首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的 通过螺旋断层放疗系统一系列调强放疗验证方法的研究,探讨其调强放疗的质量保证验证方法是否可行.方法 采用断层放疗计划系统进行调强放疗计划设计.为实现其剂量验证,笔者采用圆柱形固体水模体、0.056cm3 AISL电离室及EDR2胶片来实现对计划进行绝对剂量及相对剂量验证.将剂最胶片和电离室分别置于模体中,调用患者治疗计划束流数据对模体进行模拟照射;由此得出轴向截面上的等剂量分布和点绝对剂量,与计划模体的等剂量曲线及计算剂量结果进行比对.束流照射前,利用调强放疗兆伏特CT对摆位模体实行图像引导,与计划系统中模体千伏特CT图像进行配准比较,实现验证模体摆位准确性.结果 轴向测得注量分布与断层放疗计划系统计算结果相一致,测量点绝对剂量测量的结果与计划系统的计算误差均在±3%以内.测量模体的摆位误差基本可保持在1mm以内,但由于床从摆位虚拟中心到束流中心之间存在垂直下降2mm的系统误差,需要在模体或患者摆位中予以考虑.结论 3个月临床实践证明断层放疗的调强放疗所采用上述质量保证措施是切实可行的,建立了其质最保证体系.  相似文献   

2.
[目的]比较两种放射剂量探测器(二维半导体阵列和放射性铬胶片)用于剂量分布测量的特性差异.探索和优化调强放射治疗(IMRTt计划验证与质量保证工作的规范及效率。[方法]分别应用该两种探测器对根据实际IMRT计划在模体上移植生成“归一侧强野”和“合成调强野”验证计划进行剂量分布测量,比较两者之间及与计划计算的剂量分布差异。[结果]对同一个“归一调强野”验证计划;二维半导体阵列和放射性铬胶片测量的γ像素通过率分别为99.4%和95.0%;对相同IMRT计划的生成的“合成调强野”验证计划.放射性铬胶片测量的通过率为93.59%。[结论]两种剂量探测方法均方便易行,在对归一调强野验证计划的测量中均获得较满意的验证结果:同一IMRT计划的归一调强野与合成调强野验证结果可能有明显差异.建议适当提高归一调强野方式的IMRT计划验证的通过率指标,以更好地保证实际合成的IMRT治疗剂量分布的精确度。  相似文献   

3.
目的 测试基于患者解剖图像和矩阵探测器在线测量进行重建(RDBMOM)的调强放疗(IMRT)三维剂量验证系统的准确性,评估其临床应用可行性。方法 分别在体模设计规则野和非规则野测试计划,同时以指形电离室和二维电离室阵列测量各测试例的点剂量和平面剂量分布,评估RDBMOM系统剂量重建精度。选择 2例鼻咽癌IMRT计划做RDBMOM验证,分析验证结果的临床应用意义。结果 与指形电离室点测量结果比较,RDBMOM系统对各测试例的重建剂量偏差均<1%(3 cm×3 cm小野除外),IMRT测试例的重建剂量偏差最大为2.12%。与电离室阵列测量比较,RDBMOM重建的测量平面内离轴剂量分布曲线符合良好,两者比较的γ通过率(3%/3 mm)为 94.56%~100%。2例IMRT计划的RDBMOM验证结果整体γ通过率>99%;计划靶体积γ通过率>98%且 D95误差<0.4%,腮腺和晶体平均剂量的最大误差分别达2.97%和59.58%。结论 测试系统剂量重建精度可满IMRT验证要求,并能给出与患者解剖结构相关的体积剂量误差与误差位置等信息,有利于评估其对临床的影响。  相似文献   

4.
目的 应用TG119报告中的测试例对联影公司URT-Linac 506C加速器和URT计划系统FF模型进行全面的评估。方法 主要研究调强放疗(IMRT)和容积调强弧形治疗(VMAT)计划剂量目标、点剂量和剂量分布计算准确性。测试模体采用AAPM TG119号报告测试例模体,主要包括模拟多靶区、模拟前列腺肿瘤、模拟头颈肿瘤和模拟C形靶区(简单)等。使用指形电离室和胶片,在URT计划系统(临床实验版本)和URT-Linac 506C加速器上分别优化计算和测量剂量,并分析计划剂量和测量值之间的偏差。结果 URT计划系统中的4个测试案例的计划剂量目标均满足TG119标准要求。对于不同案例点剂量验证,IMRT计划最大误差为2.62%,VMAT计划最大误差为 3.90%,均满足TG119 报告中点剂量误差小于4.5%的要求。复合剂量分布胶片测量结果的γ通过率IMRT计划均>97.50%,VMAT计划均>93.27%。结论 URT-Linac 506C加速器和URTT放疗计划系统FF计算模型性能试验结果均达到TG119报告验证标准。  相似文献   

5.
目的参考《调强放射治疗计划系统性能和试验方法》(标准报批稿),对RayStation调强放疗计划系统进行一系列测试,并验证标准报批稿的可行性。方法试验内容包括治疗计划剂量目标、点剂量计算准确性和剂量分布计算准确性。测试模体包括AAPM TG119号报告的测试例模体和固体水验证模体,调强测试例主要包括模拟多靶区、模拟前列腺肿瘤、模拟头颈肿瘤和模拟C形靶区(又分简单和困难)等。使用常见测量设备和工具,在RayStation和加速器上分别优化计算和测量感兴趣剂量,并计算和分析两者误差。结果5个模拟不同肿瘤计划的剂量目标均满足标准要求。点剂量电离室测量结果均符合标准要求,全部模拟计划的总误差为(0.83±165)%。单野剂量分布平面探测器测量结果的γ通过率均>990%,复合剂量分布胶片测量结果的γ通过率均>925%。结论RayStation 调强放疗计划系统性能试验结果均符合标准报批稿要求且证明其可行。  相似文献   

6.
鼻咽癌动态调强放疗计划的剂量学验证   总被引:6,自引:0,他引:6  
目的建立鼻咽癌动态调强放疗计划的剂量学验证方法。方法对80例鼻咽癌动态调强放疗计划分别进行3个项目的剂量验证一是用电离室在人体等效模体中测量靶区参考点的绝对剂量,二是使用二维电离室矩阵测量调强计划每个射野的剂量强度分布,三是使用慢感光胶片竖插在模体内,测量调强计划横断面的剂量分布。结果92.5%计划靶区参考点的绝对剂量误差小于5%,在改用体积较小的电离室和调整机架角度避开固定装置重新制定计划后,所有计划靶区参考点的绝对剂量误差也都小于5%。有88.1%的照射野剂量分布误差小于3%。结论为了得到更加真实的测量结果,建议所有测量,尤其是绝对剂量测量都在计划实际机架角度下进行。利用二维电离室矩阵可定量分析照射野剂量分布误差,并且省时省力,有利于验证工作的常规化。胶片法验证由于费时费力且误差较大已趋于淘汰。对于动态调强计划,模体计划各个射野的机器跳数(MU)应与实际计划相同,这样才能得到更加真实的测量结果。  相似文献   

7.
调强验证中胶片刻度方法的研究   总被引:2,自引:0,他引:2  
胶片测量方法因空间分辨率高,是目前临床上用于调强放疗(IMRT)计划剂量分布验证的主要方法。虽然在胶片测量过程中其精度会受多种因素影响,但通过一系列质量保证措施可达到调强验证要求。在众多控制措施中最重要的方法是,每次都必须建立一个胶片光密度和剂量的转换曲线,对验证测量胶片进行剂量刻度,使胶片在处理过程中的误差降至最低。[第一段]  相似文献   

8.
目的 研究采用二维电离室阵列对螺旋断层治疗(HT)的调强计划实施剂量验证的可行性,寻求建立一套临床上针对该条件下患者治疗更为有效的剂量验证方法 .方法 采用IBA公司I'mRT MatriXX二维电离室阵列及其相配套MULTICube等效同体水模体对10例患者HT的调强计划实施验证.分别对二维电离室阵列实行冠状及纵向位测量,并获取模体中阵列轴平面和纵断面剂量分布.通过HT系统兆伏级CT图像实现模体精确配准及校正,以确保二维电离室阵列摆位准确性.束流照射后将二维阵列剂量测量平面分布与HT计划系统模体计划中计算平面结果 进行比较,定性或定量分析其绝对剂最及相对剂量验证情况.探讨其不同位置摆放来实现其测量方法 的可行性.结果 定性或定量分析所测量与计算绝对剂量点及相对剂量分布的结果 均显示出了较好一致性,点绝对测量与计算剂量偏差保持在±3%以内.MatrXX阵列测量的相对剂量分布与治疗计划系统模体中计算平面相比较,采用了Gamma法(3 mm或3%)进行2 mm栅格精度分析,γ≤1像素点平均通过率分别为97.76%、96.83%.结论 MatriXX二维电离室阵列可较好地进行绝对剂量及相对剂量测量,能较好地实现调强计划的剂量验证.  相似文献   

9.
目的验证ADAC逆向调强治疗计划系统的物理精度.方法用胶片和电离室,检测IMRT 的MLC形状、空间点的绝对吸收剂量和等剂量曲线.结果IMRT的 MLC形状符合度误差1 mm,空间点绝对吸收剂量与计划计算的误差3.6%,等剂量曲线分布的胶片测量结果与计划计算的很接近.结论ADAC逆向治疗计划系统符合临床要求.  相似文献   

10.
目的:采用多序列平面剂量仪(Mapcheck)对鼻咽癌调强放射治疗计划进行逐野通量验证,探讨其替代胶片验证的可行性.方法:2007年8月-2008年3月共18例病理确诊为鼻咽癌的患者接受了9个照射野的调强放疗.18例患者的调强放疗计划经点剂量验证通过后,对每例患者的调强放疗计划进行逐野0度角通量计算、实施0度角6 MV X线计划、逐野加速器照射、Mapcheck测量和γ辐射相对剂量的比对.每一个调强放疗照射野剂量符合率均≥90%后,再行面剂量胶片验证,并计算通过率.结果:18例患者的调强放疗计划经点剂量验证通过后,其Mapcheck验证的平均每野符合率为(95.5±2.07)%,100%通过验证.随后行面剂量胶片验证的结果显示,平均符合率达(97.8±1.0)%,也全部获得验证通过.结论:本初步研究的结果表明,应用Mapcheck对鼻咽癌调强放疗计划进行逐野通量验证以替代胶片验证是可行的.  相似文献   

11.
近十几年来,随着辐射直接显色(RC)剂量胶片灵敏度不断提高,成像技术不断发展,以及商业产品体系的完善,RC剂量胶片在医学领域的应用迅速拓展,成为医用放射剂量测量的有效手段。新类型的RC剂量胶片——EBT,标称测量范围0.1 cGy~80 kGy,空间分辨率更高,更近组织等效,使小射野剂量测量更准确。这对肿瘤放疗剂量的准确测量、调强放疗剂量分布的精确验证等具有显著优越性。  相似文献   

12.

Background

This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used.

Materials and methods.

Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm.

Results

The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools.

Conclusions

QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA.  相似文献   

13.
Since 1997, linac based stereotactic radiotherapy (SRT) of uveal melanoma has been continuously developed at the Department of Radiotherapy, Medical University Vienna. The aim of the present study was (i) to test a new type of radiochromic film (Gafchromic EBT) for dosimetric verification of class solutions for these treatments and (ii) to verify treatment plan acceptance criteria, which are based on gamma values statisitcs. An EPSON Expression 1680 Pro flat bed scanner was utilized for film reading. To establish a calibration curve, films were cut in squares of 2 x 2 cm2, positioned at 5 cm depth in a solid water phantom and were irradiated with different dose levels (0.5 and 5 Gy) in a 5 x 5 cm2 field at 6 MV. A previously developed solid phantom (polystyrene) was used with overall dimensions corresponding to an average human head. EBT films were placed at four different depths (10, 20, 25 and 30 mm) and all films were irradiated simultaneously. Four different treatment plans were verified that resemble typical clinical situations. These plans differed in irradiation technique (conformal mMLC or circular arc SRT) and in tumour size (PTV of 1 or 2.5 cm3). In-house developed software was applied to calculate gamma (gamma) index values and to perform several statistical operations (e.g. gamma-area histograms). At depths of 10 mm gamma1%, (gamma-value where 1% of the points have an equal or higher value in the region of interest) were between 1-3 and maximum gamma > 1 (% of gamma-values > 1 in the region of interest) areas were almost 30%. At larger depths, i.e. more close to the isocenter, gamma 1% was < 1 and gamma > 1 areas were mostly < 5%. Average gamma values were about 0.5. Besides the compromised accuracy in the buildup region, previously defined IMRT acceptance criteria [Stock et al., Phys. Med Biol. 50 (2005) 399-411] could be applied as well to SRT. Radiochromic EBT films, in combination with a flat-bed scanner, were found to be an ideal multidimensional dosimetric tool for treatment plan quality assurance. EBT films are a suitable and reliable dosimetric tool that could replace traditionally used radiographic films. The presented acceptance criteria for SRT treatment plans might be used as a benchmarking data-set for other stereotactic applications and/or other equipment (planning system and delivery hardware) combinations.  相似文献   

14.
The aim of this paper is to analyze the positional accuracy, kinetic properties of the dynamic multileaf collimator (MLC) and dosimetric evaluation of fractional dose delivery for the intensity modulated radiotherapy (IMRT) for step and shoot and sliding window (dynamic) techniques of Varian multileaf collimator millennium 80. Various quality assurance tests such as accuracy in leaf positioning and speed, stability of dynamic MLC output, inter and intra leaf transmission, dosimetric leaf separation and multiple carriage field verification were performed. Evaluation of standard field patterns as pyramid, peaks, wedge, chair, garden fence test, picket fence test and sweeping gap output was done. Patient dose quality assurance procedure consists of an absolute dose measurement for all fields at 5 cm depth on solid water phantom using 0.6 cc water proof ion chamber and relative dose verification using Kodak EDR-2 films for all treatment fields along transverse and coronal direction using IMRT phantom. The relative dose verification was performed using Omni Pro IMRT film verification software. The tests performed showed acceptable results for commissioning the millennium 80 MLC and Clinac DHX for dynamic and step and shoot IMRT treatments.  相似文献   

15.
Gafchromic® EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months.All films were irradiated to clinical photon beams (6MV, 10MV and 18MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB® was used for further statistical calculations and image processing.The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed.In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations.  相似文献   

16.
AIMS AND BACKGROUND: The performance characteristics of a commercial multileaf collimator (MLC) for intensity modulated radiation therapy (IMRT) and a comprehensive quality assurance program (QA) to be performed during the commissioning of the MLC were investigated. MATERIALS AND METHODS: The midleaf transmission and interleaf leakage, the in-plane penumbra and its in-plane/cross-plane variation, the cross-plane penumbra and its in-plane/cross-plane variation, and the leaf positional accuracy of a high-energy photon (6 MV) Sli Precise Elekta linear accelerator were measured. Kodak EDR2 Ready Pack film was used for MLC transmission measurement; for the other characterization measurements we used Kodak X-Omat XV2 Ready Pack film placed at 5 cm depth in a solid RW3 phantom. Each film was digitized with a laser scanning photodensitometer VXR-12 Plus using the Omni Pro-Accept 6.OA film dosimetry system and converted to dose by means of H&D curves. The dose calibration measurements were performed with a Farmer ionization chamber according to the guidelines of the IAEA Technical Report No. 277. RESULTS: The average midleaf transmission and interleaf leakage were 1.8% +/- 0.1% and 2.1% +/- 0.2%, respectively. The average value of the cross-plane penumbra was 5.4 mm +/- 0.3 mm with maximum variation less than 0.4 mm and 1.0 mm in the in-plane and cross-plane direction, respectively. The average value of the in-plane penumbra was 3.2 mm +/- 0.2 mm and 3.5 mm +/- 0.2 mm for the step side and groove side of the leaves, respectively. A dose profile perpendicular to the direction of the leaf travel passing through the central axis shows a tongue-and-groove effect of about 33%. The positional accuracy of the leaves was investigated according to AAPM Report No. 72 TG50; the deviation of the net optical density along all the match lines was less than +/- 20%. Moreover, the results obtained with a step field technique showed a positional accuracy of less than 1 mm. CONCLUSIONS: The results suggest the necessity of extensive knowledge of the MLC dosimetric characteristics for IMRT applications in order to allow physicists to study their influence on treatment delivery and to perform a comprehensive routine QA program of the investigated parameters.  相似文献   

17.
The present paper describes a method for the individual dosimetric verification of IMRT treatment plans. The German Cancer Research Center (Deutsches Krebsforschungszentrum; DKFZ) has implemented the intensity modulated radiotherapy (IMRT) since 1997. So far, 246 patients with head and neck cancer, cancer of the prostate, breast, and vertebral column, as well as mesothelioma of the pleura have been treated. Every IMRT plan is transferred into a special IMRT verification phantom, recalculated, and dosimetrically verified. Absolute dose distributions are measured with Kodak EDR films and compared with the results of the dose calculation. After correction of the optical density in relationship to the dose, EDR films are able to measure the absolute dose with an accuracy of +/- 2% compared to an ionization chamber. A visual C++ software tool has been developed to correlate and evaluate the film dose distributions with the corresponding slices of the 3D dose cube. Beside the overlay of absolute or relative isodoses and dose profiles, the median dose within correlated regions of interest (ROIs) is also included in the quantitative dose evaluation. The deviation between EDR film dosimetry and dose calculation is delta D = -0.3% +/- 2.3%. After introduction of the verification software, the total verification time (including handling, correlation, evaluation, and documentation of the data), could be reduced to less than 2 hours.  相似文献   

18.
目的 比较EDR2胶片与二维电离室阵列在螺旋断层治疗(HT)计划质量保证过程中的剂量学特性,并分析测量方法间的可能差异.方法 采用IBA公司I′mRT MatriXX二维电离室阵列其相配套MULTICube等效固体水模体,同时夹放EDR2胶片对15例患者HT计划实施剂量学验证,分别实行轴位和纵向摆位测量以获取模体冠、矢状面剂量分布.照后将两种方法所测得的剂量分布与其对应模体计划中计算结果进行比对,以γ分析法(3 mm/3%)评估验证情况及实施效率.结果 15例患者冠状面、矢状面二维电离室阵列和EDR2胶片测量的γ≤1平均通过率分别为97.00%±1.56%和95.98%±2.52%(t=-2.22,P=0.043)、98.28%±1.55%和95.42%±1.99%(t=0.75,P=0.464);其中>90%、>95%通过率比例分别为93.3%、66.7%.两种方法测量所得剂量分布与计算结果在相同平面的几何分布均有较好的符合度,且亦存在一定相关性(r=0.14,P=0.001).结论 日常HT质量保证中二维电离室阵列可有效替代胶片和电离室测量,而胶片验证作为"金标准"为定期相互比对提供了可能.
Abstract:
Objective The aim of this work is to compare the performances of EDR2 film dosimetry with two-dimensional ion chamber array (2DICA) in quality assurance (QA) procedures and to investigate the origin of possible discrepancies between the two methods.Methods A 2DICA, I′mRT MatriXX and MULTICube equivalent solid water phantom from IBA Company were used to verify the dose distribution of 15 tomotherapy plan cases.The combined phantom which includes EDR2 film on the array was set up to measure the dose distribution from coronal and sagittal orientations.After the irradiation, the dose distributions of 2DICA and film were compared with those calculated in the planning system for verification.The results and efficiency were evaluated independently in the two methods.Results The mean number of points satifying γ parameter ≤1 in the coronal and sagittal planes was 97.00%±1.56%& 95.98%±2.52%(t=-2.22,P=0.043) and 98.28%±1.55%& 95.42%±1.99%(t=0.75,P=0.464) of the 15 cases respectively for 2DICA and EDR2 film.The ratio of more than 90% and 95% were 93.3% and 66.7%.The results we presented show a very good agreement between the two methods when used to assess the dose distribution between calculated and measured doses,and a certain degree of correlation (r=0.14,P=0.001).Conclusions The 2DICA may effectively replace both film and ion chamber dosimetry in routine IMRT QA.The good agreement between 2DICA and EDR2 film may give a possible check regularly just as a gold standard.  相似文献   

19.
BACKGROUND AND PURPOSE: Although intensity modulated radiation therapy is characterized by three-dimensional dose distributions which are often superior to those obtained with conventional treatment plans, its routine clinical implementation is partially held back by the complexity of the beam verification. This is even more so when a dynamic multileaf collimator (dMLC) is used instead of a segmented beam delivery. We have therefore investigated the possibility of using a commercially available, liquid-filled electronic portal imaging device (EPID) for the pre-treatment quality assurance of dynamically delivered dose distributions. METHODS AND MATERIALS: A special acquisition mode was developed to optimize the image acquisition speed for dosimetry with the liquid-filled EPID. We investigated the accuracy of this mode for 6 and 18 MV photon beams through comparison with film and ion chamber measurements. The impact of leaf speed and pulse rate fluctuations was quantified by means of dMLC plans especially designed for this purpose. Other factors influencing the accuracy of the dosimetry (e.g. the need for build-up, remanence of the ion concentration in the liquid and bulging of the liquid at non-zero gantry angles) were studied as well. We finally compared dosimetric EPID images with the corresponding image prediction delivered without a patient in the beam. RESULTS: The dosimetric accuracy of the measured dose distribution is approximately 2% with respect to film and ion chamber measurements. The accuracy declines when leaf speed is increased beyond 2 cm/s, but is fairly insensitive to accelerator pulse rate fluctuations. The memory effect is found to be of no clinical relevance. When comparing the acquired and expected distributions, an overall agreement of 3% can be obtained, except at areas of steep dose gradients where slight positional shifts are translated into large errors. CONCLUSIONS: Accurate dosimetric images of intensity modulated beam profiles delivered with a dMLC can be obtained with a commercially available, liquid-filled EPID. The developed acquisition mode is especially suited for fast and accurate pre-treatment verification of the intensity modulated fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号