首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DRB region of the MHC in primate species is known to display abundant region configuration polymorphism with regard to the number and content of genes present per haplotype. Furthermore, depending on the species studied, the different DRB genes themselves may display varying degrees of allelic polymorphism. Because of this combination of diversity (differential gene number) and polymorphism (allelic variation), molecular typing methods for the primate DRB region are cumbersome. All intact DRB genes present in humans and rhesus macaques appear to possess, however, a complex and highly divergent microsatellite. Microsatellite analysis of a sizeable panel of outbred rhesus macaques, covering most of the known Mamu-DRB haplotypes, resulted in the definition of unique genotyping patterns that appear to be specific for a given haplotype. Subsequent examination of a representative panel of human cells illustrated that this approach also facilitates high-resolution HLA-DRB typing in an easy, quick, and reproducible fashion. The genetic composition of this complex microsatellite is shown to be in concordance with the phylogenetic relationships of various HLA-DRB and Mamu-DRB exon 2 gene/lineage sequences. Moreover, its length variability segregates with allelic variation of the respective gene. This simple protocol may find application in a variety of research avenues such as transplantation biology, disease association studies, molecular ecology, paternity testing, and forensic medicine.  相似文献   

2.
Extensive polymorphism at the major histo-compatibility complex (MHC) is thought to confer immune protection on populations. A New World primate, the cotton-top tamarin (Saguinus oedipus), has a high prevalence of ulcerative colitis and adenocarcinoma of the colon and dies after infection with several human viruses. Lymphocytes from all animals tested expressed on common MHC class I allelic product. Another MHC class I allelic product was expressed by 39 of 41 tested animals. Four other allelic products were also expressed on the lymphocytes of these animals at a frequency of greater than 50%. MHC class II gene products, however, were polymorphic. Restriction fragment length polymorphism analysis confirmed that there were a limited number of cotton-top tamarin MHC class I alleles, whereas the MHC class II gene loci were polymorphic. This sharing of MHC class I alleles is unprecedented in a higher primate species and may play a role in the susceptibility of this endangered species to pathogens.  相似文献   

3.
To study the mechanism of maintenance of polymorphism at major histocompatibility complex (MHC) loci, synonymous and nonsynonymous (amino acid-altering) nucleotide substitutions in the putative antigen-recognition site (included in the first domain of the MHC molecule) and other regions of human and mouse class II genes were examined. In the putative antigen-recognition site, the rate of nonsynonymous substitution was found to exceed that of synonymous substitution, whereas in the second domain the former was significantly lower than the latter. In light of a previous theoretical study and parallel findings in class I MHC loci, we conclude that the unusually high degree of polymorphism at class II MHC loci is caused mainly by overdominant selection (heterozygote advantage) operating in the antigen-recognition site.  相似文献   

4.
Our interest in MHC-mismatched allogeneic bone marrow transplantation (BMT) in the rhesus monkey prompted us to investigate restriction fragment length polymorphism analysis as a means for detecting lymphohematopoietic chimerism in the primate. A human MHC (HLA) class II DR beta gene cDNA probe was tested on rhesus peripheral blood mononuclear cell DNA digested with any of three restriction enzymes. We found that (1) the human DR beta probe hybridized to as many as 15 restriction fragments per rhesus DNA sample, suggesting cross-hybridization at more than one locus of rhesus MHC class II beta genes; (2) restriction fragment length polymorphisms were common among outbred monkeys as a result of class II beta gene polymorphisms and would be sufficient for chimerism detection in the majority of random pairs of outbred monkeys utilizing only a single restriction enzyme (Bgl II); and (3) sensitivity (5-10% chimerism) was comparable to that reported for restriction fragment length polymorphism assays utilizing non-MHC probes in clinical HLA-identical BMT. Utility of the assay was demonstrated in a preliminary series of experiments in rhesus monkeys conditioned with mixed T cell-depleted MHC-mismatched allogeneic plus T cell-depleted autologous BMT with or without cardiac allograft implantation.  相似文献   

5.
6.
Twenty cDNA clones derived from beta-chain-encoding class II genes of the zebrafish (Brachydanio rerio) major histocompatibility complex (MHC) have been sequenced. They fall into three groups identifying three loci of expressed genes. The length and organization of these genes are similar to those of their mammalian homologs. Amplification by polymerase chain reaction and sequencing of genomic DNA from zebrafish collected at different locations in India indicate the existence of a fourth group of sequences (fourth locus). A high degree of polymorphism at the B. rerio MHC loci and concentration of variability to the putative peptide-binding region of the beta 1-domain-encoding part of the gene are also indicated. Large genetic distances between alleles suggest trans-specific evolution of fish MHC polymorphism. Zebrafish genes appear to be derived from a different ancestor than the various class II gene families of other vertebrates. In spite of great sequence divergence between fish and mammalian MHC genes, there seems to be a striking conservation in their overall organization.  相似文献   

7.
Genes at the major histocompatibility complex (MHC) in mammals are known to have exceptionally high polymorphism and linkage disequilibrium. In addition, these genes form highly complicated gene families that have evolved through gene conversion and unequal crossing-over. It has been shown recently that amino acid substitution at the antigen recognition site (ARS) is more rapid than synonymous substitution, suggesting some kind of positive natural selection working at the ARS. It is highly desirable to know the interactive effect of gene conversion and natural selection on the evolution and variation of MHC gene families. A population genetic model is constructed that incorporates both selection and gene conversion. Diversifying selection is assumed in which sequence diversity is enhanced not only between alleles at the same locus but also between duplicated genes. Expressed and nonexpressed loci are assumed as in the class I gene family of MHC, with gene conversion occurring among all loci. Extensive simulation studies reveal that very weak selection at individual amino acid sites in combination with gene conversion can explain the unusual pattern of evolution and polymorphisms. Here both gene conversion and natural selection contribute to enhancing polymorphism.  相似文献   

8.
9.
A simian type D retrovirus designated SRV induces a fatal immunosuppressive disease in rhesus macaques. This syndrome shows many clinical similarities to acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus-infected individuals. To investigate the mechanisms of immune dysfunction in SRV infection, we have focused on the interactions of SRV serotype 1 (SRV-1) with macaque B-lymphoblastoid cell lines (B-LCL). Procedures were optimized for establishing B-LCL by immortalization of macaque B lymphocytes with rhesus Epstein-Barr virus (EBV). These cell lines express B-cell surface markers, secrete immunoglobulins of the IgG or IgM isotypes, and release EBV which transforms monkey B cells. In vitro cultures of B-LCL supported replication of SRV-1. Several B-LCL infected with SRV-1 showed downregulation of major histocompatibility complex (MHC) class II antigen expression whereas levels of MHC class I antigen remained unchanged. Infection of B-LCL with SRV-1 did not alter the level of secreted immunoglobulin. Rhesus EBV was also used to obtain B-LCL from macaques infected with SRV-1; these cell lines were found to release infectious SRV-1. Investigations on the interactions of SRV-1 with B cells will be useful for elucidating mechanisms involved in the immunopathogenesis of primate retroviruses.  相似文献   

10.
11.
Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.  相似文献   

12.
13.
Some members of the major histocompatibility complex (MHC) class I gene family are encoded outside the MHC. Here we describe a family of mouse class I-like genes mapping to the vicinity of the leukocyte receptor complex (LRC) on chromosome 7. This family, which we call Mill (MHC class I-like located near the LRC), has two members designated Mill1 and Mill2. Both genes are predicted to encode membrane glycoproteins with domain organization essentially similar to that of MHC class I heavy chains. The following features of Mill are noteworthy. (i) The deduced MILL proteins lack most of the residues known to be involved in the docking of peptides in classical MHC class I molecules. (ii) Among the known members of the class I gene family, MILL1 and MILL2 are related most closely to MICA/MICB encoded in the human MHC. (iii) Unlike all other known members of the class I gene family, Mill1 and Mill2 have an exon between those coding for the signal peptide and the alpha1 domain. (iv) Mill1 has a more restricted expression profile than Mill2. (v) The gene orthologous to Mill1 or Mill2 apparently is absent in the human. (vi) Mill1 and Mill2 show a limited degree of polymorphism in laboratory mice. The observation that the Mill family is related most closely to the MIC family, together with its apparent absence in the human, suggests its involvement in innate immunity.  相似文献   

14.
15.
Because the divergence of many allelic lineages at the major histocompatibility complex (MHC) loci predates species divergence, standard methods of calculating synonymous substitution rates are not applicable to this system. We used three alternative methods of rate estimation: one based on the minimum number of substitutions (Dm), another on the nucleotide difference (Dxy), and the third on the net nucleotide difference (Dn). We applied these methods to the protein-encoding sequences of primate MHC class I (A, B, and C) and class II (DRB1) genes. To determine the reliability of the different estimates, we carried out computer simulation. The distribution of the estimates based on Dxy or Dn is generally much broader than that based on Dm. More importantly, the Dm-based method nearly always has the highest probability of recovering true rates, provided that Dm is not smaller than 5. Because of its desirable statistical properties, we used the Dm-based method to estimate the rate of synonymous substitutions. The rate is 1.37 +/- 0.61 for A, 1.84 +/- 0.40 for B, 3.87 +/- 1.05 for C, and 1.18 +/- 0.36 for DRB1 loci, always per site per 10(9) years. Hence despite the extraordinary polymorphism, the mutation rate at the primate MHC loci is no higher than that of other loci.  相似文献   

16.
Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes.  相似文献   

17.
The analysis of H-2K products from spontaneously generated major histocompatibility complex (MHC) mutants and of the primary structure of other class I antigens suggests the genetic hypothesis that diversity in the MHC results from a copy mechanism analogous to gene conversion. The hypothesis was tested by making precise structural predictions about three partially characterized MHC mutants (bm1, bm3, and bm8). The predictions were based on consensus sequences among class I genes that differ from H-2Kb in the same region of the molecule as do the Kb mutants. In two cases (bm3 and bm8) we successfully predicted the correct amino acid substitution at positions known to be altered but for which the specific nature of the substitution had not been determined. In two additional cases (bm1 and bm8) we predicted and found both new mutation sites and the specific amino acid substitutions. The positions and identifications of the variant amino acids were determined by radiolabeled amino acid sequence analysis and DNA restriction endonuclease analysis. The interaction of MHC genes through a copy mechanism to generate diversity permits the introduction of multiple nucleotide base substitutions into class I sequences by a single genetic event. Such a mechanism may account in part for the large structural divergence among alleles of MHC loci and the high degree of MHC polymorphism among wild mice.  相似文献   

18.
CONTEXT: The polymorphism of class II HLA genes modulates the genetic risk for several endocrine autoimmune diseases. The constitutive class II expression on antigen-presenting cells is under the control of the MHC class II transactivator, encoded by the MHC2TA gene, which is mapped to chromosome 16p13. The MHC2TA -168 A-->G single nucleotide polymorphism (rs3087456) has been suggested to confer susceptibility to some autoimmune diseases. DESIGN: With the aim of testing whether this MHC2TA single nucleotide polymorphism is independently associated with autoimmune Addison's disease (AAD) and/or modulates the genetic risk conferred by DRB1-DQA1-DQB1 haplotypes, we analyzed DNA samples from 128 AAD patients and 406 healthy control subjects from continental Italy. RESULTS: Frequency of allele G of MHC2TA was significantly increased among AAD patients (39% alleles), compared with 29% in healthy controls (P = 0.003). Similarly, the frequency of AG+GG genotypes was significantly higher among AAD patients than among healthy control subjects, in both a codominant (P = 0.012) and a G-dominant model (P = 0.018). Multivariate logistic regression analysis showed that MHC2TA AG+GG continued to be positively associated with genetic risk for AAD (P = 0.028, odds ratio = 1.72, 95% confidence interval = 1.06-2.78), after correction for DRB1*03-DQA1*0501-DQB1*0201, DRB1*04 (not 0403)-DQA1*0301-DQB1*0302 and DRB1*0403. Similar results were obtained when the number of G alleles was included in the model (P = 0.004; odds ratio = 1.65, 95% confidence interval = 1.17-2.32). CONCLUSIONS: Our study provides the first demonstration of the association of the polymorphism of the MHC2TA gene with genetic risk for AAD that appears to be independent from the well-known association with the polymorphism of HLA class II genes.  相似文献   

19.
20.
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号