mRNAs. Overall, these data show that PAPP-A is responsible for IGFBP-4 degradation in ovine, bovine, porcine, and equine preovulatory follicles. The high expression of PAPP-A mRNA in granulosa cells from large, differentiated follicles suggest that it is a new functional marker of follicular development.  相似文献   

16.
17.
18.
19.
20.
The preovulatory surge of gonadotropins activates a cascade of proteolytic enzymes resulting in the rupture of the follicular wall and the release of a fertilizable ovum during ovulation. In the rat the process is initiated by a rise in follicular tissue-type plasminogen activator, produced predominantly in granulosa cells. Recent studies revealed a preovulatory increase in ovarian collagenolytic activity in vivo and an increase in activatable collagenase in vitro. In view of the complicated control of mammalian collagenase synthesis and activity by local inhibitors and activators, we examined the expression of ovarian interstitial and type IV collagenases and tissue inhibitor of metalloproteinase (TIMP) mRNA after an ovulatory stimulus. Ovarian mRNA was isolated from immature PMSG-treated rats 3, 6, and 9 h after hCG stimulation. Northern blot analyses revealed a mRNA of 1.7 kilobases (kb) hybridizing with the human interstitial collagenase cDNA probe. The levels of this mRNA showed a 25-fold increase between 3-6 h after hCG stimulation. The human cDNA probe of collagenase IV hybridized with a mRNA of 3.1 kb, which showed only a 4-fold increase 9 h after hCG treatment. The interstitial collagenase mRNA was expressed in both granulosa cells of preovulatory follicles and the residual ovarian tissue, whereas the expression of collagenase IV mRNA was limited to the residual tissue. Inhibitors of eicosanoid synthesis, previously shown to block ovulation and the LH/hCG-induced rise in ovarian collagenolysis, suppressed the gonadotropic stimulation of interstitial collagenase mRNA, but slightly stimulated that of collagenase IV. The mouse cDNA probe of TIMP hybridized with a 0.9-kb mRNA, which was stimulated by hCG to reach a maximum (7- to 8-fold increase) between 6-9 h after stimulation. TIMP was expressed and stimulated in both the granulosa cells and the residual tissue. Inhibitors of eicosanoid synthesis did not affect the gonadotropic stimulation of TIMP mRNA. These data support the suggested role of interstitial collagenase in follicle rupture and the essential role of eicosanoids in the mediation of gonadotropic stimulation of interstitial collagenase production and action. The observed stimulation of TIMP mRNA expression by the gonadotropin and the lack of any effect of eicosanoid synthesis inhibitors on this action of LH/hCG offer an additional mechanism by which these inhibitors may block ovulation. Thus, the suppression of ovulation by inhibitors of eicosanoid synthesis may result from selective inhibition of interstitial collagenase expression and undisturbed gonadotropin-stimulated TIMP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号