首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung Fluid Dynamics in Awake Newborn Lambs   总被引:1,自引:3,他引:1       下载免费PDF全文
We measured steady-state lung lymph flow, lymph protein flow, and simultaneous pulmonary vascular pressures in 12 1-wk-old unanesthetized lambs and compared these measurements to those of previous studies, performed under similar conditions, on nine awake adult sheep. The purpose of these experiments was to compare newborn and adult sheep with respect to transvascular filtration of fluid and microvascular permeability to plasma proteins. We prepared the lambs surgically to isolate and collect lung lymph and measure average pulmonary arterial and left atrial pressures, allowing at least 2 days for the lambs to recover from surgery before studies began. Lambs had higher pulmonary arterial and left atrial pressures, lower lymph and plasma protein concentrations, and 57% more lymph flow per gram of dry bloodless lung than sheep; the difference in protein flow between lambs and sheep was not significant. Protein concentration in lymph relative to that in plasma was significantly lower in lambs than in sheep; but the ratio of albumin concentration to globulin concentration in both lymph and plasma was almost identical in the two groups of animals. Extravascular lung water per gram of dry bloodless lung was greater in lambs (4.82±0.11 g) than in sheep (4.45±0.08 g), but there was no histologic evidence of pulmonary edema in either group of animals. These findings suggest that lambs have more transvascular filtration of fluid per unit lung mass than sheep, but that microvascular sites for protein exchange do not differ appreciably in lambs and sheep. To test this conclusion, we measured steady-state lymph flow in three lambs before and after raising pulmonary microvascular pressure by rapid intravenous infusion of saline. Lymph flow increased as a function of the net transvascular driving pressure (hydraulic pressure gradient—protein osmotic pressure gradient). This response was almost identical to that of four sheep with pulmonary microvascular pressure augmented by inflation of a balloon in the left atrium. In eight lambs we measured the time for intravenously injected 125I-albumin to equilibrate in lymph at half the specific activity of plasma: the protein tag equilibrated faster than in sheep. This difference could be explained partly by the higher pulmonary arterial and left atrial pressures of lambs than sheep, and possibly by the presence of more microvascular sites for protein exchange relative to the volume of distribution of protein in the lung of the younger animals.  相似文献   

2.
The purpose of this study was to see if lung vascular protein permeability is greater in preterm lambs with respiratory distress than it is in lambs without lung disease. We measured pulmonary vascular pressures, lung lymph flow, and concentrations of protein in lymph and plasma of 10 chronically catheterized preterm lambs (gestation 133 +/- 1 d) for 2-4 h before and for 4-8 h after delivery by cesarean section. All lambs were treated with mechanical ventilation after birth and received a constant intravenous infusion of glucose-saline solution at an hourly rate of 10 ml/kg. Respiratory failure developed in six lambs, in which there was a sustained threefold postnatal increase in lung lymph flow and lymph protein flow, with an even greater increase in pleural liquid drainage. Concentrations of protein in lymph and pleural liquid were almost identical, averaging approximately 75% of the plasma protein concentration. In the four preterm lambs without lung disease, lymph flow and lymph protein flow were either near or below fetal values by 6-8 h after birth, and there was little or no pleural liquid drainage. Extravascular lung water averaged 7.3 +/- .8 g/g dry lung in lambs with respiratory failure compared to 4.8 +/- .5 g/g dry lung in lambs without lung disease. Thus, pulmonary edema with abnormal leakage of protein-rich liquid from the lung microcirculation into the interstitium is an important pathological feature of the respiratory disease that often occurs after premature birth.  相似文献   

3.
To see whether antihistamines could prevent and reverse histamine-induced pulmonary edema and increased lung vascular permeability, we compared the effects of a 4-h intravenous infusion of 4 mug/kg per min histamine phosphate on pulmonary hemodynamics, lung lymph flow, lymph and plasma protein content, arterial blood gases, hematocrit, and lung water with the effects of an identical histamine infusion given during an infusion of diphenhydramine or metiamide on the same variables in unanesthetized sheep. Histamine caused lymph flow to increase from 6.0+/-0.5 to 27.0+/-5.5 (SEM) ml/h (P less than 0.05), lymph; plasma globulin concentration ratio to increase from 0.62+/-0.01 to 0.67+/-0.02 (P less than 0.05), left atrial pressure to fall from 1+/-1 to -3+/-1 cm H2O (P less than 0.05), and lung lymph clearance of eight protein fractions ranging from 36 to 96 A molecular radius to increase significantly. Histamine also caused increases in lung water, pulmonary vascular resistance, arterial PCO2, pH, and hematocrit, and decreases in cardiac output and arterial PO2. Diphenhydramine (3 mg/kg before histamine followed by 1.5 mg/kg per h intravenous infusion) completely prevented the histamine effect on hematocrit, lung lymph flow, lymph protein clearance, and lung water content, and reduced histamine effects on arterial blood gases and pH. 6 mg/kg diphenhydramine given at the peak histamine response caused lymph flow and lymph: plasma protein concentration ratios to fall. Metiamide (10 mg/kg per h) did not affect the histamine lymph response. We conclude that diphenhydramine can prevent histamine-induced pulmonary edema and can prevent and reverse increased lung vascular permeability caused by histamine, and that histamine effects on lung vascular permeability are H1 actions.  相似文献   

4.
We studied the effect of furosemide on pulmonary transvascular filtration of fluid and microvascular permeability to plasma proteins by measuring steady-state lung lymph flow and protein flow, pulmonary arterial and left atrial pressures in nine 1-wk-old unanesthetized lambs before and after rapid intravenous infusion of furosemide, 1 mg/kg in 10 experiments and 8 mg/kg in 5 experiments. With rapid diuresis induced by furosemide (an eightfold increase in urine flow), lung vascular pressures decreased, protein concentrations of lymph and plasma increased, and there was a consistent decrease in lymph flow and lymph protein flow, more pronounced after the larger dose. Five additional lambs received 8 mg/kg of furosemide intravenously in the presence of saline-induced pulmonary edema; in these experiments, the decrease in vascular pressures, increase in transvascular protein gradient, and decrease in lymph flow were greater than in lambs without pulmonary edema. These findings suggest that furosemide decreases transvascular filtration of fluid in the lung by diminishing the transvascular hydraulic pressure gradient and increasing the transvascular gradient for protein osmotic pressure. In five acute experiments on anesthetized lambs with kidneys removed, 8 mg/kg of intravenous furosemide decreased lymph flow one-half as much as it did in the presence of kidneys, with no change in lung vascular pressures or protein concentrations. The results of experiments in lambs without kidneys are consistent with a reduction in the vascular surface area for exchange of fluid and protein in the lung.  相似文献   

5.
Pulmonary edema after ascent to altitude is well recognized but its pathogenesis is poorly understood. To determine whether altitude exposure increases lung vascular permeability, we exposed rats to a simulated altitude of approximately 14,500 feet (barometric pressure [Pb] 450 Torr) and measured the pulmonary transvascular escape of radiolabeled 125I-albumin corrected for lung blood content with 51Cr-tagged red blood cells (protein leak index = PLI). Exposures of 24 and 48 h caused significant increases in PLI (2.30 +/- 0.08 and 2.40 +/- 0.06) compared with normoxic controls (1.76 +/- 0.06), but brief hypoxic exposures of 1-13 h produced no increase in PLI, despite comparable increases in pulmonary artery pressure. There were associated increases in gravimetric estimates of lung water in the altitude-exposed groups and perivascular edema cuffs on histologic examination. Normobaric hypoxia (48 h; fractional inspired oxygen concentration [FIO2] = 15%) also increased lung transvascular protein escape and lung water. Dexamethasone has been used to prevent and treat altitude-induced illnesses, but its mechanism of action is unclear. Dexamethasone (0.5 or 0.05 mg/kg per 12 h) started 12 h before and continued during 48 h of altitude exposure prevented the hypoxia-induced increases in transvascular protein escape and lung water. Hemodynamic measurements (mean pulmonary artery pressure and cardiac output) were unaffected by dexamethasone, suggesting that its effect was not due to a reduction in pulmonary artery pressure or flow. The role of endogenous glucocorticoid activity was assessed in adrenalectomized rats that showed augmented hypoxia-induced increases in transvascular protein escape, which were prevented by exogenous glucocorticoid replacement. In summary, subacute hypoxic exposures increased pulmonary transvascular protein escape and lung water in rats. Dexamethasone prevented these changes independent of reductions of mean pulmonary artery pressure or flow, whereas adrenalectomy increased pulmonary vascular permeability and edema at altitude. Increases in vascular permeability in hypoxia could contribute to the development of high-altitude pulmonary edema and endogenous glucocorticoids may have an important influence on pulmonary vascular permeability in hypoxia.  相似文献   

6.
To see whether circulating granulocytes are necessary for the lung vascular reaction to endotoxin, we measured the endotoxin response in chronically instrumented sheep before and after granulocyte depletion with hydroxyurea. Granulocyte depletion did not affect the pulmonary hypertension caused by endotoxin (peak mean pulmonary artery pressures = 38 +/- 2 cm H2O before depletion and 42 +/- 2 after depletion, P = NS). The late phase increase in lung lymph flow after endotoxin was significantly lower in the granulocytopenic animals as reflected by lung lymph flow (mean steady state lymph flow before depletion = 30.6 +/- 2.0 SE ml/h; mean steady state lymph flow after granulocyte depletion = 15.4 +/- 1.0; P less than 0.01) even though late phase pulmonary vascular pressures were similar before and after granulocyte depletion. Lung lymph protein clearance (lymph flow x lymph/plasma protein concentration) was also significantly lower after granulocyte depletion (mean steady state before depletion = 2.14 +/- 1.4 SE ml/h; and after depletion = 10.4 +/- 1.0; P less than 0.01). We conclude that circulating granulocytes are necessary for the development of increased lung vascular permeability to fluid and protein following endotoxin. The pulmonary vasopressor effects of endotoxin in sheep are independent of granulocytes.  相似文献   

7.
Increased Sheep Lung Vascular Permeability Caused by Pseudomonas Bacteremia   总被引:10,自引:21,他引:10  
In awake sheep, we compared the responses of lung lymph flow and lymph and plasma protein concentrations to steady state elevations of pulmonary vascular pressures made by inflating a left atrial balloon with those after an intravenous infusion of 10(5)-10(10)Pseudomonas aeruginosa. Lymph flow increased when pressure was increased, but lymph-plasma protein concentration ratios always fell and lymph protein flow (lymph flow x lymph protein concentration) increased only slightly. After Pseudomonas, sheep had transient chills, fever, leukopenia, hypoxemia, increased pulmonary artery pressure and lymph flow and decreased left atrial pressure and lymph protein concentration, 3-5 h after Pseudomonas, when vascular pressures and lymph protein concentrations had returned to near base line, lymph flow increased further to 3-10 times base line and remained at a steady level for many hours. During this steady state period, lymph-plasma protein concentration ratios were similar to base line and lymph protein flow was higher than in the increased pressure studies. Two sheep died of pulmonary edema 7 and 9 h after Pseudomonas, but in 16 studies, five other sheep appeared well during the period of highest lymph flow and all variables returned to base line in 24-72 h. Six serial indicator dilution lung water studies in five sheep changed insignificantly from base line after Pseudomonas. Postmortem lung water was high in the two sheep dead of pulmonary edema and one other, but six sheep killed 1-6 h after Pseudomonas had normal lung water. Because of the clear difference between the effects of increased pressure and Pseudomonas on lymphplasma protein concentration ratios and lymph protein flow, we conclude that Pseudomonas causes a prolonged increase in lung vessel permeability to protein. Because we saw lung lymph flow as high as 10 times base line without pulmonary edema, we conclude that lung lymphatics are a sensitive high-capacity mechanism for removing excess filtered fluid. An equivalent pore model of sheep lung vessels suggests that the changes we saw after Pseudomonas could result from small changes in the structure of exchanging vessel walls.  相似文献   

8.
We studied release of angiotensin-converting enzyme (ACE) by the lung after acute injury associated with an increase in pulmonary vascular permeability. In eight adult sheep with chronic lung lymph fistulas, we measured lymph flow (QL), and both ACE activity and total protein content in lymph and plasma under base-line conditions and during 24 h after an infusion of live pseudomonas organism. Under base-line conditions, ACE activity in plasma was 4.93 +/- 0.43 U/ml (mean +/- SEM). The [lymph]/[plasma] ([L]/[P]) ratio for ACE was 0.93 +/- 0.18, compared with a ratio of 0.79 +/- 0.08 for albumin (mean +/- SD). We estimated the molecular weight of ovine ACE to be 145,000 by gel chromatography. Predicted [L]/[P] ratio for a molecule this size is 0.51. Thus, a substantial fraction of ACE activity detected lung lymph under base-line conditions (11.1 +/- 6.2 U/h; mean +/- SD) originated in the lung, and did not diffuse passively from plasma. After pseudomonas infusion, endothelial injury was demonstrated by a rise in pulmonary vascular clearance for total protein (Crp = QL X [L]/[P]). Crp = 3.1 +/- 0.6 ml/h before pseudomonas bacteremia, and rose to 6.7 +/- 1.2 ml/h by 2 h after onset of the infusion (means +/- SEM, p less than 0.05). Crp remained significantly elevated for at least 10 h after the infusion. Release of ACE into lung lymph doubled after acute lung injury and equaled 22.3 +/- 13.8 U/h at 4 h after onset of the infusion. ACE secretion into lung lymph had returned to baseline levels by 24 h after bacteremia. We did not observe a significant rise in plasma ACE activity after acute lung injury. Pseudomonas bacteremia in sheep results in acute, reversible lung injury associated with increased pulmonary vascular permeability, and increased release of ACE by the lung. Failure to detect a rise in plasma ACE content might result from dilution in the large vascular pool or rapid catabolism of the enzyme at some site distant from the lung.  相似文献   

9.
Test doses (0.5 ml) of the perfluorochemical blood substitute Fluosol-DA causes pulmonary hypertension in some patients. To investigate this phenomenon we infused Fluosol-DA into unanesthetized sheep with chronic vascular catheters on ten occasions. In six of these experiments lung lymph flow was measured. Since other fluorochemical blood substitutes alter the coagulation cascade we also sampled blood to perform coagulation screening tests and look for evidence of thrombin generation as assessed by the survival of 125I labelled sheep fibrinogen. Test doses (0.5 ml) of Fluosol-DA resulted in transient but marked pulmonary hypertension in nine of ten experiments (17 +/- 1.2 SE to 43 +/- 3.9 SE torr). Cardiac output decreased by an average of 30%, and lung lymph flow transiently increased without a change in the lymph to plasma protein concentration (L/P) ratio in five of six experiments. When 50 ml of Fluosol-DA was administered one hour later the pulmonary hypertension was more prolonged but less severe (18 +/- 1.0 SE to 34 +/- 3.2 SE torr). Lymph flow again increased without a change in the L/P ratio for protein. The activated partial thromboplastin and prothrombin times, and survival in plasma of 125I labelled sheep fibrinogen were unaffected by administration of Fluosol-DA. We conclude that Fluosol-DA causes pulmonary hypertension in sheep and increases lung lymph flow. This results from vasoconstriction of the pulmonary vessels and subsequent recruitment of the pulmonary microvasculature and not from thromboembolic phenomena.  相似文献   

10.
Mechanisms that regulate endothelial nitric oxide synthase (eNOS) expression in normal and hypoxic pulmonary circulation are poorly understood. Lung eNOS expression is increased after chronic hypoxic pulmonary hypertension in rats, but whether this increase is due to altered hemodynamics or to hypoxia is unknown. Therefore, to determine the effect of blood flow changes on eNOS expression in the normal pulmonary circulation, and to determine whether the increase in eNOS expression after chronic hypoxia is caused by hemodynamic changes or low oxygen tension, we compared eNOS expression in the left and right lungs of normoxic and chronically hypoxic rats with surgical stenosis of the left pulmonary artery (LPA). LPA stenosis in normoxic rats reduced blood flow to the left lung from 9.8+/-0.9 to 0.8+/-0.4 ml/100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05), but there was not a significant increase in right lung blood flow. When compared with the right lung, eNOS protein and mRNA content in the left lung was decreased by 32+/-7 and 54+/-13%, respectively (P < 0.05), and right lung eNOS protein content was unchanged. After 3 wk of hypoxia, LPA stenosis reduced blood flow to the left lung from 5.8+/-0.6 to 1.5+/-0.4 ml/100 mg/min, and increased blood flow to the right lung from 5.8+/-0.5 to 10.0+/-1.4 ml/ 100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05). Despite reduced flow and pressure to the left lung and increased flow and pressure to the right lung, left and right lung eNOS protein and mRNA contents were not different. There were also no differences in lung eNOS protein levels when compared with chronically hypoxic sham surgery controls (P > 0.05). We conclude that reduction of pulmonary blood flow decreases eNOS mRNA and protein expression in normoxic adult rat lungs, and that hypoxia increases eNOS expression independently of changes in hemodynamics. These findings demonstrate that hemodynamic forces maintain eNOS content in the normoxic pulmonary circulation of the adult rat, and suggest that chronic hypoxia increases eNOS expression independently of changes in hemodynamics.  相似文献   

11.
Fluid filtration rate (FFR) was measured under predominantly zone-three conditions in isolated rabbit lung perfused at constant flow. During forward and reverse perfusion, alveolar hypercapnia significantly increased mean pulmonary artery pressure but did not change FFR. We conclude that the pulmonary vasoconstriction induced by alveolar hypercapnia occurs on both arterial and venular sides of the pulmonary circulation.  相似文献   

12.
The pathogenesis of reexpansion pulmonary edema has not been well studied. We tested the hypothesis that both long term collapse and subsequent reexpansion of the lungs cause reexpansion pulmonary edema by increasing pulmonary microvascular permeability. We investigated lymph dynamics in 15 experiments on collapsed lung and 10 experiments after lung reexpansion in 14 unanesthetized sheep with chronic lymph fistulas. We found that 24-hr left lung collapse increased lymph flow through the caudal mediastinal lymph node from the baseline of 1.71 +/- 0.97 (mean +/- S.D.) g/15 min to 2.01 +/- 0.99 g/15 min, although 2-hr collapse did not affect lymph flow. The L/P ratio did not fall below baseline in either experiment. Pulmonary arterial pressure increased by only about 6 cmH2O both in 2-hr and 24-hr collapse. Reexpansion after 24-hr lung collapse also increased lymph flow from the baseline of 1.64 +/- 0.52 g/15 min to 3.20 +/- 0.79 g/15 min during the first 2 hr after reexpansion. The lymph-to-plasma protein concentration ratio did not fall below the baseline. Reexpansion after 2-hr collapse did not affect these variables. We conclude that both long term lung collapse and subsequent reexpansion lead to reexpansion pulmonary edema by increasing pulmonary microvascular permeability.  相似文献   

13.
To investigate mechanisms of pulmonary edema in respiratory failure, we studied unanesthetized sheep with vascular catheters, pleural balloons, and chronic lung lymph fistulas. Animals breathed either a hypercapnic-enriched oxygen (n = 5) or a hypercapnic-hypoxic (n = 5) gas mixture for 2 h. Every 15 min blood gases, pressures, cardiac output, lymph flow (Qlym), plasma and lymph albumin (mol wt, 70,000), IgG (mol wt, 150,000), IgM (mol wt, 900,000), and blood bradykinin concentrations were determined. In both groups, cardiac output and pulmonary arterial pressures increased, whereas left atrial pressures were unchanged. Acidosis alone (arterial pH = 7.16, PaCO2 = 81 mm Hg, PaO2 = 250 mm Hg) resulted in a doubling of lymph flow, a small increase in protein flux, and a decrease in lymph to plasma protein concentration (L/P) ratio for all three proteins. Acidotic-hypoxic animals (arterial pH = 7.16, PaCO2 = 84 mm Hg, PaO2 = 48 mm Hg) tripled Qlym. In these animals the increase in lymphatic flux of albumin, IgG, and IgM was significantly (P < 0.05) greater than that seen in either the acidosis alone group or in animals where left atrial pressures were elevated (n = 5; P < 0.05). Also, their percent increase in flux of the large protein (IgM) was greater than for the small protein (albumin) (P < 0.05). With acidosis alone, only pulmonary arterial bradykinin concentration increased (1.27±0.25 ng/ml SE), whereas acidosis plus hypoxia elevated both pulmonary arterial bradykinin concentrations (4.83±1.14 ng/ml) and aortic bradykinin concentration (2.74±0.78 ng/ml). These studies demonstrate that hypercapnic acidosis stimulates in vivo production of bradykinin. With superimposed hypoxia, and therefore decreased bradykinin degradation, there is an associated sustained rise in Qlym with increased lung permeability to proteins.  相似文献   

14.
Vigorous exercise causes a marked increase in cardiac output with only a minimal increase in measureable pulmonary vascular pressures. These changes in pulmonary hemodynamics should affect lung water and solute movement. On nine occasions, we measured the effect of normoxic exercise on lung lymph flow in four sheep and two goats with chronic lymph fistulas (wt = 15-25 kg). In addition, lymph flow was also measured on five occasions in sheep during exercise at reduced barometric pressures (430 and 380 mmHg). During normobaria, the animals ran at 3-5 km/h with 0-10% elevation of the treadmill for 15 to 85 min. Exercise on average caused a 100% increase in cardiac output, a 140% increase in lung lymph flow, and a slight but significant reduction in lymph to plasma concentration ratio (l/p) for total protein and albumin (mol wt = 70,000). There was a significant linear correlation between lymph flow and cardiac output (r = 0.87, P less than 0.01). There was no change in l/p for IgG (mol wt = 150,000) or IgM (mol wt = 900,000) and no significant change in mean pulmonary arterial (Ppa) or mean left atrial (Pla) pressures. Transition from normobaria to hypobaria caused an increase in Ppa but no change in Pla, cardiac output, or lymph flow. Exercise during hypobaria caused increases in lymph flow that were qualitatively similar to changes observed during normobaric exercise: there was a 60% increase in cardiac output, a 90% increase in lymph flow, and an 11% reduction in l/p for total protein. There was no change in l/p for albumin, IgG, or IgM, and no further change in Ppa. The increased lymph flow during normoxic and hypobaric exercise is best explained by an increase in pulmonary vascular surface area for fluid and protein exchange. Our results suggest that the normal ovine lung has the potential to nearly triple the amount of perfused microvascular surface area. This speculation is relevant to the interpretation of lymph flow data from other experiments.  相似文献   

15.
The relationship between right duct lymph flow and extravascular lung water was studied in 3 normal dogs and 15 dogs with pulmonary edema induced by alpha-naphthylthiourea (ANTU). Right duct lymph was collected in a pouch created by ligating jugular, subclavian, and brachiocephalic veins. Extravascular lung water was measured in vivo by double indicator dilution and post-mortem by weighting lungs before and after drying. Cardiac output, pulmonary artery and pulmonary artery wedge pressures, and the concentration of protein and electrolytes in plasma and right duct lymph were determined. Eight lungs were examined by light and electron microscopy. There was a direct relationship between right duct lymph flow (RDLF in milliters per hour per gram dry lung) and extravascular lung water (Qwl in milliliters per gram dry lung) which was best described by the equation RDLF=0.75-0.26 Qwl+0.03 (Qwl).2 Dogs with severe ANTU-induced edema had extensive lung capillary endothelial destruction but only mild interstitial swelling and no visible damage to type I alveolar epithelial cells. Cardiac output, pulmonary artery and wedge pressures, and protein and electrolyte concentrations did not correlate with either extravascular water or right duct flow. Thus, in ANTU-induced pulmonary edema right duct lymph flow was directly related to extravascular lung water with the highest flows occurring with severe edema. The absence of a rapid increase in lymph flow with small increases in extravascular water may be due to early sequestration of fluid in the alveolar space. Hemodynamic changes did not account for changes in lung water or lymph flow. The pulmonary interstitial factors relating increased extravascular water to lymph drainage remain to be determined.  相似文献   

16.
Pulmonary diffusing capacity and arterial blood Po(2) decrease in humans when 10% fat emulsion is infused. To study its effects on the pulmonary circulation and lung fluid balance, we infused 0.25 g/kg x h of a 10% fat emulsion (Intralipid, Cutter Laboratories, Inc., Berkeley, Calif.) into an awake sheep lung lymph preparation. The emulsion caused a sustained increase in pulmonary artery pressure to approximately twice base line with little change in left atrial pressure. Pa(O2) decreased an average 13 torr and lung lymph flow increased two- to threefold. Lymph/plasma total protein concentration fell as lymph flow increased; the magnitude of the lymph/plasma protein decrease was similar to that reported previously when lung vascular pressures were mechanically elevated. Heparin infusion (loading dose = 4,000 U, maintenance dose = 2,000 U/h) cleared the serum of triglycerides but did not alter the response to fat emulsion. Indomethacin infusion (loading dose = 5 mg/kg, maintenance dose = 3 mg/kg x h) blocked the rise in pulmonary artery pressure, the increase in lung lymph flow, and the fall in Pa(O2). Neither extravascular lung water nor [(14)C]urea lung vascular permeability surface area products were altered by fat emulsion infusion. We conclude that fat emulsion infusion in sheep increases lung microvascular filtration by increasing vascular pressures, but has no effect on vascular permeability. Since the effects are blocked by indomethacin, they may be prostaglandin mediated.  相似文献   

17.
The hypoxic pulmonary vasoconstrictive (HPV) response is characterized by two components: intrapulmonary blood flow redistribution and pulmonary artery pressure (PAP) augmentation. Whether both remain intact after oleic acid lung injury has not been assessed. In an asymmetric model of right lung oleic acid edema, we examined the relative magnitude of each component on the HPV response to right lung inspired hypoxia. Before oleic acid administration, right lung hypoxia decreased perfusion to the right lung from 1.41 +/- 0.12 to 1.16 +/- 0.15 L/min (p = .07), while PAP increased from 15.8 +/- 0.8 to 18.1 +/- 0.6 mm Hg (p less than .05). Regional hypoxia caused right lung pulmonary vascular resistance (PVR) to increase from 480 +/- 45 to 797 +/- 114 dyne.sec/cm5 (p less than .01). After right lung injury with oleic acid, regional hypoxia decreased perfusion to the right lung from 0.91 +/- 0.11 to 0.71 +/- 0.10 L/min (p less than .05), while PAP increased from 18.8 +/- 0.8 to 21.5 +/- 1.0 mm Hg (p less than .05). With hypoxia, right lung PVR increased from 1232 +/- 260 to 1933 +/- 336 dyne.sec/cm5 (p less than .01). We conclude that the pulmonary vasoconstrictive response to inspired hypoxia persists after oleic acid lung injury, causing significant increases in PVR. Consequently, both the blood flow redistribution and the PAP augmentation components of the HPV response to inspired hypoxia remain unchanged.  相似文献   

18.
Systemic complement activation with intravascularly administered cobra venom factor (CVF) or infusion of either zymosan-activated rabbit plasma or a fifth component of complement fragment with anaphylatoxin activity in the rabbit have not caused significant increases in bronchoalveolar lavage albumin in rabbits (Webster, R. O., G. L. Larsen, B. C. Mitchell, A. J. Goins, and P. M. Henson. 1982. Am. Rev. Respir. Dis. 125:335-340). To assess if another stimulus (hypoxia) acting in concert with complement activation can produce significant lung injury, rabbits were challenged with CVF alone, 10 min of 12% oxygen alone, or CVF followed by a 10-min exposure to 12% oxygen. Either stimulus alone caused no significant changes in arterial oxygen, pulmonary resistance, or dynamic compliance during the 240 min of observation after either stimulus, and neither stimulus alone caused increased albumin accumulation in bronchoalveolar lavage over a 30-min period at the end of the experiment. However, the combination of insults significantly altered arterial oxygen, pulmonary resistance, and dynamic compliance while also increasing albumin and neutrophils recovered by lavage. The increase in lavage albumin did not appear to be due to hemodynamic events in that the pulmonary artery pressure increased acutely after CVF infusion and again during the hypoxic exposure, but was normal when albumin accumulation in the lung was measured. Neutrophil depletion with nitrogen mustard abolished all of these changes induced by CVF plus hypoxia. In addition, meclofenamate pretreatment and infusion during the 4-h study abolished the increases in lavage albumin and neutrophils as well as the increase in pulmonary artery pressure after CVF. Meclofenamate pretreatment did not, however, block accumulation of albumin in the lung (interstitium). We conclude that complement activation, as an isolated event, will not cause a significant increase in lavage albumin in this model. However, combining complement activation with an episode of hypoxia will lead to an increase in lavage albumin that is dependent on the presence of neutrophils for its expression. Meclofenamate treatment will prevent increases in lavage albumin and neutrophils while not preventing albumin accumulation in the lung (interstitium), suggesting a product of the cyclooxygenase pathway of arachidonic acid metabolism is needed to produce movement of albumin and/or neutrophils across the alveolar epithelium in this model.  相似文献   

19.
Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while the lungs of lambs treated after a period of ventilation had aerated, partially aerated, and atelectatic areas. All lungs were divided into pieces which were weighed and catalogued as to location. The amount of radiolabeled surfactant and microsphere-associated radioactivity in each piece of lung was quantified. Surfactant was relatively homogenously distributed to pieces of lung from lambs that were treated with surfactant at birth; 48% of lung pieces received amounts of surfactant within +/- 25% of the mean value. Surfactant was preferentially recovered from the aerated pieces of lungs of lambs treated after a period of mechanical ventilation, and the distribution of surfactant to these lungs was very nonhomogeneous. Right ventricular blood flow distributions to the lungs were quite homogeneous in both groups of lambs. However, in 8 of 12 lambs, pulmonary blood flow was preferentially directed away from those pieces of lung that received relatively large amounts of surfactant and toward pieces of lung that received less surfactant. This acute redirection of pulmonary blood flow distribution may result from the local changes in compliances within the lung following surfactant instillation.  相似文献   

20.
OBJECTIVE: To study the effects of prolonged (6 hrs) hypercapnia on cerebral blood flow and cerebral metabolism in newborn lambs and to evaluate the effects on cerebral blood flow and cerebral metabolism on return to normocapnia after prolonged hypercapnia. DESIGN: Animal studies, using the newborn lamb, with comparison to control group. SUBJECTS: Newborn lambs of mixed breed, 1-7 days of age, were used for the study. Two groups of animals were studied: a hypercapnic group (n = 10) and a normocapnic control group (n = 5). SETTING: Work was conducted in the research laboratories at Children's National Medical Center, Washington, DC. INTERVENTIONS: Animals were anesthetized with pentobarbital, intubated, paralyzed, and mechanically ventilated. After baseline measurements were made, CO2 was blended into the ventilator gas until a PaCO2 of 75-80 torr (10-10.6 kPa) was obtained. Measurements were made 1 hr after the desired PaCO2 was achieved and after 6 hrs of hypercapnia. After 6 hrs of hypercapnia, the ventilator gas was returned to the baseline value, that is, normocapnia. Measurements were made 30, 60, and 90 mins after PaCO2 returned to baseline. MEASUREMENTS: Six measurements were made during the study. For each measurement, blood samples were drawn from the sagittal sinus and brachiocephalic artery catheters and were analyzed for pH, hemoglobin concentration, oxygen saturation, and blood gas values. Cerebral blood flow (CBF) was measured by using the radiolabeled microsphere technique. Cerebral oxygen consumption, fractional oxygen extraction, and oxygen transport values were calculated at each study period. MAIN RESULTS: Increasing PaCO2 from 37 +/- 3 torr to 78 +/- 6 torr (4.9 +/- 0.4 kPa to 10.3 +/- 0.8 kPa) for 1 hr increased CBF by 355%. After 6 hrs of PaCO2 at 78 +/- 3 torr (10.3 +/- 0.4 kPa), CBF remained 195% above baseline. At 30 mins of normocapnia, CBF had returned to baseline and remained at baseline until the conclusion of the study, a total of 90 mins of normocapnia. Cerebral oxygen consumption did not change during hypercapnia or with return to normocapnia. Oxygen transport increased 331% above baseline after 1 hr of hypercapnia and stayed 180% above baseline after 6 hrs of hypercapnia. Fractional oxygen extraction decreased by 55% at 1 hr of hypercapnia and stayed 39% below baseline at 6 hrs of hypercapnia. CONCLUSIONS: Healthy lambs seem to tolerate undergoing hypercapnia for 6 hrs with a return to normocapnia. The return to baseline of CBF and cerebral metabolism at normocapnia seen in our study with lambs may explain why prolonged hypercapnia appears to be well tolerated in mechanically ventilated patients. If these results can be extrapolated to human subjects, our study in lambs supports evidence that patients who have undergone permissive hypercapnia seem to be neurologically unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号