首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The rat hippocampus receives a dense noradrenergic innervation originating exclusively from the locus coeruleus. The present electrophysiological study was undertaken to characterize the adrenoceptor mediating the suppressant effect of microiontophoretically applied norepinephrine (NE) on CA1 and CA3 dorsal hippocampus pyramidal neurons of the rat. The rank order of potency of microiontophoretically applied agonists, in suppressing the firing rate of hippocampus pyramidal neurons was: oxymetazoline greater than NE greater than phenylephrine greater than isoproterenol greater than clonidine. In the hippocampus, oxymetazoline was more potent than NE, whereas it was ineffective in the lateral geniculate nucleus where the effect of NE is mediated by an alpha 1-adrenoceptor. Low currents of clonidine antagonized the effect of NE suggesting that clonidine may exert a partial agonistic effect. The rank order of potency of i.v. administered adrenergic antagonists in blocking the suppressant effect of microiontophoretically applied NE was: idazoxan much greater than prazosin much greater than propranolol. Idazoxan also blocked the effect of oxymetazoline, phenylephrine, and isoproterenol but did not modify the effect of microiontophoretically applied gamma-aminobutyric acid (GABA). In addition, idazoxan, applied by microiontophoresis, readily blocked the suppressant effect of NE without affecting that of GABA. These results suggest that the suppressant effect of microiontophoretically applied NE on rat dorsal hippocampus pyramidal neurons is primarily mediated by alpha 2-adrenoceptors.  相似文献   

2.
Pharmacological studies showed that periarterial nerve stimulation (PNS) of the perfused rat mesenteric vascular bed contracted with endothelin, a vasoconstrictor peptide, in the presence of prazosin (alpha 1-adrenoceptor antagonist) produced a frequency-dependent neurogenic vasodilation when the adrenergic neurotransmission was blocked by the adrenergic neuron blocker, guanethidine. The PNS-evoked vasodilation was attenuated by tetrodotoxin and capsaicin treatment, and was also inhibited when the adrenergic neurotransmitter (norepinephrine; NE) release was left intact in the absence of guanethidine. However, in the combined presence of an alpha 2-adrenoceptor antagonist (yohimbine) and prazosin, PNS caused a marked neurogenic vasodilation even when the neuronal release of NE was left intact. These results suggest that NE released from adrenergic nerves regulates the release of a vasodilator substance, CGRP, through activation of alpha 2-adrenoceptors on CGRP-containing vasodilator nerves.  相似文献   

3.
Presentation of a stimulus train to the locus coeruleus (LC) or dorsal noradrenergic bundle (DB) resulted in a facilitation of thev spontaneous firing of single units in the dorsal lateral geniculate nucleus (LGNd) of the rat. These stimulation effects were blocked by the alpha1-adrenoceptor antagonists WB-4101 and prazosin. Both drugs also blocked the activation of LGNd neurons by iontophoretic norepinephrine (NE). The cholinergic agonists acetylcholine (ACh) and carbachol (CCh) activated LGNd neurons in a similar fashion to NE, however, these responses were selectively blocked by the muscarinic antagonist scopolamine. The response to ACh was also sensitive to WB-4101 suggesting that the drug possesses some cholinergic blocking activity. In contrast to WB-4101, prazosin displayed a high degree of selectivity for noradrenergic but not cholinergic response. On the basis of the observation that prazosin selectively antagonizes both the stimulation effects and iontophoretic NE (but not CCh), we conclude that activation of LGNd neurons by LC or DB stimulation is mediated predominantly via the release of NE from coeruleo-geniculate fibers, rather than the inadvertent activation of a cholinergic pathway. Moreover, inasmuch as the systemic administration of prazosin effectively blocks central noradrenergic neurotransmission at dosescomparable to those uses clinically, the possibility that prazosin exerts its antihypertensive action in part via a central mechanism requires further investigation.  相似文献   

4.
The present electrophysiological studies were undertaken to assess the role of terminal alpha 2-adrenergic autoreceptors in regulating noradrenergic synaptic transmission in the rat CNS. The effectiveness of the electrical stimulation of the locus coeruleus (LC) in suppressing the firing activity of pyramidal neurons was determined in the dorsal hippocampus. Intravenous clonidine, an alpha 2-adrenergic agonist, decreased the effectiveness of the LC stimulation, without altering the effect of microiontophoretically applied norepinephrine. The subsequent i.v. administration of low doses of idazoxan, an alpha 2-adrenergic antagonist, reversed this effect of clonidine on the LC stimulation. To ascertain that the effect of clonidine administered i.v. was indeed attributable to its action on noradrenergic terminals, it was applied locally by microiontophoresis; it decreased the effectiveness of the LC stimulation. Another paradigm used to assess the function of terminal alpha 2-adrenoceptors was to increase the frequency of the LC stimulation from 1 to 5 Hz. This resulted in a 5-fold decrease of the effectiveness of the stimulation. That this was attributable to an enhanced activation of terminal alpha 2-adrenoceptors was suggested by the reversal of this effect of increasing the frequency of the LC stimulation by intravenous idazoxan. Furthermore, the degree of enhancement of the effectiveness of the LC stimulation by idazoxan was much greater at 5 than at 1 Hz. These results provide novel electrophysiological evidence for the potent regulatory role of terminal alpha 2-adrenoceptors on noradrenergic neurotransmission.  相似文献   

5.
The present study elucidates the role of alpha(1)-adrenoreceptors in the locus coeruleus (LC) using a dual-probe microdialysis in conscious rats. One probe sampled noradrenaline in the LC, whereas the second probe sampled noradrenaline in a main projection area, the prefrontal cortex (PFC). To investigate a possible tonic activation of LC neurons by alpha(1)-adrenoceptor, the alpha(1)-antagonist prazosin (10 microM) was infused into the LC. Extracellular noradrenaline in the LC decreased to about 50% of basal levels but no change of noradrenaline release was detected in the ipsilateral PFC. Next, the interaction between alpha(1)- and alpha(2)-adrenoceptors was investigated. Local administration of the alpha(2)-adrenoceptor antagonist idazoxan (100 microM) into the LC increased the noradrenaline release in the LC to about 400%, whereas noradrenaline release in the PFC rose to 150% of basal levels. A similar effect was seen when the specific alpha(2A)-adrenoceptor antagonist BRL 44408 (10 microM) was infused: extracellular noradrenaline in the LC and PFC increased to about 400 and 120% of the basal levels, respectively. When infusions of idazoxan (100 microM) or BRL 44408 (10 microM) into the LC were combined with prazosin (10 microM), the excitatory effects of the alpha(2)-adrenoceptor antagonists on the release of noradrenaline were strongly suppressed in the LC as well as in the ipsilateral PFC. It is concluded that alpha(1)-adrenoreceptors are involved in the regulation of LC activity. Apparently, alpha(1)- and alpha(2)-adrenoceptors have opposite roles in their function as autoreceptors on LC cells.  相似文献   

6.
Dexmedetomidine is a highly specific, potent and selective alpha(2)-adrenoceptor agonist. Although intrathecal and epidural administration of dexmedetomidine has been found to produce analgesia, whether this analgesia results from an effect on spinal cord substantia gelatinosa (SG) neurons remains unclear. Here, we investigated the effects of dexmedetomidine on postsynaptic transmission in SG neurons of rat spinal cord slices using the whole-cell patch-clamp technique. In 92% of the SG neurons examined (n = 84), bath-applied dexmedetomidine induced outward currents at -70 mV in a concentration-dependent manner, with the value of effective concentration producing a half-maximal response (0.62 microM). The outward currents induced by dexmedetomidine were suppressed by the alpha(2)-adrenoceptor antagonist yohimbine, but not by prazosin, an alpha(1)-, alpha(2B)- and alpha(2C)-adrenoceptor antagonist. Moreover, the dexmedetomidine-induced currents were partially suppressed by the alpha(2C)-adrenoceptor antagonist JP-1302, while simultaneous application of JP-1302 and the alpha(2A)-adrenoceptor antagonist BRL44408 abolished the current completely. The action of dexmedetomidine was mimicked by the alpha(2A)-adrenoceptor agonist oxymetazoline. Plots of the current-voltage relationship revealed a reversal potential at around -86 mV. Dexmedetomidine-induced currents were blocked by the addition of GDP-beta-S [guanosine-5'-O-(2-thiodiphosphate)] or Cs+ to the pipette solution. These findings suggest that dexmedetomidine hyperpolarizes the membrane potentials of SG neurons by G-protein-mediated activation of K+ channels through alpha(2A)- and alpha(2C)-adrenoceptors. This action of dexmedetomidine might contribute, at least in part, to its antinociceptive action in the spinal cord.  相似文献   

7.
We recently reported that anticonvulsant anilino enaminones depress excitatory postsynaptic currents (EPSCs) in the nucleus accumbens (NAc) indirectly via gamma-aminobutyric acid (GABA) acting on GABA(B) receptors [S.B. Kombian et al. (2005)Br. J. Pharmacol., 145, 945-953]. Norepinephrine (NE) and dopamine (DA), both known to be involved in seizure disorders, also depress EPSCs in this nucleus. The current study explored a possible interaction between enaminones and adrenergic and/or dopaminergic mechanisms that may contribute to their synaptic depression and anticonvulsant effect. Using whole-cell recording in rat forebrain slices containing the NAc, we show that NE-induced, but not DA-induced, EPSC depression occludes E139-induced EPSC depressant effect. UK14,304, a selective alpha(2) receptor agonist, mimicked the synaptic effect of NE and also occluded E139 effects. Phentolamine, a non-selective alpha-adrenergic antagonist that blocked NE-induced EPSC depression, also blocked the E139-induced EPSC depression. Furthermore, yohimbine, an alpha(2)-adrenoceptor antagonist, also blocked the E139-induced EPSC depression, while prazosin, a selective alpha(1)-adrenergic antagonist, and propranolol, a non-selective beta-adrenoceptor antagonist, did not block the E139 effect. Similar to the E139-induced EPSC depression, the NE-induced EPSC depression was also blocked by the GABA(B) receptor antagonist, CGP55845. By contrast, however, neither SCH23390 nor sulpiride, D1-like and D2-like DA receptor antagonists, respectively, blocked the E139-induced synaptic depression. These results suggest that NE and E139, but not DA, employ a similar mechanism to depress EPSCs in the NAc, and support the hypothesis that E139, like NE, may act on alpha(2)-adrenoceptors to cause the release of GABA, which then mediates synaptic depression via GABA(B) receptors.  相似文献   

8.
Despite an abundance of evidence that presynaptic alpha 2-adrenergic receptors mediate inhibitory control of the release of norepinephrine (NE) from the terminals of locus coeruleus (LC) neurons, few studies have demonstrated the physiological significance of this "autoreceptor"-mediated inhibition on NE-mediated synaptic activity within the mammalian brain. This question was addressed by examining the effects of systemic administration of alpha 2-adrenergic agonists and antagonists on the ability of LC stimulation to augment the population spike recorded in the dentate gyrus in response to activation of the perforant path (PP). Extracellular field potentials were recorded in the cell body and dendritic layer of dentate gyrus following single shocks of the entorhinal cortex in halothane-anesthetized rats. Stimulation of the ipsilateral LC 35 msec prior to PP activation produced a short-term enhancement of the population spike amplitude recorded in the cell layer but did not significantly alter dendritic potentials. The effects of LC stimulation were blocked by administration of the beta-adrenergic antagonist propranolol but not the alpha 2-antagonist idazoxan and were abolished by pretreatment of animals with the catecholamine neurotoxin 6-hydroxydopamine. Administration of clonidine reversibly abolished the enhancement produced by LC conditioning. The effect of clonidine was dose dependent and was blocked by administration of idazoxan, which restored the LC potentiative effect. Conditioning stimulation of LC noradrenergic axons in the dorsal bundle also potentiated the PP-evoked population spike, and this effect was equally sensitive to the depressant action of clonidine. In comparison, clonidine, in the range of dosages tested, did not significantly affect the potentials evoked in the dendritic or cell layer by presentations of unconditioned PP test stimuli. We interpret these data to provide evidence for a functional impairment of LC-mediated physiological action on postsynaptic target cells as a result of presynaptic alpha 2-autoreceptor-mediated feedback inhibition of NE release.  相似文献   

9.
In examining the signaling transduction pathway of adrenoceptors in oligodendrocyte progenitors, we have found that stimulation of alpha(1)-adrenoceptors with norepinephrine (NE), in the presence of 3 microM propranolol, increased the activity of mitogen-activated protein kinases (MAPKs). This stimulation was concentration- and time-dependent, with maximal response after 10 min of exposure to 10 microM NE. Pertussis toxin (PTX) blocked NE-mediated MAPK activation, suggesting that alpha(1)-adrenoceptor activates MAPK through a PTX-sensitive G-protein. In the presence of U73122, an inhibitor of phospholipase C (PLC), MAPK activation was blocked. In oligodendrocyte progenitor cultures, chronic treatment with phorbol-12-myristate-13-acetate (PMA) down-regulated protein kinase C (PKC) and blocked NE-mediated MAPK activation. The response to NE was also significantly decreased by the PKC inhibitors H7 and bisindolylmaleimide GF109203X. Similarly, the effect of NE on MAPK activation was not observed in a calcium-free medium. Furthermore, attenuation of MAPK activity was observed when cultures were pretreated with LY294002 and wortmannin, inhibitors of phosphatidylinositol-3 kinase (PI3K). These results suggest that alpha(1)-adrenoceptor-mediated activation of MAPK involves a PTX-sensitive G-protein, PLC, PI3K, and 1,2-diacyl glycerol (DAG)-dependent PKC isozyme. Stimulation of oligodendrocyte progenitors with NE also resulted in an increase in c-fos expression, which was mediated by both alpha(1)- and beta-adrenoceptor and was calcium-, PKC-, and protein kinase A (PKA)-dependent. Interestingly, in the presence of PD 098059, a specific inhibitor of MAPK kinase (MEK), both MAPK activity and c-fos expression were blocked. This suggests that MAPK is implicated in the transmission of the signal from alpha(1)-adrenoceptor to c-fos gene expression.  相似文献   

10.
Cognition and acquisition of novel motor skills and responses to emotional stimuli are thought to involve complex networking between pyramidal and local GABAergic neurons in the prefrontal cortex. There is increasing evidence for the involvement of cortical norepinephrine (NE) deriving from the nucleus locus coeruleus (LC) in these processes, with possible reciprocal influence via descending projections from the prefrontal cortex to the region of the LC. We used in vivo intracellular recording in rat prefrontal cortex to determine the synaptic responses of individual neurons to single electrical stimulation of the mesencephalic region including the nucleus LC. The most common response consisted of a late-IPSP alone or preceded by an EPSP. The presence of an early-IPSP following the EPSP was sometimes detected. Analysis of the voltage dependence revealed that the late-IPSP and early-IPSP were putative K+- and Cl dependent, respectively. Synaptic events occurred following short delays and were inconsistent with the previously reported time for electrical activation of unmyelinated LC fibers. Moreover, systemic injection of the adrenergic antagonists propranolol (β receptors), or prazosin (α1 receptors), did not block synaptic responses to stimulation of the LC region. Finally, certain neurons were antidromically activated following electrical stimulation of this region of the dorsal pontine tegmentum. Taken together, these results suggest that the complex synaptic events in pyramidal neurons of the prefrontal cortex that are elicited by single electrical stimulation of the LC area are mainly due to antidromic activation of cortical efferents. Further insight into the chemical circuitry underlying these complex synaptic responses was provided by electron microscopic immunocytochemical analysis of the relations between the physiologically characterized neurons and either 1) GABA or 2) dopamine-β-hydroxylase (DBH), a marker for noradrenergic terminals. GABA-immunoreactive terminals formed numerous direct symmetric synapses on somata and dendrites of pyramidal cells recorded and filled with lucifer yellow (LY). In contrast, in single sections, noradrenergic terminals immunoreactive for DBH rarely contacted LY-filled somata and dendrites. These results support the conclusion that IPSPs observed following single electrical stimulation of the LC region are mediated bu GABA, with little involvement of NE. These IPSPs, arising from antidromic invasion of mPFC cells innervating the LC, may improve the signal-to-noise ratio and favor a better responsiveness of neighboring neurons to NE released in the mPFC. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Previous studies, using in vivo extracellular unitary recordings in anaesthetized rats, have shown that the selective 5-HT(1A) receptor antagonist WAY 100,635 suppressed the firing rate of locus coeruleus (LC) norepinephrine (NE) neurons and that this effect was abolished by lesioning 5-HT neurons. In the present experiments, the selective 5-HT(2A) receptor antagonist MDL 100,907, while having no effect on the spontaneous firing activity of LC neurons in controls, was able to restore NE neuronal discharges following the injection of WAY 100,635. The 5-HT(1A) receptor agonist 8-OH-DPAT enhanced the firing activity of NE neurons and this action was entirely dependent on intact 5-HT neurons, unlike the inhibitory effect of the 5-HT(2) receptor agonist DOI. Taken together, these data indicate that 5-HT(2A) but not 5-HT(1A) receptors controlling LC firing activity are postsynaptic to 5-HT neurons. Prolonged, but not subacute, administration of selective 5-HT reuptake inhibitors (SSRIs) produces a decrease in the spontaneous firing activity of LC NE neurons. MDL 100,907 partially reversed this suppressed firing activity of LC neurons in paroxetine-treated rats. Although the alpha(2)-adrenoceptor antagonist idazoxan also enhanced the firing activity of NE neurons in paroxetine-treated rats, this increase was similar to that obtained in controls. In conclusion, prolonged SSRI treatment enhances a tonic inhibitory influence by 5-HT on LC neurons through postsynaptic 5-HT(2A) receptors that are not located on NE neurons. A speculative neuronal circuitry accounting for these phenomena on LC NE activity is proposed.  相似文献   

12.
Based on the results of independent studies the involvement of norepinephrine in REM sleep regulation was known. Isolated studies showed that the effect could be mediated through either one or more subtypes of adrenoceptors. Earlier we have reported that REM-OFF neurons continue firing during REM sleep deprivation and mild but continuous stimulation of locus coeruleus (LC) or picrotoxin injection into the LC, that did not allow the REM-OFF neurons in the LC to stop firing, reduced REM sleep. However, the mechanism of action and type of adrenoreceptors involved in REM sleep regulation were unknown. The possible mechanism of action has been investigated in this study. It was proposed that if LC stimulation-induced decrease in REM sleep was due to norepinephrine, adrenergic antagonist must prevent the effect. Therefore, in this study, the effects of alpha1, alpha2 and beta-antagonists, viz. prazosin, yohimbine and propranolol, respectively, and alpha2 agonist, clonidine, on LC stimulation-induced reduction in REM sleep were investigated. The results showed that stimulation of LC inhibited REM sleep by reducing the frequency of generation of REM sleep, although the duration per episode remained unaffected. This decrease in the frequency of REM sleep was blocked by beta-antagonist propranolol while the duration of REM sleep per episode was blocked by alpha1-antagonist, prazosin. Also, a critical level of norepinephrine in the system was required for the generation of REM sleep, however, a higher level may be inhibitory. Based on the results of this study and our earlier studies, an interaction between neurons, containing different neurotransmitters and their subtypes of receptors for LC-mediated regulation of REM sleep has been proposed.  相似文献   

13.
In the rat, postsynaptic 5-hydroxytryptamine2A receptors medial prefrontal cortex control the activity of the serotonergic system through changes in the activity of pyramidal neurons projecting to the dorsal raphe nucleus. Here we extend these observations to mouse brain. The prefrontal cortex expresses abundant 5- hydroxytryptamine2A receptors, as assessed by immunohistochemistry, Western blots and in situ hybridization procedures. The application of the 5-hydroxytryptamine2A/2C agonist DOI (100 microm) by reverse dialysis in the medial prefrontal cortex doubled the local release of 5-hydroxytryptamine. This effect was reversed by coperfusion of tetrodotoxin, and by the selective 5-hydroxytryptamine2A receptor antagonist M100907, but not by the 5-hydroxytryptamine2C antagonist SB-242084. The effect of DOI was also reversed by prazosin (alpha1-adrenoceptor antagonist), BAY x 3702 (5-hydroxytryptamine1A receptor agonist), NBQX (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate/kainic acid antagonist) and 1S,3S-ACPD (mGluR II/III agonist), but not by dizocilpine (N-methyl-d-aspartate antagonist). alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate mimicked the 5-hydroxytryptamine elevation produced by DOI, an effect also reversed by BAY x 3702. Likewise, the coperfusion of classical (chlorpromazine, haloperidol) and atypical antipsychotic drugs (clozapine, olanzapine) fully reversed the 5-hydroxytryptamine elevation induced by DOI. These observations suggest that DOI increases 5-hydroxytryptamine release in the mouse medial prefrontal cortex through the activation of local 5-hydroxytryptamine2A receptors by an impulse-dependent mechanism that involves/requires the activation of local alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate receptors. This effect is reversed by ligands of receptors present in the medial prefrontal cortex, possibly in pyramidal neurons, which are involved in the action of antipsychotic drugs. In particular, the reversal by classical antipsychotics may involve blockade of alpha1-adrenoceptors, whereas that of atypical antipsychotics may involve 5-hydroxytryptamine2A receptors and alpha1-adrenoceptors.  相似文献   

14.
This study investigated the effects of iontophoretic application of excitatory amino acid (EAA) and norepinephrine (NE) agonists and antagonists on synaptic transmission to individual jaw-opener motoneurons (digastric) during activation of the jaw-opening reflex (JOR) evoked by stimulation of either fibers within the oral mucosa (OM), or tooth-pulp (TP). During both OM and TP stimulation, kynurenic acid (KYN), a wide-spectrum EAA antagonist, suppressed jaw-opener motoneuron discharge. Application of APV, an NMDA receptor antagonist, also suppressed motoneuron discharge evoked by TP stimulation, but produced minimal effects on motoneuron discharge evoked by OM stimulation. These data suggest a role of EAA in mediating synaptic transmission from last-order interneurons to jaw-opener motoneurons during the jaw-opening reflex evoked by intra-oral stimulation. Iontophoretic application of NE produced dual effects (facilitation or suppression) on motoneuronal discharge evoked by OM or TP stimulation. The effects were not related to the mode of motoneuronal activation. Iontophoretic application of the alpha 1 agonist, phenylephrine, facilitated motoneuronal discharge. In contrast, application of the alpha 2 agonist, clonidine, suppressed motoneuronal discharge during intra-oral stimulation. These effects were antagonized by prior iontophoretic application of the alpha 1 antagonist, prazosin, or the alpha 2 antagonist, yohimbine, respectively. In those cells in which the predominant effect of NE application on synaptic transmission was either facilitation or suppression of motoneuronal discharge, prior iontophoretic application of prazosin or yohimbine, respectively, antagonized the effects of NE application. These data suggest that NE can modulate synaptic transmission to jaw-opener motoneurons evoked by intra-oral stimulation via activation of alpha 1 or alpha 2 adrenoreceptors on trigeminal motoneurons.  相似文献   

15.
Rats, from birth to postnatal day 34, were anesthetized with urethane and a neuropharmacological study was carried out of the autoreceptors located on the somadendritic membranes of locus coeruleus (LC) neurons. Iontophoretic application of noradrenaline (NA) caused inhibition of LC cell firing at all developmental stages, and such inhibition was totally blocked by the alpha 2-antagonist piperoxane. The sensitivity of LC neurons to iontophoretically applied NA appeared to become reduced with age. In LC neurons from birth to postnatal day (PD) 8, the prolonged period of suppressed firing after antidromic activation by stimulation of the dorsal noradrenergic bundle was not shortened by piperoxane. After PD 9, the proportion of LC neurons in which piperoxane could antagonize the postactivation inhibition increased with age. These results indicated that although LC neurons, even at birth, had alpha 2-adrenoceptors on the somadendritic membranes which were responsible for the NA-induced inhibition, inhibition of LC cell firing caused by NA released from the terminals of axon collaterals and/or possibly from dendrodendritic synapses did not occur until PD 9.  相似文献   

16.
The inhibitory activity in the cerebellar network, as investigated in acute brain slices from 14-20 days old rats, is modulated by alpha1-adrenergic stimulation. The specific alpha1-adrenoceptor agonist phenylephrine (PhE; 10 microM) or the alpha-adrenoceptor agonist 6-fluoronoradrenaline (10 microM) increases the frequency and the amplitude of spontaneous postsynaptic currents (sPSC) in Purkinje neurons. The effects are sensitive to the alpha1-adrenoceptor antagonists prazosin (30 microM) and phentolamine (10 microM). The PhE-induced augmentation is suppressed when phospholipase C is blocked by preincubation with U73122 (10 microM) but is not affected by inhibition of protein kinases with H7 (10 microM) or GF109203X (10 microM). Involvement of intracellular Ca(2+) stores was shown by a reduced PhE effect after blocking of SERCA pumps with cyclopiazonic acid (30 microM) and thapsigargin (1 microM). The persistence of the PhE effect on the frequency of miniature postsynaptic currents, as recorded in presence of tetrodotoxin, indicates a presynaptic localization of the alpha1-adrenoceptors. A block of voltage-gated Ca(2+) channels with nifedipine, verapamil, or omega-conotoxin MVIIC did not suppress the PhE-induced increase of the frequency and amplitude of sPSC. The results suggest that alpha1-adrenoceptors at presynaptic terminals mediate an increase of the spontaneous synaptic inhibition of Purkinje neurons in the cerebellar cortex via release of Ca(2+) from intracellular stores.  相似文献   

17.
Electrophysiological and radioligand binding methods were used to characterize noradrenergic denervation supersensitivity at alpha 1-adrenoceptors in rat thalamus. Denervation was accomplished either by intraventricular or intracerebral injection of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In the physiological studies, the sensitivity of single lateral geniculate neurons to norepinephrine, carbachol, and serotonin was compared in sham and lesioned animals various times after 6-OHDA. Conducted in parallel were radioligand binding studies in which the density and affinity of thalamic alpha 1-adrenoceptors were measured with the specific antagonist [3H]prazosin. The results indicate that denervation produces a selective increase in the sensitivity of geniculate neurons to alpha 1-adrenergic stimulation and a concomitant increase in alpha 1-adrenoceptor density and agonist affinity.  相似文献   

18.
Kang YM  Ouyang W  Chen JY  Qiao JT  Dafny N 《Brain research》2000,869(1-2):146-157
The effects of norepinephrine (NE) on the electrophysiological activities of single hypothalamic arcuate neurons were studied using extracellular recording of 385 neurons from 169 brain slices in rats. The results showed that: (1) of 236 neurons selected randomly and tested with NE application, 137 (58.0%) were excited, 67 (28.4%) were inhibited, and 32 (13.6%) failed to respond; (2) substitution of low Ca(2+)-high Mg(2+) artificial cerebrospinal fluid (ACSF) for normal ACSF abolished the NE-induced inhibitory effect but failed to abolish the excitatory effect; (3) both the NE-induced excitatory and inhibitory effects were antagonized partly by phentolamine, prazosin, and propranolol but not by yohimbine; (4) naloxone and glibenclamide, a blocker of adenosine triphosphate-sensitive (K(ATP)) channels, blocked the NE-induced inhibitory effect; and (5) neurons that were inhibited by NE were also inhibited by morphine and cromakalim, an agonist of K(ATP) channels, and moreover, the morphine-induced inhibitory effect could be blocked by glibenclamide, while the cromakalim-induced inhibitory effect was not blocked by naloxone. These results imply that: (a) NE excites arcuate neurons through a mechanism that is insensitive to lowering the extracellular Ca(2+) suggesting a direct postsynaptic response through alpha(1)- and beta-adrenergic receptors, while NE inhibits cells through at least an inhibitory interneuron in arcuate and so is dependent on a Ca(2+)-sensitive presynaptic release mechanism; and (b) the inhibitory interneuron may be opioidergic, being excited first through alpha(1)- and beta-adrenergic receptors, after which the released opioids inhibit the neurons being recorded with an involvement of activation of K(ATP) channels. This possibility needs to be substantiated in much more detail.  相似文献   

19.
Dopamine (DA) profoundly modulates excitatory synaptic transmission and synaptic plasticity in the brain. In the present study the effects of SKF83959, the selective agonist of phosphatidylinositol (PI)-linked D(1) -like receptor, on the excitatory synaptic transmission were investigated in rat hippocampus. SKF83959 (10-100 μM) reversibly suppressed the field excitatory postsynaptic potential (fEPSP) elicited by stimulating the Schaffer's collateral-commissural fibers in CA1 area of hippocampal slices. However, the inhibition was not blocked by the D(1) receptor antagonist SCH23390, the D(2) receptor antagonist raclopride, the 5-HT(2A/2C) receptor antagonist mesulergine, or the α(1) -adrenoceptor antagonist prazosin. In addition, SKF83959 inhibited the afferent volley and significantly reduced the paired-pulse facilitation ratios. In dissociated hippocampal CA1 pyramidal neurons, SKF83959 had no detectable effect on glutamate-induced currents but potently inhibited voltage-activated Na(+) current (IC50 value = 26.9 ± 1.0 μM), which was not blocked by SCH23390 or by intracellular dialysis of GDP-β-S. These results demonstrate that SKF83959 suppressed the excitatory synaptic transmission in hippocampal CA1 area, which was independent of D(1) -like receptor. The mechanism underlying the effect could be mainly inhibition of Na(+) channel in the afferent fibers. The suppression of excitatory synaptic transmission and the Na(+) channel by SKF83959 may contribute to its therapeutic benefits in Parkinson's disease.  相似文献   

20.
The present study was designed to determine whether activation of locus coeruleus (LC) neurons by hemodynamic stress is mediated by local release of corticotropin-releasing factor (CRF) within the LC. The ability of local LC injection of the CRF antagonist, alpha helical CRF9-41, to prevent LC activation elicited by i.v. nitroprusside infusion was investigated in halothane-anesthetized rats. Nitroprusside infusion (10 micrograms/30 microliters/min for 15 min) consistently increased LC spontaneous discharge rate with the mean maximum increase of 32 +/- 5% (n = 8) occurring between 3 and 9 min after the initiation of the infusion. Prior local LC injection of alpha helical CRF9-41 (150 ng), but not of saline (150 nl), prevented LC activation by nitroprusside. Alpha helical CRF9-41 did not alter LC spontaneous discharge rate or LC discharge evoked by repeated sciatic nerve stimulation suggesting that the CRF antagonist selectively attenuates stress-elicited LC activation. In contrast to alpha helical CRF9-41, the excitatory amino acid antagonist, kynurenic acid, did not attenuated LC activation by nitroprusside at a dose (0.5 mumol in 5 microliters, i.c.v.) that prevented LC activation by sciatic nerve stimulation. Taken together, these findings suggest that hemodynamic stress elicited by nitroprusside infusion activates LC neurons by releasing CRF within the LC region. The onset of LC activation by nitroprusside was temporally correlated with electroencephalographic (EEG) activation recorded from the frontal cortex and hippocampus. EEG activation was characterized by a change from low frequency, high amplitude activity to high frequency low amplitude activity recorded from the cortex and theta rhythm recorded from the hippocampus. LC activation usually outlasted the EEG activation. Nitroprusside infusion following local LC injection of alpha helical CRF9-41 was also associated with EEG activation in most rats. However, the duration of hippocampal theta rhythm was shorter in rats administered alpha helical CRF9-41. Thus, LC activation during cardiovascular challenge may play some role in EEG activation but is not necessary for this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号