首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to investigate the pharmacology of human serotonin (5-HT)1D receptor sites by measuring two functional cellular responses, inhibition of forskolin-stimulated cAMP formation and promotion of cell growth, using transfected rat C6-glial cell lines and a broad series of 5-HT receptor agonists. Stable and separate transfection of a pcDNA3 or pRcRSV plasmid, each containing a cloned human 5-HT1D receptor gene, in rat C6-glial cells was confirmed with RT PCR of 5-HT1D receptor mRNA and radioligand binding with [3H] 5-carboxamidotryptamine (5-CT) and [3H] sumatriptan. The 5-HT1D receptor density was 350 and 1050 fmol/mg protein for the C6-glial/pcDNA3/5-HT1D and C6-glial/pRcRSV/5-HT1D cell line, and forskolin (100 M)-induced cAMP formation was inhibited by 45 and 78% in the presence of 1 M 5-HT, respectively. A comparison of the intrinsic agonist activities for sixteen 5-HT receptor ligands with their corresponding binding affinities for the human 5-HT1D receptor site showed similar results for both cell lines with the exception of the partial agonist m-trifluoro-phenyl-piperazine (TFMPP). Three classes of compounds were observed: 1. efficacious agonists, such as 5-CT, 5-methoxytryptamine, 5-HT, sumatriptan, bufotenine, 5-methoxy-3(1,2,3,6-tetrahydro-4-pyridinyl)1H-indole (RU 24,969), tryptamine and 8-hydroxy-2(di-n-propilamino)tetralin (8-OH-DPAT), with agonist potency close to their binding affinity; 2. the partial agonists metergoline, 7-trifluoromethyl-4(4-methyl-l-piperazinyl)-pyrolo-(1,2-a) quinoxaline (CGS 12066B), 1-naphthylpiperazine and 2-methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)-phenyl]-amide (GR 127,935) with marked intrinsic agonist activity but at concentrations higher than their binding affinity; and 3. the silent antagonists ritanserin, ketanserin and methiothepin, apparently free of intrinsic agonist activity, with antagonist potency close to their binding affinity. The cAMP data were further supported by the observed promotion of cell growth by stimulation of both transfected cell lines with sumatriptan under serum-free conditions; half-maximal stimulation was obtained at 4.4 nM (C6-glial/pcDNA3/5-HT1D) fully in agreement with its EC50-value (5.7 nM) for inhibition of cAMP formation. This growth promoting effect was antagonised by 1 M methiothepin and not observed in pcDNA3-plasmid-transfected and non-transfected C6-glial cells. A comparative study with a C6-glial/pcDNA3/5-HT1B cell line expressing a similar amount of cloned human 5-HT1B receptors (B max: 360 fmol/mg protein) showed almost no intrinsic agonist activity for metergoline, 1-naphtylpiperazine and GR 127,935. Together with the 5-HT1D receptor binding selectivity and antagonist activity of ketanserin and ritanserin, the findings define important pharmacological differences between cloned human 5-HT1D and 5-HT1B receptor sites.  相似文献   

2.
Recombinant human 5-HT1D and 5-HT1D receptor subtypes were stably expressed in NIH-3T3 fibroblasts (1D cell line) and Y-1 adrenocortical tumor cells (1D cell line), respectively, for pharmacological evaluations of serotonergic compounds to inhibit forskolin-stimulated CAMP accumulation (FSCA). [3H]LSD saturation studies indicated that 5-HT1D receptor expression levels were slightly higher in the 1D cell line (B max = 1334 ± 134 fmol/mg protein) than in the (1D) cell line (B max = 900 ± 900 fmol/mg protein). 5-HT inhibited FSCA with similar potencies (EC50 2 nM) in both assay systems. The rank order of agonist potencies in both clonal cell lines matched their pharmacological profiles previously determined in binding studies: dihydroergotamine >- 5-carboxamidotryptamine (5-CT) > LSD >- 5-HT > sumatriptan > 1-naphthylpiperazine (1-NP) > yohimbine > 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH DPAT) > 1-(2,5-dimethoxy4-iodophenyl)-2-aminopropane (DOI), with Ki/EC50 ratios greater than unity. Methiothepin acted as a silent antagonist at both human 5-HT1D and 5-HT1D receptors with apparent dissociation constants (Kb values) of 12 ± 1 nM and 3 ± 1 nM, respectively. Whereas GR 127,935, metergoline, DOI, and quipazine acted as full agonists in the 1D cell line, these compounds behaved as partial agonists in the 1D cell line.To determine whether high levels of receptor reserve might mask partial agonist activity in the two second messenger assay systems, studies were performed using the irreversible receptor alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The relationships between receptor occupancy and inhibition of FSCA were determined for 5-HT, sumatriptan, and 1-NP in both clonal cell lines after partial receptor inactivation using Furchgott analysis. Hyperbolic relationships between receptor occupancy and second messenger response were determined for 5-HT in both transfected cell lines. Steep hyperbolic relationships were also found for sumatriptan and 1-NP in the 1D cell line whereas nearly linear relationships were observed for these two compounds in the 1D cell line. Moreover, KA/EC50 ratios of these compounds were significantly larger in the (1D)(10–32) as compared to the 1D (0.9–2.5) cell line. These data are consistent with the hypothesis that the two heterologous expression systems contain a differential amount of receptor reserve. Despite the presence of an apparently larger receptor reserve in the 1D cell line, GR 127,935, metergoline, DOI, and quipazine behaved as partial agonists.Although the potencies (EC50 values) of compounds matched their respective affinity constants (Ki values) for the closely-related 5-HT1D subtypes, differences in intrinsic activities were observed for a few compounds between the two 5-HT1D receptor expression systems. Since receptor reserve is dependent on the properties of both the assay system and drug, the observed variations in intrinsic activity, although influenced by the variable amounts of receptor reserve in the two transfected cell lines, reflect primarily system-independent differences in the intrinsic efficacy of the tested compounds at the two human 5-HT1D receptors. Higher intrinsic efficacies of compounds at the human 5-HT1D receptor relative to the human 5-HT1D subtype may be responsible for the higher intrinsic activities observed in the (1D) cell line, even though receptor reserve is apparently lower in this system.Abbreviations CRC Concentration-response curve - FSCA forskolin-stimulated cAMP accumulation - KA pseudo-dissociation constants - 5-CT 5-carboxamidotryptamine - 5-HT 5-hydroxytryptamine - 5MeOT 5-methoxytryptamine - PAPP 1-[2-(4-aminophenyl) ethyl] -4-(3-trifluoromethylphenyl)-piperazine - 1-NP 1-(1-naphthyl) piperazine - 8-OH-DPAT 8-hydroxy-2-(di-n-propylamino) tetralin - DOI 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane - MK-462 (N,N-dimethyl-2-[5-(1, 2, 4-triazol-l-yl methyl)-1H-indole3-yl]ethylamine - GR 127,935 (2-methyl-4-(5-methyl-[1, 2, 4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-amide) - GR 46611 5-[4-methoxybenzyl ethylene]-1H-indole3-yl]ethyl amine) - L-694,247 (2-[5-[3-(4-methylsulfonylamino)benzyl-1, 2, 4-oxadiazol-5-yl]-1H-indole3-yl]ethylamine)  相似文献   

3.
Summary The human saphenous vein preincubated with [3H]noradrenaline was used to determine the pharmacological properties of the release-inhibiting presynaptic serotonin (5-HT) receptor on the sympathetic nerves. The overflow of tritium evoked by transmural electrical stimulation (2 Hz) was concentration-dependently inhibited by drugs known to stimulate 5-HT receptors in the following rank order: oxymetazoline 5-HT 5-carboxamidotryptamine = 5-methoxytryptamine = sumatriptan > tryptamine > N,N(CH3)2-5-HT = yohimbine = 8-hydroxy-2-(di-n-propylamino)-tetraline. The potencies of these agonists in inhibiting overflow were significantly correlated with their affinities for 5-HT1B and 5-HT1D binding sites, but not with those for 5-HT1A or 5-HT1C binding sites. 5-Aminotryptamine, methysergide, ipsapirone, cyanopindolol, SDZ 21009 and metergoline dit not produce a significant inhibition. Metitepine and methysergide antagonized the inhibitory effect of 5-HT, whereas spiroxatrine, propranolol, ketanserin and ICS 205-930 did not.These data exclude the idea that the inhibitory presynaptic 5-HT receptor on the sympathetic nerves belongs to the 5-HT2 and 5-HT3 receptor class; the pattern of agonist potencies suggests that the receptor is very similar to the 5-HT1D receptor subtype. Send offprint requests to M. Gothert at the above address  相似文献   

4.
The effects of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists on tritium overflow evoked by high K+ were determined in superfused synaptosomes and slices, preincubated with [3H]5-HT, from guinea-pig brain cortex. In addition, we estimated the potencies of 5-HT receptor ligands in inhibiting specific [3H]5-HT binding (in the presence of 8-hydroxy-2(di-n-propylamino)tetralin and mesulergine to prevent binding to 5-HT1A and 5-HT2C sites) to guinea-pig cortical synaptosomes and membranes.5-HT receptor agonists inhibited the K+-evoked tritium overflow from synaptosomes and slices. In synaptosomes the rank order of potencies was 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl] ethylamine (L-694,247) >5-carboxamidotryptamine (5-CT) > oxymetazoline (in the presence of idazoxan) 5-HT > sumatriptan 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (RU 24969). The potencies of the agonists in inhibiting tritium overflow from slices correlated with those in synaptosomes, suggesting that the same site of action is involved in both preparations. In synaptosomes the nonselective antagonist at cloned human 5-HT1D, and 5-HT1D receptors, methiothepin, shifted the concentration-response curve for 5-CT to the right (apparent pA2: 7.87). In contrast, ketanserin at a concentration which should block the 5-HT1D, but not the 5-HT1D\, receptor did not alter the inhibitory effect of 5-CT on tritium overflow. In cortical synaptosomes and membranes, [3H]5-HT bound to a single site with high affinity. In competition experiments, 5-HT receptor agonists and antagonists inhibited specific [3H]5-HT binding. In synaptosomes the rank order was L-694,247 > methiothepin >5-CT >5-methoxytryptamine >5-HT sumatriptan oxymetazoline > RU 24969 > ketanserin > ritanserin. A very similar rank order was obtained in cerebral cortical membranes. The potencies of the 5-HT receptor agonists in inhibiting tritium overflow from synaptosomes and slices correlated with their potencies in inhibiting [3H]5-HT binding to synaptosomes and membranes.In conclusion, the 5-HT receptors mediating inhibition of 5-HT release in the guinea-pig cortex are located on the serotoninergic axon terminals and, hence, represent presynaptic inhibitory autoreceptors. The [3H]5-HT binding sites in cerebral cortical synaptosomes and membranes exhibit the pharmacological properties of 5-HT1D receptors. The correlation between the functional responses and the binding data confirms the 5-HT1D character of the presynaptic 5-HT autoreceptors. According to the results of the interaction experiment of ketanserin and methiothepin with 5-CT on 5-HT release, the presynaptic 5-HT autoreceptors can be subclassified as 5-HT1D\-like.  相似文献   

5.
It has recently been shown that the external carotid vasoconstrictor response to 5-HT in the dog is primarily mediated by sumatriptan-sensitive 5-HT1-like receptors; however, the fact that these receptors are not blocked by metergoline, a 5-HT1D ligand, raises questions about their possible correlation with the 5-HT1D receptor subtype. Since a number of drugs display high affinity for the 5-HT1D (GR127935) and 5-HT1F (e.g. methysergide and oxymetazoline) receptor subtypes, in this study we have used these drugs to determine whether the above vasoconstrictor 5-HT1-like receptors correlate with the 5-HT1D and/or 5-HT1F receptor subtypes.One-minute intracarotid infusions of 5-HT (0.3–30 g/min), sumatriptan (1–30 g/min), oxymetazoline (0.03–3 g/min) and noradrenaline (0.3–3 g/min) resulted in dose-dependent decreases in external carotid blood flow without changes in arterial blood pressure or heart rate. These vasoconstrictor responses remained unaltered after i.v. administration of physiological saline (0.015, 0.05 and 0.15 ml/kg; n = 4) or ritanserin (1 mg/kg; n = 5). In contrast, GR127935 (1, 3 and 10 g/kg, n = 6) potently blocked the responses to 5-HT (unmasking a dose-dependent vasodilator component) and sumatriptan without affecting those to oxymetazoline or noradrenaline. Interestingly, methysergide (10, 30 and 100 g/kg, n = 5) also blocked the vasoconstrictor responses to 5-HT and sumatriptan, but unlike GR127935, did not revert the vasoconstrictor response to 5-HT; the responses to oxymetazoline remained unaffected, but those to noradrenaline were apparently attenuated by the highest dose.Taken together, the above findings suggest that the sumatriptan-sensitive 5-HT1-like receptors mediating canine external carotid vasoconstriction resemble 5-HT1D receptors, probably of the 5-HT1D subtype on the basis of the resistance to blockade by ritanserin. The pharmacological profile of these receptors could be similar (bovine and human cerebral arteries, porcine carotid arteriovenous anastomoses and human coronary arteries) to other putative 5-HT1D receptors mediating vascular responses.  相似文献   

6.
Summary The receptors mediating the contractile effect of 5-hydroxytryptamine (5-HT) on the human isolated saphenous vein, obtained from 42 patients undergoing coronary bypass surgery, have been further characterized using a number of 5-HT-related drugs. The rank order of agonist potency was 5-carboxamidotryptamine (5-CT) 5-HT > methysergide sumatriptan -methyl-5-HT 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1-Hindolesuccinate (RU 24969) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) > 2-methyl-5-HT > 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT). Flesinoxan was inactive as an agonist. Ketanserin (1 mol/l) hardly affected sumatriptan-induced contractions but it caused a rightward shift of the upper part of the concentration-response curve of 5-HT and 5-CT. The same concentration of ketanserin caused a parallel rightward shift of the concentration-response curves of -methyl-5-HT and DOI with pKB values of 7. 1 and 7.1, respectively. The responses to sumatriptan were antagonized by methiothepin (0.1 mol/l), metergoline (0.1 and 1 mol/l), rauwolscine (1 mol/l) and cyanopindolol (1 mol/l); the calculated pKB values were 7.3, 6.9, 7.3, 6.7 and 6.5, respectively. Contractions to 5-HT were antagonized by methysergide (1 mol/l), methiothepin (0.1 mol/l; pKB = 7.1), ICS 205-930 (1 mol/l; pKB = 5.9) and flesinoxan (30 mol/l; pKB = 5.3). Remarkably, the contractions elicited by 2-methyl-5-HT were not attenuated by ICS 205-930, but were antagonized by methiothepin (0.1 mol/l) and, more markedly, by ketanserin (1 mol/l).There was a high correlation between the functional pD2 values of 5-HT1-like receptor agonists (5-CT, 5-HT, methysergide, sumatriptan, RU 24969 and 8-OH-DPAT) and their reported binding affinities for the 5-HT1D receptor in human or calf brain membranes. Such a correlation for the antagonism of sumatriptan-induced responses was less marked than for the agonists, but of the 5-HT1-like receptor subtypes it was the highest for the 5-HT1D receptor identified in human or calf brain membranes.In 3 patients, undergoing heart transplantation, saphenous vein which had previously functioned as a graft for 6–11 years, was dissected out from the heart. Though the contractions to potassium were significantly smaller in the grafted veins, the pD2 and Emax values (calculated as percentage of potassium-induced contractions) for 5-HT and sumatriptan were similar to those found in the veins obtained directly from the lower leg.It is concluded that contractions in the human isolated saphenous vein induced by 5-HT are mediated by 5-HT2 receptors as well as by a 5-HT1-like receptor resembling the 5-HT1D subtype found in brain membranes. It is also to be noted that 2-methyl-5-HT, considered selective for the 5-HT3 receptor, contracts the saphenous vein mainly via 5-HT2 receptors.This study was supported by the Netherlands Heart Foundation, grant 89.252 Send offprint requests to W. A. Bax at the above address  相似文献   

7.
Summary The regional distribution and the pharmacology of the binding sites labelled with the novel 5-hydroxytryptamine (serotonin) 5-HT1B/1D selective radioligand serotonin-O-carboxy-methyl-glycyl-[125I]tyrosinamide (abbreviated [125I]GTI for the sake of simplicity) was determined using quantitative autoradiography in rat brain. The distribution of [125I]GTI binding sites was largely comparable to that of [125I] iodocyanopindolol ([125I] ICYP) which labels 5-HT1B binding sites (in the presence of 8-OH-DPAT (8-hydroxy-[2N-dipropylamino]tetralin) and isoprenaline, to prevent binding to 5-HT1A and -adrenoceptor binding sites), although a detailed analysis revealed differences.The pharmacology of the [125I]GTI binding sites was analysed using compounds known to display high affinity for and/or distinguish between 5-HT1B and 5-HT1D sites: 5-carboxamidotryptamine (5-CT), sumatriptan, CP 93129 (5-hydroxy-3(4-1,2,5,6-tetrahydropyridyl)-4-azaindole), (–)pindolol, PAPP (4[2-[4-[3-(trifluoromethyl)phenyl]-1-piperazinyl]ethyl] benzeneamine), rauwolscine, and 8-OH-DPAT. The displacement of [125I]GTI by 5-CT was monophasic. By contrast, the selective 5-HT1B compound CP 93129 and (–)pindolol produced biphasic curves showing a majority of high affinity sites in the globus pallidus and the substantia nigra, whereas PAPP and sumatriptan (which are somewhat 5-HT1D selective) produced biphasic curves indicating a minority of high affinity sites in these areas. In addition, by blocking the 5-HT1B sites with 100 nM CP 93129, the remaining population of [125I]GTI binding sites could be studied and was found to have high affinity for PAPP, rauwolscine and 8-OH-DPAT. The pharmacological profile of the major binding component was typical of the 5-HT1B type: 5-CT > CP 93129 (–)pindolol > sumatriptan >/ PAPP > rauwolscine. The profile of the minor component of [125I] GTI binding is best characterised as that of a 5-HTID site: 5-CT > PAPP sumatriptan > rauwolscine > (–)pindolol CP 93129.The localisation of the non 5-HT1B [125I]GTI binding sites was characterised by blocking the 5-HT1B receptors with 100 nM CP 93129. Low densities of the 5-HT1D recognition sites were found to be present in globus pallidus, ventral pallidum, caudate-putamen, subthalamic nucleus, entopeduncular nucleus, substantia nigra (reticular part), nuclei of the (normal and accessory) optic tract, different nuclei of the geniculate body and frontoparietal cortex, although higher densities of 5-HT1B sites were always observed in the same structures. Thus, in agreement with the recent cloning of a rat 5-HT1D receptor cDNA, the presence and the distribution of 5-HT1D sites could be documented in rat brain. However, when compared to 5-HT1B sites, 5-HT1D sites represent only a minor component of the [125I]GTI binding in the rat brain structures studied.Correspondence to: D. Hoyer at the above address  相似文献   

8.
Summary 5-Hydroxytryptamine1B (5-HT1B) receptor mediated-inhibition of forskolin-stimulated adenylate cyclase activity in rat substantia nigra was characterized pharmacologically and compared to 5-HT1D receptor mediated-inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Special attention was paid to the effects of drugs known to bind with high affinity to 5-HT1B (pindolol, propranolol, cyanopindolol, SDZ 21-009, isamoltane) or 5-HT1D recognition sites (yohimbine, rauwolscine).PEC50 or pK B values of a variety of 5-HT-receptor ligands (6 agonists including 5-HT, and 12 antagonists) for the inhibition of adenylate cyclase activity in rat substantia nigra, correlated significantly to the corresponding pK D values at 5-HT1B binding sites (r = 0.90, P = 0.0001). Amongst the 2- and -adrenoceptor antagonists tested, none of the drugs expressed more than 35% of the intrinsic activity of 5-HT at 5-HT1B receptors. When tested as antagonists, their pK B values were in good agreement with their pK D values for 5-HT1B sites. By contrast, these drugs displayed marked intrinsic activity at 5-HT1D receptors: their pEC50 values were close to their pK D values for 5-HT1D sites and their effects could be potently antagonized by methiothepin. The rank orders of potency of the tested compounds at 5-HT1B and 5-HT1D were markedly different.The results strengthen the identity between 5-HT receptors mediating inhibition of adenylate cyclase activity in rat and calf substantia nigra and 5-HT1B and 5-HT1D binding sites, respectively. They underline the differences between these receptors in terms of intrinsic activities and potencies of drugs. Send offprint requests to: D. Hoyer at the above address  相似文献   

9.
Summary This report describes the actions of the non-peptide ergot alkaloids methysergide, methylergometrine and ergometrine at two types of 5-HT receptor mediating vascular contraction; the well established 5-HT2 receptor in rabbit aorta and a non-5-HT2 receptor in rabbit saphenous vein which resembles the 5-HT1-like receptor in dog saphenous vein.In the rabbit aorta ergometrine (1 mol/l) and methylergometrine (0.3 mol/l), but not methysergide, produced small contractions (14% and 7% respectively of the maximal response to 5-HT). This contraction was not related to activation of 5-HT2 receptors since it was resistant to blockade by ketanserin (0.3 mol/l). When examined as antagonists of 5-HT-induced contractions of rabbit aorta, each ergot displayed nanomolar affinity at the 5-HT2 receptor but only methysergide behaved as a simple competitive antagonist (pKB = 8.25). Methylergometrine and ergometrine produced surmountable blockade which was accompanied by a non-parallel displacement of the 5-HT concentration-effect curves. The selective 5-HT1-like receptor agonist GR43175 ( 30 mol/l) was devoid of affinity at the 5-HT2 receptor in rabbit aorta.In the rabbit saphenous vein each of the ergots produced concentration-dependent contractions which resulted in overtly biphasic concentration-effect curves. Only the first phase of contraction mimicked the effects of 5-HT and GR43175 since contractions were not blocked by MDL 72222 (1 mol/l), but were surmountably antagonised by methiothepin (10 nmol/1), ketanserin (0.3 mol/l) and spiperone (0.3 mol/l). These results are expected for interactions at the 5-HT1-like receptor in this preparation (Martin and MacLennan 1990). The mechanism(s) underlying the second phase of contraction with the ergots remains to be established. Receptor inactivation studies using the alkylating agent benextramine tetrahydrochloride enabled each agonists' affinity and efficacy at the 5-HT1-like receptor to be estimated. Affinity estimates (pKA) decreased in the order: methylergo metrine (7.79), ergometrine (7.75), 5-HT (7.19), methysergide (6.76), GR43175 (6.20), whereas efficacies () decreased in the order: 5-HT (3.28), methylergometrine (2.24), GR43175 (2.14), ergometrine (1.94), methysergide (0.99). Of particular interest, methysergide was significantly lower in affinity and efficacy than its primary demethylated metabolite methylergometrine. Evidently, at the 5-HT1-like receptor mediating vascular contraction the ergots ergometrine and methylergometrine are both higher in affinity than, and comparable in efficacy to, the natural receptor agonist 5-HT. This contrasts with their actions at the 5-HT2 receptor in rabbit aorta where they demonstrated a higher affinity but much lower intrinsic efficacy than 5-HT. These results favour the view that vascular contraction induced by these ergots is more likely to be mediated by 5-HT1-like, rather than 5-HT2 receptors. These results are discussed in relation to the therapeutic applications of these ergots, particularly in obstetrics and in migraine, and to their utility as diagnostic agents in patients with Prinzmetal's variant form of angina.Send offprint requests to S. J. MacLennan at the above address  相似文献   

10.
In segments of human right atrial appendages preincubated with [3H]noradrenaline and superfused with physiological salt solution containing desipramine and corticosterone, we determined the effects of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists on tritium overflow evoked by transmural electrical stimulation (2 Hz).Tritium overflow was inhibited by 5-HT, 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-McOT), 5-methoxy-3(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole succinate (RU 24969) and sumatriptan. Yohimbine and oxymetazoline (in the presence of idazoxan) also inhibited tritium overflow. The inhibitory potency of the drugs was significantly correlated with their affinity for 5-HTID receptors in human brain and for cloned human 5-HT1D and 5-HT1D receptors, but not with their affinity for 5HT1B, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT5A, 5-HT5B and 5-HT7 receptors. The potency order 5-CT >5-HT >5-MeOT is opposite to the order of affinities reported for 5-HT6 binding sites. The preferential 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (up to 0.3 M) and the selective 5-HT4 receptor agonist cisapride (up to 1 M) failed to inhibit tritium overflow. L-694,247, a potent 5-HTID receptor agonist, did not inhibit tritium overflow, but counteracted the inhibitory effect of 5-HT. Ketanserin at a concentration which should block 5-HT1Da but not 5-HT1D receptors and methiothepin at a concentration which may be assumed to block both 5-HT1D and 5-HT1D receptors antagonized the inhibitory effect of 5-HT. Propranolol and ondansetron did not modify the 5-HT-induced inhibition of release. In conclusion, noradrenaline release in human right atrial appendages is inhibited via 5-HT receptors which are located on the noradrenergic axon terminals. These inhibitory presynaptic 5-HT receptors belong to the 5-HTID subfamily. The ability of ketanserin to antagonize the inhibitory effect induced by activation of these receptors suggests that they can be subclassified as 5-HT1D.  相似文献   

11.
Summary 1) 5-HT (5-hydroxytryptamine, serotonin) induces inositol phosphate production in a pig choroid plexus preparation. This effect has been pharmacologically characterized and the data compared to those obtained from radioligand binding studies performed with [3H]mesulergine to 5-HT1C sites in pig choroid plexus membranes. 2) The rank order of potency of agonists stimulating inositol phosphate production was: -methyl-5-HT > 1-methyl-5-HT > DOI > bufotenine = SKF 83566 = 5-HT > 5-MeO-DMT > 5-MeOT = RU 24969> SCH 23390> 5-CT. 8-OH-DPAT was virtually devoid of activity at 100 mol/l. 3) The increase in inositol phosphate production induced by 5-HT and other agonists was surmountably antagonised by mesulergine, ketanserin and spiperone with pKB values of 8.7, 6.7 and 5.3, respectively. 4) The rank order of potency of antagonists was: metergoline > mesulergine > LY 53857 > ritanserin > methiothepin > mianserin > cyproheptadine > pirenperone > cinanserin > ketanserin > spiperone. The following antagonists were virtually devoid of activity at 100 mol/l; pindolol, 21-009 and yohimbine. 5) The results obtained both with agonists and antagonists strongly support the view that 5-HT1C receptors mediate agonist induced production of inositol phosphates in pig choroid plexus. This is illustrated by the close similarity between 5-HT1C binding and stimulation of inositol phospholipid turnover in this preparation. 6) The present data also show that compounds believed to be selective for dopamine D1 receptors (SKF 83566, SCH 23390) or 5-HT2 receptors (DOI, -methyl-5-HT, LY 53857, ritanserin, cyproheptadine) also interact with 5-HT1C receptors. 7) A case can be made for the 5-HT1C receptor, with its similarities to the 5-HT2 receptor in terms of pharmacology and second messenger coupling, being a 5-HT2 receptor subtype.These data have been presented in part at the Spring Meeting of the German Pharmacological Society, March 1987 (Hoyer et al. 1987) Send offprint requests to D. Hoyer at the above address  相似文献   

12.
Summary The effects of serotonin receptor agonists and antagonists on the electrically (3 Hz) evoked 3H overflow were determined on pig brain cortex slices preincubated with 3H-serotonin and superfused with physiological salt solution containing indalpine (an inhibitor of serotonin uptake) plus phentolamine. The potencies of the serotonin receptor agonists and antagonists were compared with their affinities for 5-HT1A, 5-HT1B, 5-HT1c, and 5-HT1D binding sites in pig or rat tissue membranes; in addition, the potencies of the agonists were compared to their potencies in inhibiting adenylate cyclase activity in membranes of calf substantia nigra. In the superfusion experiments on pig brain cortex slices the following rank orders of potencies were obtained: agonists, serotonin > 5-methoxytryptamine = 5-carboxamidotryptamine >R U 24969 (5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole) > SDZ 21009 (4(3-terbutylamino- 2-hydroxypropoxy)indol- 2-carbonic-acid-isopropylester) yohimbine cyanopindolol > 8-OHDPAT (8-hydroxy-2-(di-n-propylamino)tetralin) CGS 12066 B (7-trifluoromethyl-4(4-methyl-l-piperazinyl)-pyrrolo[1,2-a]quinoxaline); ipsapirone and urapidil were ineffective; antagonists (antagonism determined against 5methoxytryptamine as an agonist), metitepine > metergoline > mianserin. Propranolol, spiperone or mesulergine did not produce a shift of the concentration-response curve for 5-methoxytryptamine. The potencies of the serotonin receptor agonists in pig brain cortex slices were significantly correlated with their affinities for 5-HT1c and 5-HT1D binding sites in membranes of the pig choroid plexus and caudate nucleus, respectively, but not with their affinities for 5-HT1A and 5-HT1B sites in membranes of the cerebral cortex of pig and rat, respectively. The agonist potencies in decreasing 3H overflow were also significantly correlated with their potencies in inhibiting adenylate cylase activity in calf substantia nigra (i.e., a 5-HT1D receptor-mediated effect). In conclusion, the pig brain cortical 5-HT autoreceptor probably belongs to the 5-HT1D subtype. The involvement of 5-HT1c recognition sites was excluded by the low potency of mianserin as an antagonist and, in particular, by the ineffectiveness of the 5-HT1c receptor antagonist mesulergine.E. S. and M. G. were supported by grants of the Deutsche ForschungsgemeinschaftSend offprint requests to M. Göthert at the above address  相似文献   

13.
The study of serotonin receptor function has been complicated by the extreme molecular diversity of serotonin receptor subtypes, the lack of selective agonists and antagonists for many of the subtypes, and divergence in the pharmacological properties of a single receptor subtype across different animal species. An example of this pharmacological diversity between species homologues is provided by the 5-HT1D receptor subfamily. To further advance the ability to characterize and pharmacologically compare functional responses mediated by native 5-HT1D receptors, we have cloned the 5-HT1D and 5-HT1D receptor subtypes from the rabbit and evaluated their pharmacological profiles using radioligand binding assays. The deduced amino acid sequences of the rabbit 5-HT1D and 5-HT1D receptor genes displayed 60% overall identity [75% transmembrane (TM) identity] to each other and > 90% overall identity (95% TM identity) to their corresponding human homologues. Two compounds were identified in binding assays which discriminated between the closely-related 5-HT1D receptors. Ketanserin exhibited high affinity (pKi = 7.66) and selectivity ( > 20-fold) for the 5-HT1D receptor while methiothepin displayed high affinity (pKi = 7.86) and selectivity (16-fold) for the 5-HT1D receptor subtype. The rabbit and human recombinant 5-HT1D receptors showed significant intraspecies (rabbit 5-HT1D vs. 5HT1D) and interspecies (i.e. rabbit vs. human 5-HT1D) similarities in their ligand binding profiles. These data suggest that 5-HT1D-mediated responses in rabbit preparations may provide information relevant to the pharmacology of the 5-HT1D receptor subtypes in humans.  相似文献   

14.
Summary The characteristics of high affinity [3H]5-HT (5-hydroxytryptamine) binding to non 5-HTIA non 5-HT1A sites were examined in crude membranes prepared from different regions of guinea-pig and pigeon brains. The coupling of these sites to adenylate cyclase was examined, and its pharmacological profile investigated. In the presence of 100 nmol/1 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) and 100 nmol/l mesulergine, [3H]5-HT labelled with nanomolar affinity an apparently homogeneous population of recognition sites in guinea-pig and pigeon brain membranes. The rank order of affinities of agonists and antagonists (5-CT (5-carboxamidotryptamine) > 5-HT > RU 24969 pyridinyl)-1H indole succinate) > yohimbine rauwolscine > DP-5-CT (N,N dipropyl-5-carboxamidotryptamine) mianserin > 8-OH-DPAT > mesulergine > SDZ 21-009 ((±)-4(3-tert-butyl-amino-2-hydroxypropoxy)-in-dol-2 carbonic acid isopropyl ester) > (-)propranolol), as well as their individual pKD values, were very similar to those at porcine caudate 5-HT1D sites and clearly different from those at rat cortex 5-HT1B sites. In the substantia nigra of the guinea-pig the 5-HT receptor-mediated inhibition of forskolin-stimulated adenylate cyclase had a pharmacological profile fully comparable to that of 5-HT1D binding sites (5-CT > 5-HT > yohimbine > RU 24969 > 8-OH-DPAT > SDZ 21-009 = isamoltane > (–)pindolol > (–)propranolol). The rank order of potency of agonists and antagonists in this system closely paralleled their corresponding rank order of potency in the calf substantia nigra (5-HT1D), but was clearly different from that in rat substantia nigra (5-HT1B) These results demonstrate the existence of 5-HT1D recognition sites in the guinea-pig and pigeon brain and their similarity to 5-HT1D sites of higher mammals, in terms of both drug affinity profile and second messenger coupling. No evidence of the presence of 5-HTIB sites was obtained. The present findings also suggest that 5-HT1D sites may be present in the brain of the majority of vertebrate species located higher than the sauropside-mammalian divergence in the phylogenic tree, whereas 5-HT1B sites are only found in some (e.g., mouse, rat, hamster) but not in other rodents (e.g. guinea-pig).  相似文献   

15.
A clonal cell line derived from rat renal mesangial cells was shown to express endogenous 5-hydroxytryptamine (serotonin, 5-HT) receptors that mediate inhibition of cyclic AMP accumulation. These receptors were characterized as being of the 5-HT1B receptor subtype. 5-HT1 receptor agonists inhibited forskolin-stimulated cyclic AMP accumulation in rat renal mesangial cells (60–70% maximal inhibition) with the following rank order of potency (mean pEC50 values±SEM, n 3): ergotamine (9.58±0.51)>RU 24969 (8.67±0.23)5-CT (8.42±0.06)CP 93129 (8.15±0.27)>5-HT (7.75±0.11) > sumatriptan (6.29±0.30) > 8-OH-DPAT (4.32±0.15). 5-HT2 and 5-HT4 receptor agonists were without effect. 5-HT-induced inhibition of cyclic AMP accumulation was abolished by a pre-treatment of the cells with pertussis toxin. (-)Propranolol was a partial agonist (27% maximal inhibition, pEC50 7.19±0.24, n = 3); when used as an antagonist at 1 M, it shifted the concentration-response curve of 5-HT to the right (pKB 7.22±0.35, n = 3). Methiothepin was a competitive antagonist of 5-HT (pA2 8.04±0.10, Schild slope 0.87±0.21, n = 3). Rauwolscine (10 M) had no antagonist activity. There was a significant correlation (r = 0.98, P = 0.0001) between the cyclic AMP data obtained in rat mesangial cells and 5-HT1B binding data reported in rat brain cortex. The same pattern of responses was observed in early passages of primary cultures of rat mesangial cells. This study shows that rat mesangial cells can be used as a convenient source of functional 5-HT1B receptors. It also constitutes further evidence for the widespread distribution of 5-HT1B receptors outside the brain.  相似文献   

16.
5-HT receptors were studied in human occipital arteries, obtained from patients during neurosurgery. We detected mRNA for the following receptors (incidence): 5-HT1B (14/18), 5-HT1D (15/18), 5-HT2A (16/18), 5-HT2B (8/8), 5-HT4(a) (13/18), 5-HT4(b) (5/18), 5-HT4(g) (7/18), 5-HT4(i) (1/18), 5-HT7(a/b) (10/18) and 5-HT7(d) (12/18). 5-HT contracted and relaxed arterial rings at low (–logEC50 M=7.0) and high (–logEC50 M=4.2) concentrations, respectively. 5-HT-evoked contractions were antagonized partially by both 5-HT1B-selective SB224289 (200 nM) and 5-HT2A-selective ketanserin (1 M) but not by 5-HT1D-selective BRL15572 (500 nM) or prazosin (1 M). Sumatriptan caused contractions (–logEC50 M=6.8, intrinsic activity with respect to 5-HT=0.3). Sumatriptan-evoked contractions were antagonized by SB224289 with high potency (pKB=9.4) but not by BRL15572. 5-HT-induced relaxations were resistant to blockade by 5-HT1B-selective SB224289 (1 M), 5-HT1D-selective BRL15572, 5-HT2B-selective SB204741 (1 M), 5-HT4-selective GR113808 (100 nM) and 5-HT7-selective SB269970 (1 M), and a combination of SB204741 and SB269970, inconsistent with an involvement of 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors. Triton X-100 treatment of the arteries abolished acetylcholine-induced relaxations of rings precontracted by prostaglandin F2, but a reduction of the relaxant effects of 5-HT did not reach significance. Nitro-L-arginine (1 mM) reduced 5-HT-induced relaxations, suggesting a contribution of nitric oxide released from endothelial cells. Ketanserin (1 M) prevented the relaxant effects of 5-HT. We conclude that 5-HT contracts human occipital artery through 5-HT1B receptors at low concentrations and through 5-HT2A receptors at high concentrations. Sumatriptan contracts mostly through 5-HT1B receptors. These results are consistent with the 5-HT1B and 5-HT2A mRNA data. 5-HT-induced relaxation is mediated, in part, through ketanserin-sensitive receptors, but 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors appear not to be involved.  相似文献   

17.
The contractions induced by 5-hydroxytryptamine (5-HT) and the 5-HT1-like receptor agonist, sumatriptan, were investigated in the open ring preparations of rabbit mesenteric artery in order to characterize the 5-HT receptors. 5-HT induced concentration-dependent contractions. Sumatriptan did not induce any contraction of unstimulated rings, whereas it elicited concentration-dependent contractions in preparations given a moderate tone by a threshold concentration of prostaglandin F2 (PGF2). Pargyline, cocaine or normetanephrine were without significant effect on the contractions induced by 5-HT and sumatripan. The 5-HT concentration-effect curve was clearly biphasic. Methiothepin (0.01 M) shifted the both phases of the concentration-effect curve to the right. Ketanserin (0.1 M) shifted the second, low affinity, phase and prazosin did not alter concentration-effect curve to 5-HT. The sumatriptan concentration-effect curve was shifted by methiothepin (0.01 M) to the right (pKB = 9.19) but not by ketanserin (1 M). Concentration-effect curves to 5-HT and sumatriptan were not affected by the 5-HT3 receptor antagonist tropisetron (1 M). These results suggest that 5-HT1-like type receptors are responsible for the first phase of 5-HT-induced contraction and 5-HT2A receptor for the second phase, in rabbit mesenteric artery. Sumatriptan-induced contractions appear to be mediated by 5-HT1-like type receptors in this artery. These results also suggest that this kind of amplification may be a common feature of vascular 5-HT1-like type receptor as has been shown in other vascular segments such as rabbit femoral, iliac and renal arteries, and guinea-pig iliac artery.  相似文献   

18.
5-Hydroxytryptamine 5-HT1B/5-HT1D receptors are members of the same receptor subfamily, but display a different pharmacology (Hartig et al. (1992) Trends Pharmacol Set 13:152–159). Whereas several cell lines have been reported to contain 5-HT1B receptors, none has been described, however, that endogenously expresses well-characterized 5-HT1D receptors. The present study deals with the identification of 5-HT1D receptors inhibiting cyclic AMP accumulation in Madin-Darby canine kidney (MDCK) cells. 5-HT (1 nM– 10 M) induced a concentration-dependent inhibition of the cyclic AMP accumulation stimulated by prostaglandin E1 (1 M) in MDCK cells. The maximal effect of 5-HT averaged 50% inhibition and was abolished after a pre-treatment of the cells with pertussis toxin. Other agonists mimicked the effects of 5-HT, with the following rank order of potency (pEC50 ± SEM, n 3): 5-carboxamidotryptamine (8.36 ± 0.48) > PAPP (p-aminophenylethyl-m-trifluoromethylphenyl piperazine, 7.89 ± 0.23) > 5-HT (7.35 ± 0.05) > sumatriptan (6.65 ± 0.27). PAPP behaved as a partial agonist. 8-OH-DPAT (8-hydroxy-2(di-n-propylamino)tetralin) was less potent, its maximal effect being not reached at 0.1 mM. Methiothepin, GR127935, (–)propranolol, rauwolscine and ketanserin were all devoid of intrinsic activity (up to 10 M or 0.1 mM). Methiothepin (10 nM, 0.1 M and 1 M) antagonized 5-HT effect (pA2 8.57 ± 0.44, Schild slope 1.17 ± 0.21, n = 3). GR127935 (1 nM, 10 nM and 0.1 M) shifted the curve of 5-HT to the right, but the antagonism was not fully surmountable (apparent pKB value, 9.80 ± 0.16, n = 9). From the shifts obtained with rauwolscine (1 M) and (–)propranolol (10 M), respective pKB values were estimated 6.68 ± 0.30 and 5.4 (n = 3 each). PAPP, when tested as an antagonist at 1 M, also shifted the curve of 5-HT to the right, with a pKB of 8.27 ± 0.16 (n = 3). Finally, ketanserin (10 M) also antagonized the effects of 5-HT, the pKB being 6.54 ± 0.16 (n = 9). The rank orders of agonist and antagonist potencies strongly suggest 5-HT receptors mediating inhibition of cyclic AMP accumulation in MDCK cells to be 5-HT1D receptors. This is the first report of a cell line expressing endogenous, well-characterized, 5-HT1D receptors. With regard to the 5-HT1D receptor subtype involved, the relatively high potency of ketanserin would suggest it to be a 5-HT1D subtype or a mixture of 5-HT1D/5-HT1D\ subtypes. However, caution must be exercised here, owing to the poor knowledge of canine 5-HT1D receptor subtypes.  相似文献   

19.
Summary Twelve ergolines (O-Ayated lysergol and dihydrolysergol-I derivatives) were synthesized to study their antagonism of 5-HT responses in comparison with methysergide and LY 53857 [6-methyl-l-(1-methylethyl)-8-ergoline carboxylic acid 2-hydroxy-l-methyl-propylester hydrogen maleate] in cylindrical segments of the isolated rat tail artery. With regard to (9.10-didehydro-6-methyl-8-ergoline)methyl R,S-2-methylbutyrate, the most potent new ergoline derivative, we examined the phenomenon of insurmountable antagonism to 5-HT by methysergide.O-Acylated lysergol and dihydrolysergol-I derivatives competitively antagonized 5-HT-induced contractions with calculated pA2. values of 7.30 ± 0.42 for the weakest and 8.42 ± 0.35 for the most potent ergoline derivative in this series. N1-isopropyl substitution did not generally enhance 5-HT2 receptor affinities but lowered affinities for 1 adrenoceptors in rat aorta. Methysergide and LY 53857 were insurmountable, antagonists of 5-HT in rat tail artery.Preincubation with (9.10-didehydro-6-methyl-8-ergoline)methyl R,S-2-methylbutyrate (1 mol/l) partially prevented the depression of 5-HT-induced contractions caused by methysergide (1–10 nmol/l). Methysergide (100 nmol/l) abolished the protective effect of (9.10-didehydro-6-methyl-8-ergoline)methyl R,S-2-methylbutyrate. (9.10-Didehydro-6-methyl-8-ergoline)methyl R,S-2-methylbutyrate (1 mol/l), concomitantly incubated with methysergide (30 nmol/l), partially restored the maximum response to 5-HT that had been depressed by methysergide (30 nmol/l). Partial restoration could not be mimicked by washout of methysergide. In view of this result, it is suggested that insurmountable antagonism by methysergide of 5-HT responses in rat tail artery is due to allosteric modulation of 5-HT2 receptors rather than pseudoirreversible inhibition. Send offprint requests to H. Pertz at the above address  相似文献   

20.
Summary The pharmacological properties of presynaptic serotonin autoreceptors were compared in slices of rat, rabbit, and guinea-pig brain cortex. The slices were preincubated with 3H-serotonin and then superfused with medium containing fluvoxamine 3 mol/l and stimulated four times by trains of four pulses delivered at 100 Hz. Cumulative concentration-response curves were determined and used for the calculation of agonist EC50 values and maximal effects and antagonist K B values.Unlabelled serotonin itself and the serotonin receptor agonists 5-carboxamidotryptamine (5-CT), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969) and (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reduced the stimulation-evoked overflow of tritium with a rank order of potency 5-CT = RU 24969 > serotonin > 8-OH-DPAT in the rat and 5-CT > serotonin > RU 24969 > 8-OH-DPAT in the rabbit and guinea-pig. Ipsapirone caused no change. Metitepine and metergoline antagonized the effect of 5-CT; the K B values were lower in the rabbit and guinea-pig than in the rat. Yohimbine at up to 1 mol/1 did not reduce the evoked overflow of tritium and did not antagonize the inhibitory effect of 5-CT in the rat but reduced the evoked overflow in the rabbit and counteracted the effect of 5-CT in the guinea-pig. (–)-Propranolol, conversely, reduced the evoked overflow of tritium in the rat but neither reduced the evoked overflow nor antagonized the effect of 5-CT in the rabbit and guinea-pig. Isamoltane did not significantly change the effect of 5-CT in any species. In the rat, it also failed to antagonize the inhibitory effect of 8-OH-DPAT but did antagonize the effect of RU 24969. The inhibition caused by 8-OH-DPAT persisted in the presence of idazoxan but was attenuated by metitepine in all species.The experimental conditions used permit the determination of the constants of agonist and antagonist action undistorted by autoinhibition. The results confirm the view that the serotonin axons of rat brain possess 5-HT1B autoreceptors. They show by direct comparison under identical conditions that the autoreceptors in rabbit and guinea-pig are very similar to each other but differ markedly from those in the rat. The results give additional credence to previous suggestions that, in the rabbit and guinea-pig, the autoreceptors are 5-HT1D. The serotonin axons of rat brain cortex may possess 5-1D in addition to 5-HT1B autoreceptors. In many previous studies agonist potencies at, and antagonist affinities for, presynaptic serotonin autoreceptors have been underestimated due to the use of too intense stimuli to elicit serotonin release. Send offprint requests to N. Limberger at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号