首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterovirus infections were investigated with special emphasis on performing rapid molecular identification of enterovirus serotypes responsible for aseptic meningitis directly in cerebrospinal fluid (CSF). Enterovirus genotyping was carried out directly with specimens tested for the diagnostic procedure, using two seminested PCR assays designed to amplify the complete and partial gene sequences encoding the VP1 and VP4/VP2 capsid proteins, respectively. The method was used for identifying the enterovirus serotypes involved in meningitis in 45 patients admitted in 2005. Enterovirus genotyping was achieved in 98% of the patients studied, and we obtained evidence of 10 of the most frequent serotypes identified earlier by genotyping of virus isolates. The method was applied for the prospective investigation of 54 patients with meningitis admitted consecutively in 2006. The enterovirus serotypes involved were identified with the cerebrospinal fluid (CSF) of 52 patients (96%) and comprised 13 serotypes within the human enterovirus B species and 1 within the human enterovirus A species. The three most common serotypes were echovirus 13 (E13; 24%), E6 (23%), and coxsackievirus B5 (11.5%), a pattern different from that observed in 2005. Genotyping of virus isolates was also performed in 35 patients in 2006 (meningitis, n = 31; other diseases, n = 4). By comparison, direct genotyping in CSF yielded a more complete pattern of enterovirus serotypes, thereby allowing the detection of rare serotypes: three less common serotypes (CB2, E21, and E27) were not detected by indirect genotyping alone. The study shows the feasibility of prospective enterovirus genotyping within 1 week in a laboratory setting.  相似文献   

2.
BackgroundAseptic meningitis is the most commonly observed CNS infection and is mainly attributed to Non-Polio Enteroviruses (EV).ObjectiveIdentification and genetic analysis of the EV involved in the recent aseptic meningitis outbreak which occurred in Greece, during the summer of 2007.Study designIn total, 213 CSF and faecal samples were examined for EV presence by culture, while enteroviral RNA detection was performed by nucleic acid sequence-based amplification assay (NASBA). EV strains were typed by seroneutralization, as well as nested RT-PCR followed by VP1-2A gene partial sequencing. Phylogenetic analysis was carried out for the identification of the genetic relatedness among the isolated EV strains.ResultsEV detection rate in CSF and faecal samples was 43.9% and 70.8%, respectively. EV serotyping and VP1 region analysis revealed the predominance of echovirus 4 (ECV4) serotype and the circulation of ECV6, 9, 14, 25, Coxsackie A6, A15, A24 and Coxsackie B1 serotypes. All ECV4 isolates presented a 98.7% similarity in nucleotide sequence, with a Spanish ECV4 strain, isolated during a meningitis outbreak in 2006.ConclusionsIt is the first time that ECV4 is associated with an aseptic meningitis outbreak in Greece, during which 9 different EV serotypes were co-circulating. All Greek ECV4 isolates were closely related to the Spanish ECV4 strain. Genetic analysis of the VP1 gene can significantly contribute to the revelation of the endemic EV strains circulation pattern and their phylogenetic relationship with enteroviruses involved in epidemics of distant geographical areas at different time periods.  相似文献   

3.
Typing of human enterovirus (EV) remains a major goal for diagnostic and epidemiological purposes. Whereas sequencing of the VP1 coding region is the reference standard for EV typing, a method relying on sequencing of the VP2 coding region has been proposed as an alternative; however, this has been validated only on cell culture supernatants. To avoid the selection of cultivable strains and to quicken the identification step, a new semi-nested PCR method targeting the VP2 region was developed by use of the CODEHOP strategy. After validation of the method on reference and clinical strains, a total of 352 clinical specimens found to be positive for EV RNA (138 with the GeneXpert EV kit and 214 with the Enterovirus R-gene kit) during a 3-year period (2010–2012) were analysed prospectively for VP2 genotyping. Overall, 204 (58%) specimens were typeable. A higher proportion of throat swab/stool specimens than of cerebrospinal fluid (CSF) specimens was found to be typeable (94 of 142 (66.2%) vs. 83 of 169 (49.1%), respectively, p <0.01 by the chi-square test). Moreover, the median Ct value obtained was lower for typeable specimens than for untypeable specimens (32.20 vs. 33.01, p <0.05, and 25.96 vs. 31.74, p <0.001, for the GeneXpert and R-gene tests, respectively, by the Mann–Whitney–Wilcoxon test). These results suggest that, in cases of EV meningitis, a peripheral specimen (i.e. throat swab or stool) that is susceptible to exhibiting a higher viral load should be used in preference to CSF for identifying the causative EV genotype by use of the VP2 typing method without cell culture isolation.  相似文献   

4.
Human enteroviruses are one of the main etiological agents of aseptic meningitis and other central nervous system infections, particularly the serotypes included in the enterovirus B species. Molecular methods have proved useful to identify serotypes in clinical samples, facilitating the epidemiological study of these viruses. In the spring of 2006, there was a significant increase in meningitis cases caused by enteroviruses in Spain. In the present study, 138 enteroviruses directly detected in clinical samples of patients with aseptic meningitis (n = 116) and other neurological pathologies (n = 22) received by the National Center for Microbiology during the year, were genotyped by amplification and sequencing part of the VP1 region and phylogenetic analysis. Echovirus 30 was the most frequent serotype, followed in decreasing order by echovirus 6, 9, 13, 18, enterovirus 75, coxsackievirus A9, echovirus 11, 14, 29, 4, and coxsackievirus B4 and B5. Phylogenetic analysis with all Spanish echovirus 30 strains detected in 2006 and other reported echovirus 30 sequences, demonstrated that Spanish strains formed a new lineage, different from others previously described. In conclusion, echovirus 30 is the most commonly reported enterovirus serotype associated with aseptic meningitis in Spain. Direct molecular typing of clinical samples also allows rapid identification of the serotypes involved in an epidemic alert and phylogenetic analysis in the 3'-VP1 region is useful to study viral epidemiology.  相似文献   

5.
The PCR assays are currently used in diagnosis of enterovirus (EV) meningitis. Nevertheless, the use of molecular diagnosis of EV should be investigated in respiratory tract infections (RTI).

Objectives

To perform enterovirus molecular diagnostic tools, PCR and genotyping, in nasal samples for diagnostic and epidemiologic purposes.

Methods

During 2008, 3612 nasal specimen (NS) were studied by IFD and MRC5 culture. Next, we realised successively viral isolation on HuH7 culture (for NS negative by IFD assay) and a duplex PCR enterovirus-rhinovirus for the 816 HuH7 positive supernatants. Furthermore, 327 NS collected from neonates were systematically tested by a real-time RT-PCR. This assay was used in routine for EV diagnosis setting in cerebrospinal fluid. Enterovirus genotyping was then performed for the 68 positive supernatants.

Results

Thirty-five NS (0.97%) were positive for EV by culture (MRC5). A combination of both PCR assays, PEVRV and PEV, allowed an additional identification of 41 EV, eight EV-RV and 12 RV, increasing the number of positive to 96 NS (2.6%). Among the neonates, 32 NS (11.3%) were positive for EV by PEV. Of the 98 NS tested by the two PCR assays (PEV and PEVRV), 27 were positive and we detected 10 EV, five EV-RV and 12 RV. From January to December 2008, the circulation of EV showed the usual peak in June-July when a small outbreak of aseptic meningitis occurred and an additional autumnal peak corresponding to respiratory tract infections. Five main serotypes were isolated: 19 EV68 (29.7%), 12 CB3 (18.7%), nine E3 (14,1%), six CA9 (9.4%) and six CB1 (9.4%); the 19 EV68 were isolated in October-November and 17/19 (89.5%) of positive patients were hospitalised for severe respiratory diseases.

Conclusion

The use of molecular screening techniques (PCR assays and genotyping) on nasal samples collected from patients with respiratory infections allowed a prospective, effective and precise identification of circulating strains.  相似文献   

6.
2001年徐州地区暴发性病毒性脑膜炎病原的研究   总被引:1,自引:0,他引:1  
目的 确定引起2001年江苏省徐州地区无菌性脑膜炎流行的病原体。方法 组织培养法从患者脑脊液分离病毒,标准血清中和试验鉴定分离毒株;中和试验检测双份血清中和抗体效价;逆转录聚合酶链反应(RT-PCR)检测肠道病毒特异性基因片段。结果 22份脑脊液中分离出4株柯萨奇B5型、2株柯萨奇B3型、1株艾可7型肠道病毒,分离阳性率31.8%。RT-PCR检测脑脊液21份,肠道病毒阳性11份。阳性率52.4%。19例双份血清中11例中和效价呈4倍以上增长或转阳,阳性率57.9%。结论 此次江苏省徐州地区无菌性脑膜炎流行的病原体是以柯萨奇B5为主要血清型的肠道病毒。  相似文献   

7.
Human enteroviruses (EVs) and more recently parechoviruses (HPeVs) have been identified as the principal viral causes of neonatal sepsis-like disease and meningitis. The relative frequencies of specific EV and HPeV types were determined over a 5-year surveillance period using highly sensitive EV and HPeV PCR assays for screening 4,168 cerebrospinal fluid (CSF) specimens collected from hospitalized individuals between 2005 and 2010 in Edinburgh. Positive CSF samples were typed by sequencing of VP1. From the 201 EV and 31 HPeV positive (uncultured) CSF samples on screening, a high proportion of available samples could be directly typed (176/182, 97%). Highest frequencies of EV infections occurred in young adults (n = 43; 8.6%) although a remarkably high proportion of positive samples (n = 98; 46%) were obtained from young infants (<3 months). HPeV infections were seen exclusively in children under the age of 3 months (31/1,105; 2.8%), and confined to spring on even-numbered years (22% in March 2006, 25% in April 2008, and 22% in March 2010). In contrast, EV infections were distributed widely across the years. Twenty different EV serotypes were detected; E9, E6, and CAV9 being found most frequently, whereas all but one HPeVs were type 3. Over this period, HPeV3 was identified as the most prevalent picornavirus type in CNS-related infections with similarly high incidences of EV infection frequencies in very young children. The highly sensitive virus typing methods applied in this study will assist further EV and HPeV screening of sepsis and meningitis cases as well as in future molecular epidemiological studies and population surveillance.  相似文献   

8.
目的 检测肠道病毒(EV)在中枢神经系统感染中的致病情况,探讨检测EV感染的方法。方法 就用逆转录-聚合酶链反应(RT-PCR0和病毒培技术检测46例无菌性脑膜炎及脑炎病人脑脊液(CSF)标本。结果 RT-PCR方法敏感特异;46例无菌性脑膜炎和脑炎急性期CSF标本中,31例EV阳性(67.4%),14例病毒培养阳性(26.1%)。统计结果显示,RT-PCR敏感性明显高于病毒培养。结论 EV是引起无菌性脑膜炎和脑炎的重要病原;RT-PCR快速敏感特异,简单易行,易于推广,是诊断EV感染的有效方法。  相似文献   

9.
Enteroviruses have been reported in epidemic form during last 10 years in northern India. Environmental surveillance of sewage is the method of choice in limited resources countries for detection of enterovirus serotypes circulating in the community. Twenty‐four sewage samples collected between January, 2009 and December, 2010 were tested for enterovirus by using a new modified integrated shell vial culture (ISVC) with a semi‐nested RT‐PCR of a partial VP1 gene and virus isolation integrated with semi‐nested RT‐PCR of a partial VP1 gene. Twenty‐one (87.5%) out of 24 samples were positive for enterovirus by the conventional method and all samples (100%) by the ISVC–RT‐PCR. The additional positive samples detected by ISVC–RT‐PCR was typed as six different enterovirus serotypes (Sabin poliovirus 3, Coxsackievirus B3, Coxsackievirus A13, Coxsackievirus A17, Echovirus 33, and Enterovirus 75). Phylogenetic analysis of a partial VP1 gene of Echovirus 19 showed that one genetic lineage clustered with isolates from Georgia suggesting their importation into northern India. Detection of wild poliovirus in the absence of clinical cases with 16 different co‐circulating enterovirus serotypes supports the need of increased molecular surveillance of sewage. Rapid identification and characterization of enterovirus serotypes is necessary to study their transmission and evolution in different geographical regions to prevent future outbreak. J. Med. Virol. 85:505–511, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Enterovirus (EV) infections are common. There are more than 60 known serotypes, and each has different epidemiologic or medical importance. Over 700 physicians from 75% of basic administrative units of Taiwan participated in the "Sentinel Physician Surveillance of Infectious Disease" and reported weekly to the Center for Disease Control-Taiwan with data on various infections. Data of laboratory-confirmed EV infections from this surveillance between 2000 and 2005 was analyzed. EV serotypes were determined by immunofluorescence staining and/or viral VP1 sequence analysis. A total of 12,236 EV cases, or approximately 1,300-2,500 per year, were identified, and 52% of the cases occurred between April and July. The median age was 3 years, and 57.6% of patients were male. Coxsackievirus A (CA) 16 and EV71, which primarily manifest as hand-foot-and-mouth disease, were the most prevalent serotypes every year except 2004. Other prevalent serotypes and associated symptoms varied from year to year. Echovirus (E) 30 and E6, which are associated with aseptic meningitis, were prevalent in 2001 and 2002, CA4 and CA10, which cause herpangina, were predominant in 2004, and coxsackievirus B (CB) 4 and CB3, which are associated with neonatal febrile disease, were most common in 2004 and 2005, respectively. Some of these epidemics overlapped with outbreaks of the same serotypes in other Asian Pacific countries. Of all serotypes, EV71 was associated with the highest number of severe complications in patients. Surveying the epidemic pattern, disease spectra, and severity associated with each EV serotype provided important information for public health and medical personnel.  相似文献   

11.
We identified and characterized enteroviruses associated with aseptic meningitis in children between April 2009 and March 2010. Enterovirus RNA was detected in 51 (45.5 %) of 112 CSF samples. Molecular typing by RT-PCR and sequencing of a partial VP1 region revealed the predominance of echovirus (ECV) 32 (n = 20), followed by ECV 11 (n = 10), ECV 13 and ECV 14 (n = 5 each), coxsackievirus (CV) B3 and CV B6 (n = 3 each), CV A2, CV A10 and ECV 30 (n = 1 each). Phylogenetic analysis of ECV 32 showed 0 to 4 % sequence divergence among strains of the present study and 20-23 % from the prototype Puerto Rico strain at the nucleotide level. This is the first report of ECV 32 associated with an aseptic meningitis epidemic and identification of seven different enterovirus serotypes (CV A2, CV A10, CV B3, CV B6, ECV 13, ECV 14 and ECV 32) in meningitis cases from India.  相似文献   

12.
Human enteroviruses are associated with various clinical syndromes from minor febrile illness to severe, potentially fatal conditions like aseptic meningitis, paralysis, myocarditis, and neonatal enteroviral sepsis. Between June 2000 and August 2008 echovirus (E) type 2, 4, 6, 7, 9, 11, 13, 25, 30, coxsackievirus (CV) -A16, -A19, -B5, and enterovirus 71 (EV71) were reported in Hungary. In this study, 29 previously enterovirus positive samples from 28 patients diagnosed with hand, foot and mouth disease, meningitis and encephalitis, were molecularly typed. The genetic relationships of identified serotypes CV-A16, EV71, and E30 were assessed by direct sequencing of genomic region encoding the capsid protein VP1. The sequences were compared to each other and sequences from other geographical regions possessed in Genbank. The phylogenetic analysis of CV-A16 revealed that the viruses were mostly of Far-Eastern or Asia-Pacific origin. Typing of EV71 showed that one virus from 2000 belonged to genotype C1 and five viruses observed in 2004 and 2005 were identified as genotype C4. The 11 echovirus 30 strains showed homology with those of neighbor European countries. The molecular examination of E30 revealed that three separate lineages circulated in 2000, 2001, and 2004–2006 in Hungary.  相似文献   

13.
Enteroviruses (EVs) represent the main etiological agents of epidemics of viral meningitis and especially the serotypes related to the human enterovirus B species. Genetic typing by sequencing a PCR-amplified portion of the genome has proved to be useful for identifying EVs and is more rapid than standard seroneutralization tests. However, prospective genotyping has not been reported in routine practice within a clinical diagnostic laboratory. A genetic typing assay using two sets of primers was developed for the amplification and sequencing of the VP1 coding sequence of the HEV-B serotypes. Identification was carried out by sequence comparisons with EV sequences in GenBank using the BLAST search tool and confirmed by phylogenetic analysis. This method was used to identify prospectively the 48 enteroviruses isolated in patients with either enterovirus-proved meningitis (n = 41) or other clinical manifestations (n = 7) admitted to the University Hospital of Clermont-Ferrand (France) in 2005. The assay was also used to type retrospectively EVs isolated in cerebrospinal fluid specimens of 25 patients admitted to the Trousseau Paediatric Hospital in Paris (France) between February and August 2005. In both prospective and retrospective investigations of meningitis, echovirus 30 (E30) was the most frequent serotype, followed in decreasing order by E18, E13, coxsackievirus B5, B3, E6, E4, E7, E11, E33, and coxsackievirus A9. In patients with other manifestations, coxsackievirus B3, B5, and E3 were each identified twice, and E2 once. In E30 infected patients, nine different lineages were demonstrated by phylogenetic analysis. Genetic typing allowed the prospective, effective and rapid identification of all EV isolates involved in the 2005 outbreak. Molecular typing in combination with phylogenetic analysis will be a reliable means to confirm the emergence of new EV variants, and is of interest of both individual patients and public health.  相似文献   

14.
Rapid detection of enterovirus (EV) infections is essential in the management of aseptic meningitis. Molecular approaches have opened the way to such rapid, but also specific and sensitive, diagnostic tests. The aim of this study was to compare the performance of the CE marked NucliSens EasyQ Enterovirus assay with an in-house two-step RT-PCR assay using cerebrospinal fluid (CSF) and throat swab samples. In addition, specificity was tested with clinical isolates positive for viruses with clinical importance in CSF samples. For nucleic acid extraction, the NucliSens miniMAG and NucliSens magnetic extraction reagents were used. Subsequently real-time nucleic acid sequence-based amplification (NASBA) RNA amplification was performed using NucliSens EasyQ basic kit reagents and NucliSens EasyQ Enterovirus reagents. An EV-specific internal homologous control (IC) RNA was used to monitor the entire NucliSens EasyQ procedure at the individual sample level. No IC but an external inhibition control was available for the RT-PCR method. For the NucliSens EasyQ procedure, amplification and real-time detection reactions were carried out in the NucliSens EasyQ analyzer. The real-time NASBA enterovirus detection was based on NASBA amplification and real-time molecular beacon technology. Data were analyzed using the manufacturer's software on the NucliSens EasyQ analyzer. For the in-house assay, RT-PCR amplicons were detected using agarose gel analysis. The analysis of clinical samples positive for HSV-1, HSV-2, adenovirus, CMV, VZV, mumps and rhinovirus were all negative by NucliSens EasyQ Enterovirus assay. Three rhinovirus samples were, however, strongly positive in RT-PCR. A total of 141 clinical samples were retrospectively tested, including 126 cerebrospinal fluid (CSF) samples and 15 throat swabs. The 91 CSF samples were negative by both methods, 31 CSF samples and 14 throat swab samples were positive by both methods. The four CSF samples were positive by RT-PCR only. One throat swab sample was negative in NucliSens EasyQ but positive in RT-PCR. The sensitivity and specificity of both methods seem to be more or less comparable. However, the in-house RT-PCR assay appears to amplify some rhinovirus strains and should therefore not be used for throat swab samples. NucliSens EasyQ Enterovirus assay gave more invalid results than the in-house RT-PCR, which is obvious taken into account the difference in quality control between the CE marked NucliSens EasyQ Enterovirus assay and the in-house enterovirus assay. The NucliSens EasyQ procedure can be completed within 5h versus 9.5h for the RT-PCR. NucliSens EasyQ Enterovirus assay showed to be a standardized, rapid, specific, sensitive and reliable procedure for the detection of enterovirus RNA.  相似文献   

15.
Human enteroviruses (HEV) are considered as one of the major causes of central nervous system infections in pediatrics. They are currently classified into five species involving more than 60 officially recognized serotypes. This study describes a rapid molecular method, based on pyrosequencing of a VP1 fragment, for the identification of enterovirus serotypes. In order to do so, 200 isolates and clinical specimens that were first grouped into 62 different HEV serotypes using neutralization test, were analyzed by pyrosequencing. All serotypes were identified using the proposed method. Most of the isolates previously untypeable by classical procedures, as well as mixed enterovirus infections containing viruses belonging to different species, could also be determined using pyrosequencing. The present results give support to pyrosequencing as an efficient method of HEV genotyping.  相似文献   

16.
BACKGROUND: Human parechoviruses (HPeVs) have been associated with severe conditions such as neonatal sepsis and meningitis in young children. Rapid identification of an infectious agent in such serious conditions in these patients is essential for adequate decision making regarding treatment and hospital stay. OBJECTIVES: We have developed an HPeV specific real-time PCR assay based on the conserved 5'untranslated region. STUDY DESIGN: To determine the detection limit of the assay, serial dilutions of HPeV in vitro RNA were tested in a background of HPeV and EV RNA-negative cerebrospinal fluid (CSF). The specificity was tested by analyzing culture isolates of HPeV 1-6, enterovirus (EV) types, human rhinoviruses (HRVs) and hepatitis A virus (HAV). To establish diagnostic relevance, 522 CSF samples from children <5 years were tested. RESULTS: The detection limit of the assay was 75 copies of HPeV cDNA per reaction. The assay was highly specific for HPeV, detecting all HPeV types. We identified HPeV infections in CSF of 20 children (3.8%), all with severe conditions such as sepsis and meningitis. CONCLUSIONS: These results suggest that HPeV screening of paediatric clinical samples should be included in viral diagnostics in suspected cases of neonatal sepsis and meningitis.  相似文献   

17.
The Amplicor Enterovirus PCR test was compared with viral culture for the detection of enteroviruses in cerebrospinal fluid (CSF) specimens. In a multicenter study in which nine laboratories participated, a total of 476 CSF specimens were collected from patients with suspected aseptic meningitis. Sixty-eight samples were positive by PCR (14.4%), whereas 49 samples were positive by culture (10.4%), demonstrating that the Amplicor Enterovirus PCR test was significantly more sensitive than culture (P < 0.001). After discrepancy analysis the sensitivity and specificity of the Amplicor Enterovirus PCR test obtained by using viral culture as the “gold standard” were 85.7 and 93.9%, respectively. Our results with the CSF specimens collected in different countries demonstrate that the Amplicor test is capable of detecting a large variety of enterovirus serotypes and epidemiologically unrelated isolates in CSF specimens from patients with aseptic meningitis. The Amplicor Enterovirus PCR test is a rapid assay which can be routinely performed with CSF samples and is an important improvement for the rapid diagnosis of enteroviral meningitis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号