首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
2.
Na+,K(+)-ATPase is a major determinant of myocyte homeostasis and excitation-contraction. Cardiac glycosides such as digitalis and ouabain increase the inotropic state of the heart through the inhibition of Na+,K(+)-ATPase. While cardiac glycosides are commonly used in the setting of congestive heart failure, optimal therapy would depend upon an intact Na+,K(+)-ATPase system. Changes in Na+,K(+)-ATPase activity and glycoside receptor density with the development of cardiomyopathy have not been well defined. Accordingly, left ventricular (LV) function and Na+,K(+)-ATPase activity and glycoside binding were examined in 7 pigs with dilated cardiomyopathy and in 7 controls. Dilated cardiomyopathy was produced by pacing induced supraventricular tachycardia (SVT) for 3 weeks at 240 bpm. Left ventricular function was examined by simultaneous echocardiography and catheterization. Left ventricular fractional shortening significantly decreased with SVT (34 +/- 2 vs. 10 +/- 2%, P less than 0.05) and LV diastolic dimension and pressure significantly increased (3.8 +/- 0.3 vs. 5.1 +/- 0.4 cm, and 8 +/- 2 vs. 27 +/- 2 mmHg, respectively, P less than 0.05) as compared to controls. Na+,K(+)-ATPase activity was assayed as potassium dependent p-nitrophenol-phosphatase activity. Glycoside receptor density (Bmax) and affinity (KD) was determined using [3H]-ouabain binding assays. Na+,K(+)-ATPase activity, Bmax, and KD all significantly fell from control values with SVT induced cardiomyopathy (0.64 +/- 0.06 vs. 0.45 +/- 0.12 micrograms pNP/mg/h, 5.5 +/- 0.4 vs. 1.9 +/- 0.4 pmol/mg, and 15 +/- 3 vs. 9 +/- 3 nM, respectively, P less than 0.05). The distribution of Na+,K(+)-ATPase in LV sections taken from control and SVT hearts were examined using immunohistochemical techniques. A patchy distribution of Na+,K(+)-ATPase along the sarcolemma in SVT sections was observed as opposed to a more uniform distribution in control myocytes. There was no observable change in the relative content and distribution of the Na+,K(+)-ATPase isoforms alpha 2 and alpha 3 in the SVT sections as compared to controls. In an additional set of experiments, changes in LV as well as isolated myocyte responsiveness to ouabain were examined. Left ventricular fractional shortening and peak dP/dt were measured following administration of 20-60 micrograms/Kg of ouabain in control (n = 3) and SVT (n = 3) pigs. In the control group, 40 micrograms/Kg caused a 25% in LV fractional shortening and a 60% increase in peak dP/dt from baseline. Cumulative doses of 60 micrograms/Kg in the control pigs resulted in over a 75% increase in peak dP/dt from baseline values.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Our previous studies of microperfused single proximal tubule showed that flow-dependent Na(+) and HCO(3)(-) reabsorption is due to a modulation of both NHE3 and vacuolar H(+)-ATPase (V-ATPase) activity. An intact actin cytoskeleton was indicated to provide a structural framework for proximal tubule cells to transmit mechanical forces and subsequently modulate cellular functions. In this study, we have used mouse proximal tubule (MPT) cells as a model to study the role of fluid shear stress (FSS) on apical NHE3 and V-ATPase and basolateral Na/K-ATPase trafficking and expression. Our hypothesis is that FSS stimulates both apical and basolateral transporter expression and trafficking, which subsequently mediates salt and volume reabsorption. We exposed MPT cells to 0.2 dynes/cm(2) FSS for 3 h and performed confocal microscopy and Western blot analysis to compare the localization and expression of both apical and basolateral transporters in control cells and cells subjected to FSS. Our findings show that FSS leads to an increment in the amount of protein expression, and a translocation of apical NHE3 and V-ATPase from the intracellular compartment to the apical plasma membrane and Na/K-ATPase to the basolateral membrane. Disrupting actin by cytochalasin D blocks the FSS-induced changes in NHE3 and Na/K-ATPase, but not V-ATPase. In contrast, FSS-induced V-ATPase redistribution and expression are largely inhibited by colchicine, an agent that blocks microtubule polymerization. Our findings suggest that the actin cytoskeleton plays an important role in FSS-induced NHE3 and Na/K-ATPase trafficking, and an intact microtubule network is critical in FSS-induced modulation of V-ATPase in proximal tubule cells.  相似文献   

4.
Na+,K(+)-ATPase is involved in generating transmembrane ion gradients and the associated potential difference necessary for contraction of cardiac myocytes. It is possible that changes in the activity or membrane content of this enzyme may occur under ischemic conditions. To investigate this question, right ventricular (RV) ischemia was produced in closed chest pigs and the RV ejection fraction was measured using a fast response thermistor in the pulmonary artery. Sections of RV collected at 15, 30, 45, and 60 min of ischemia were assayed for changes in sarcolemmal Na+,K(+)-ATPase activity using an enzyme coupled histochemical reaction as well as a biochemical assay. Similar sections were examined for changes in the distribution and content of Na+,K(+)-ATPase using an immunocytochemical procedure. The RV ejection fraction fell significantly from baseline after 15 min of ischemia (62 +/- 3% vs 39 +/- 3% respectively, P less than 0.05, n = 10). A decrease in sarcolemmal Na+,K(+)-ATPase activity was first detected after 30 min of occlusion and a significant reduction in enzyme activity was present at 45 min of ischemia. In contrast no changes were detected in the distribution or content of immunoreactive Na+,K(+)-ATPase in the sarcolemma at any time point. In addition, the amount of Na+,K(+)-ATPase in tissue homogenates showed no significant changes after 45 min of ischemia. These findings show that acute ischemia results in the disruption of sarcolemmal Na+,K(+)-ATPase activity and suggests that the decrease in enzyme activity is not due to the loss or redistribution of sarcolemmal Na+,K(+)-ATPase.  相似文献   

5.
To avoid large changes in cell K+ content and volume during variations in Na+,K+-ATPase activity, Na+-transporting epithelia must adjust the rate of K+ exit through passive permeability pathways. Recent studies have shown that a variety of passive K+ transport mechanisms may coexist within a cell and may be functionally linked to the activity of the Na+,K+-ATPase. In this study, we have identified three distinct pathways for passive K+ transport that act in concert with the Na+,K+-ATPase to maintain intracellular K+ homeostasis in the proximal tubule. Under control conditions, the total K+ leak of the tubules consisted of discrete Ba2+-sensitive (approximately 65%), quinine-sensitive (approximately 20%), and furosemide-sensitive (approximately 10%) pathways. Following inhibition of the principal K+ leak pathway with Ba2+, the tubules adaptively restored cell K+ content to normal levels. This recovery of cell K+ content was inhibited, in an additive manner, by quinine and furosemide. Following adaptation to Ba2+, the tubules exhibited a 30% reduction in Na+-K+ pump rate coupled with an increase in K+ leak by means of the quinine-sensitive (approximately 70%) and furosemide-sensitive (approximately 280%) pathways. Thus, the proximal tubule maintains intracellular K+ homeostasis by the coordinated modulation of multiple K+ transport pathways. Furthermore, these results suggest that, like Ba2+, other inhibitors of K+ conductance will cause compensatory changes in both the Na+-K+ pump and alternative pathways for passive K+ transport.  相似文献   

6.
Overexpression of csk inhibits acid-induced activation of NHE-3.   总被引:4,自引:0,他引:4       下载免费PDF全文
Opossum kidney OKP cells express an apical membrane Na+/H+ antiporter that is encoded by NHE-3 (for Na+/H+ exchanger 3) and is similar in many respects to the renal proximal tubule apical membrane Na+/H+ antiporter. Chronic incubation of OKP cells in acid medium for 24 hr increases Na+/H(+)-antiporter activity and NHE-3 mRNA abundance. The increase in Na+/H(+)-antiporter activity was not prevented by H7, a protein kinase C/protein kinase A inhibitor, but was prevented by herbimycin A, a tyrosine kinase inhibitor. Incubation of cells in acid medium increased c-src activity, and this was inhibited by herbimycin A. To determine the role of the src family of nonreceptor protein-tyrosine kinases, Csk (for carboxyl-terminal src kinase), a physiologic inhibitor of these kinases, was overexpressed in OKP cells. In three clones overexpressing csk, acid-induced increases in Na+/H(+)-antiporter activity and NHE-3 mRNA abundance were inhibited. In these clones, inhibition of acid activation of Na+/H(+)-antiporter activity paralleled inhibition of acid activation of c-src. Neither herbimycin A nor overexpression of csk inhibited dexamethasone-induced increases in Na+/H(+)-antiporter activity. These studies show that decreases in pH activate c-src and that the src family nonreceptor protein-tyrosine kinases play a key role in acid activation of NHE-3.  相似文献   

7.
The alpha-adrenergic agonist oxymetazoline increased Na+,K(+)-ATPase activity of single proximal convoluted tubules dissected from rat kidney. Activation of the enzyme by oxymetazoline was prevented by either the alpha 1-adrenergic antagonist prazosin or the alpha 2-adrenergic antagonist yohimbine and was mimicked by the calcium ionophore A23187. The effect of oxymetazoline on Na+,K(+)-ATPase activity was prevented by a specific peptide inhibitor of calcineurin, as well as by FK 506, an immunosuppressant agent known to inhibit calcineurin; these results indicate that the action of oxymetazoline is mediated via activation of calcineurin (a calcium/calmodulin-dependent protein phosphatase). Activation of the Na+,K(+)-ATPase by either oxymetazoline or A23187 was associated with a greater than 2-fold increase in its affinity for Na+. The results provide a biochemical mechanism by which norepinephrine, released from renal nerve terminals, stimulates Na+ retention.  相似文献   

8.
Membrane proteins of transporting epithelia are often distributed between apical and basolateral surfaces to produce a functionally polarized cell. The distribution of Na+,K+-ATPase [ATP phosphohydrolase (Na+/K+-transporting), EC 3.6.1.37] between apical and basolateral membranes of hepatocytes has been controversial. Because Na+,K+-ATPase activity is fluidity dependent and the physiochemical properties of the apical membrane reduces its fluidity, we investigated whether altering membrane fluidity might uncover cryptic Na+,K+-ATPase in bile canalicular (apical) surface fractions free of detectable Na+,K+-ATPase and glucagon-stimulated adenylate cyclase activities. Apical fractions exhibited higher diphenylhexatriene-fluorescence polarization values when compared with sinusoidal (basolateral) membrane fractions. When 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate (A2C) was added to each fraction, Na+,K+-ATPase, but not glucagon-stimulated adenylate cyclase activity, was activated in the apical fraction. In contrast, further activation of both enzymes was not seen in sinusoidal fractions. The A2C-induced increase in apical Na+,K+-ATPase approached 75% of the sinusoidal level. Parallel increases in apical Na+,K+-ATPase were produced by benzyl alcohol and Triton WR-1339. All three fluidizing agents decreased the order component of membrane fluidity. Na+,K+-ATPase activity in each subfraction was identically inhibited by the monoclonal antibody 9-A5, a specific inhibitor of this enzyme. These findings suggest that hepatic Na+,K+-ATPase is distributed in both surface membranes but functions more efficiently and, perhaps, specifically in the sinusoidal membranes because of their higher bulk lipid fluidity.  相似文献   

9.
AIMS/HYPOTHESIS: C-peptide, the cleavage product of proinsulin processing exerts physiological effects including stimulation of Na(+),K(+)-ATPase in erythrocytes and renal proximal tubules. This study was undertaken to assess the physiological effects of connecting peptide on Na(+),K(+)-ATPase activity in the medullary thick ascending limb of Henle's loop. METHODS: Na(+),K(+)-ATPase activity was measured as the ouabain-sensitive generation of (32)Pi from gamma[(32)P]-ATP and (86)Rb uptake on isolated rat medullary thick ascending limbs. The cell-surface expression of Na(+),K(+)-ATPase was evaluated by Western blotting of biotinylated proteins, and its phosphorylation amount was measured by autoradiography. The membrane-associated fraction of protein kinase C isoforms was evaluated by Western blotting. RESULTS: Rat connecting peptide concentration-dependently stimulated Na(+),K(+)-ATPase activity with a threshold at 10(-9) mol/l and a maximal effect at 10(-7) mol/l. C-peptide (10(-7) mol/l) already stimulates Na(+),K(+)-ATPase activity after 5 min with a plateau from 15 to 60 min. C-peptide (10(-7) mol/l) stimulated Na(+),K(+)-ATPase activity and (86)Rb uptake to the same extent, but did not alter Na(+),K(+)-ATPase cell surface expression. The stimulation of Na(+),K(+)-ATPase activity was associated with an increase in Na(+),K(+)-ATPase alpha-subunit phosphorylation and both effects were abolished by a specific protein kinase C inhibitor. Furthermore, connecting peptide induced selective membrane translocation of PKC-alpha. CONCLUSION/INTERPRETATION: This study provides evidence that in rat medullary thick ascending limb, C-peptide stimulates Na(+),K(+)-ATPase activity within a physiological concentration range. This effect is due to an increase in Na(+),K(+)-ATPase turnover rate that is most likely mediated by protein kinase C-alpha phosphorylation of the Na(+),K(+)-ATPase alpha-subunit, suggesting that C-peptide could control Na(+) reabsorption during non-fasting periods.  相似文献   

10.
A wealth of studies performed with a spectrum of methods spanning simple clearance studies to the molecular identification of ion transporters has increased our understanding of how approximately 1.7 kg of NaCl and 180 L of H2O are absorbed by renal tubules in man and how the urinary excretion is fine-tuned to meet homeostatic requirements. This review will summarize our current understanding. In the proximal nephron, approximately 60 to 70% of the filtered Na+ and H2O is absorbed together with approximately 90% of the filtered HCO3-. The exact quantities are determined by many regulatory factors, such as glomerulotubular balance, angiotensin II, endothelin, sympathetic innervation, parathyroid hormone, dopamine, acid base status and others. The essential components of absorption are luminal membrane Na+/H+ exchange and the basolateral (Na+ + K+)-ATPase. In the thick ascending limb of the loop of Henle, 20 to 30% of the filtered NaCl is absorbed via Na+2Cl-K+ cotransport driven by the basolateral (Na+ + K+)-ATPase. No H2O is absorbed at this nephron site. The transport rate is determined by the Na+ load and by several hormones and neurotransmitters, including prostaglandins, parathyroid hormone, glucagon, calcitonin, arginine vasopressin (AVP), and adrenaline. In the distal tubule, some 5 to 10% of the filtered load is absorbed via Na+Cl- cotransport in the luminal membrane driven by the basolateral (Na+ + K+)-ATPase. The rate of transport is again determined by the delivered load and by several hormones and neurotransmitters. One of the tasks of the collecting duct is to control the absorption of approximately 10 to 15% of the filtered H2O, regulated by AVP, and just a few percent of the filtered Na+, controlled by aldosterone and natriuretic hormone. The water absorption proceeds through the luminal membrane via aquaporin 2 and through the basolateral membrane via aquaporin 3 channels and is driven by the osmotic gradient built up by the counter current concentrating system. The Na+ absorption occurs via Na+ channels present in the luminal membrane driven by the basolateral (Na+ + K+)-ATPase. With no pharmacological interference, urinary excretion of Na+ can vary between less than 0.1% and no more than 3% of the filtered load, and that of H2O can vary between 0.3 and 15%.  相似文献   

11.
Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

12.
We have previously shown that angiotensin II (Ang II) has a role at the level of the eel gill chloride cell regulating sodium balance, and therefore osmoregulation; the purpose of the present study was to extend these findings to another important osmoregulatory organ, the kidney. By catalytic histochemistry Na(+)/K(+)ATPase activity was found in both sea water (SW)- and freshwater (FW)-adapted eel kidney, particularly at the level of both proximal and distal tubules. Quantitation of tubular cell Na(+)/K(+)ATPase activity, by imaging, gave values in SW-adapted eels which were double those found in FW-adapted eels (Student's t-test: P<0.0001). This was due to a reduced number of positive tubules present in FW-adapted eels compared with SW-adapted eels. By conventional enzymatic assay, the Na(+)/K(+)ATPase activity in isolated tubular cells from SW-adapted eels showed values 1.85-fold higher those found in FW-adapted eels (Student's ttest: P<0.0001). Perfusion of kidney for 20 min with 100 nM Ang II provoked a significant increase (1.8-fold) in Na(+)/K(+)ATPase activity in FW, due to up-regulation of Na(+)/K(+)ATPase activity in a significantly larger number of tubules (Student's t-test: P<0.0001). The effect of 100 nM Ang II in SW-adapted kidneys was not significant. Stimulation with increasing Ang II concentrations was performed on isolated kidney tubule cells: Ang II provoked a dose-dependent stimulation of the Na(+)/K(+)ATPase activity in FW-adapted eels, reaching a maximum at 100 nM (1.82-fold stimulation), but no significant effect was found in SW-adapted eels (ANOVA: P<0.001 and P>0.05 respectively). Isolated tubule cells stimulated with 100 nM Ang II showed a significant generation of inositol trisphosphate (InsP(3)) and an increment in calcium release from intracellular stores. In conclusion, our results suggest that tubular Na(+)/K(+)ATPase is modulated by environmental salinity, and that Ang II has a role in regulating its activity in FW-adapted eels, probably through an InsP(3)-dependent mechanism.  相似文献   

13.
Carey RM 《Hypertension》2001,38(3):297-302
All of the components of a complete dopamine system are present within the kidney, where dopamine acts as a paracrine substance in the control of sodium excretion. Dopamine receptors can be divided into D(1)-like (D(1) and D(5)) receptors that stimulate adenylyl cyclase and D(2)-like (D(2), D(3), and D(4)) receptors that inhibit adenylyl cyclase. All 5 receptor subtypes are expressed in the kidney, albeit in low copy. Dopamine is synthesized extraneuronally in proximal tubule cells, exported from these cells largely into the tubule lumen, and interacts with D(1)-like receptors to inhibit the Na(+)-H(+) exchanger and Na(+),K(+)-ATPase, decreasing tubule sodium reabsorption. During moderate sodium surfeit, dopamine tone at D(1)-like receptors accounts for approximately 50% of sodium excretion. In experimental and human hypertension, 2 renal dopaminergic defects have been described: (1) decreased renal generation of dopamine and (2) a D(1) receptor-G protein coupling defect. Both defects lead to renal sodium retention, and each may play an important role in the pathophysiology of essential hypertension.  相似文献   

14.
Recently, the kidney has been reported to be the site of receptors for progesterone. Although the exact segment of the nephron has not been precisely determined, the cortical collecting tubule was suspected, since the hormone displaces bound 3H aldosterone. The aim of the present study was to investigate the effect of progesterone on calcium (Ca(2+)) transport by the renal luminal membranes and to determine the site and mechanisms of action. Incubation of proximal tubules from rabbit kidney with progesterone did not influence Ca(2+) or Na(+) transport by the luminal membranes. In the distal tubules (DT), a 5 min treatment with 10(-11) M of the hormone enhanced 0.5 mM 45Ca uptake from 0.60+/-0.02 to 0.84+/-0.08 pmol/microg per 10 s (P<0.05) in the absence of Na(+) and from 0.26+/-0.02 to 0.41+/-0.02 pmol/microg per 10 s (P<0.01) in the presence of 100 mM Na(+). The dose-response curve showed a biphasic action with a peak at 10(-11) M. Ca(2+) uptake by DT membranes presents dual kinetics. The hormone enhanced the Vmax value of the high affinity component from 0.41+/-0.05 to 0.57+/-0.06 pmol/microg per 10 s (P<0.05). In contrast, incubation of DT with 10(-8) M progesterone decreased 1 mM Na(+) uptake from 0.68+/-0.03 to 0.53+/-0.07 pmol/microg per 10 s (P<0.05). Finally, 10(-11) M progesterone also enhanced Ca(2+) uptake by the DT membranes through a direct nongenomic mechanism.  相似文献   

15.
The aim of this study was to develop an in vitro system in which we could study the causal relationship between short-term stimulation of Na+,K+-ATPase in the collecting tubule by aldosterone on the one hand and protein synthesis and changes in intracellular Na+ concentration on the other hand. Previous in vivo studies suggested that triiodothyronine might facilitate aldosterone-induced stimulation of Na+,K+-ATPase. Results show that when segments of cortical collecting tubules microdissected from collagenase-treated kidneys of adrenalectomized rats were incubated for 3 hr in the presence of either 10(-8) M aldosterone or 10(-8) M triiodothyronine alone Na+,K+-ATPase activity was not altered, whereas the addition of both hormones markedly stimulated the activity and the number of catalytic sites of Na+,K+-ATPase. This stimulation was abolished by actinomycin D and cycloheximide, whereas it was not altered in the absence of extracellular sodium or in the presence of the luminal Na+-channel blocker amiloride. Thus, triiodothyronine facilitates the in vitro induction of Na+,K+-ATPase synthesis by aldosterone. Aldosterone action on Na+,K+-ATPase is independent of Na+ availability.  相似文献   

16.
Estrogens are widely used for contraception and osteoporosis prevention. The aim of the present study was to investigate the effect of 17 beta-estradiol on calcium (Ca(2+)) transport by the nephron luminal membranes, independently of any other Ca(2+)-regulating hormones. Proximal and distal tubules of rabbit kidneys were incubated with 17 beta-estradiol or the carrier for various periods of time, and the luminal membranes of these tubules were purified and vesiculated. Ca(2+) uptake by membrane vesicles was measured using the Millipore filtration technique. Incubation of proximal tubules with the hormone did not influence Ca(2+) uptake by the luminal membranes. In contrast, incubation of distal tubules with 10(-8) M 17 beta-estradiol for 30 min decreased the initial uptake of 0.5 mM Ca(2+) from 0.34+/-0.04 (s.e.m. ) to 0.17+/-0.04 pmol/microg per 5 s (P<0.05). In the presence of 100 mM Na(+), 0.5 mM Ca(2+) uptake was strongly diminished and the effect of 17 beta-estradiol disappeared (0.17+/-0.01 and 0.21+/-0.07 pmol/microg per 5 s in vesicles from the control and treated tubules). Direct incubation of the membranes with 17 beta-estradiol, however, failed to show any influence of the hormone on Ca(2+) transport. The action of 17 beta-estradiol was dose-dependent, with a half-maximal effect at approximately 10(-9) M. Ca(2+) uptake by the distal tubule membranes presents dual kinetics. 17 beta-Estradiol decreased the V(max) value of the high-affinity component from 0.42+/-0.02 to 0.31+/-0.03 pmol/microg per 10 s (P<0.02). In contrast with the effect of the hormone on Ca(2+) transport, estradiol increased Na(+) uptake by both the proximal and distal tubule luminal membranes. In conclusion, incubation of proximal and distal tubules with estrogen decreases Ca(2+) reabsorption by the high-affinity Ca(2+) channels of the distal luminal membranes, and enhances Na(+) transport by the membranes from proximal and distal nephrons.  相似文献   

17.
The intercalated cells of the kidney collecting duct are specialized for physiologically regulated proton transport. In these cells, a vacuolar H(+)-ATPase is expressed at enormous levels in a polarized distribution on the plasma membrane, enabling it to serve in transepithelial H+ transport. In contrast, in most eukaryotic cells, vacuolar H(+)-ATPases reside principally in intracellular compartments to effect vacuolar acidification. To investigate the basis for the selective amplification of the proton pump in intercalated cells, we isolated and sequenced cDNA clones for two isoforms of the approximately 56-kDa subunit of the H(+)-ATPase and examined their expression in various tissues. The predicted amino acid sequence of the isoforms was highly conserved in the internal region but diverged in the amino and carboxyl termini. mRNA hybridization to a cDNA probe for one isoform (the "kidney" isoform) was detected only in kidney cortex and medulla, whereas mRNA hybridization to the other isoform of the approximately 56-kDa subunit and to the H(+)-ATPase 31-kDa subunit was found in the kidney and other tissues. Immunocytochemistry of rat kidney with an antibody specific to the kidney isoform revealed intense staining only in the intercalated cells. Staining was absent from proximal tubule and thick ascending limb, where H(+)-ATPase was detected with a monoclonal antibody to the 31-kDa subunit of the H(+)-ATPase. This example of specific amplification of an isoform of one subunit of the vacuolar H(+)-ATPase being limited to a specific cell type suggests that the selective expression of the kidney isoform of the approximately 56-kDa subunit may confer the capacity for amplification and other specialized functions of the vacuolar H(+)-ATPase in the renal intercalated cell.  相似文献   

18.
The distribution of kininases along microdissected nephron segments was studied. Single nephrons from collagenase treated rabbit kidney were microdissected and divided into following 9 segments: 1) glomerulus; 2) early proximal tubule; 3) middle proximal tubule; 4) late proximal tubule; 5) cortical thick ascending limb; 6) distal convoluted tubule; 7) connecting tubule; 8) cortical collecting tubule; 9) medullary collecting tubule. Kininase activities in these nephron segments were measured with or without kininase II inhibitor. Kininase II and other peptidases were mainly localized in glomeruli and whole part of the proximal tubules.  相似文献   

19.
The kidney plays a key role in maintaining potassium (K) homeostasis. K excretion is determined by the balance between K secretion and absorption in distal tubule segments such as the connecting tubule and cortical collecting duct. K secretion takes place by K entering principal cells (PC) from blood side through Na+, K+ -ATPase and being secreted into the lumen via both ROMK-like small-conductance K (SK) channels and Ca2+ -activated big-conductance K (BK) channels. K reabsorption occurs by stimulation of apical K/H-ATPase and inhibition of K recycling across the apical membrane in intercalated cells (IC). The role of ROMK channels in K secretion is well documented. However, the importance of BK channels in mediating K secretion is incompletely understood. It has been shown that their activity increases with high tubule flow rate and augmented K intake. However, BK channels have a low open probability and are mainly located in IC, which lack appropriate transporters for effective K secretion. Here we demonstrate that inhibition of ERK and P38 MAPKs stimulates BK channels in both PC and IC in the cortical collecting duct and that changes in K intake modulate their activity. Under control conditions, BK channel activity in PC was low but increased significantly by inhibition of both ERK and P38. Blocking MAPKs also increased channel open probability of BK in IC and thereby it may affect K backflux and net K absorption Thus, modulation of ERK and P38 MAPK activity is involved in controlling net K secretion in the distal nephron.  相似文献   

20.
It has been suggested that alterations in Na(+),K(+)-ATPase mediate the development of several aging-related pathologies, such as hypertension and diabetes. Thus, we evaluated Na(+),K(+)-ATPase function and H(2)O(2) production in the renal cortex and medulla of Wistar Kyoto (WKY) rats at 13, 52 and 91 weeks of age. Creatinine clearance, proteinuria, urinary excretion of Na(+) and K(+) and fractional excretion of Na(+) were also determined. The results show that at 91 weeks old WKY rats had increased creatinine clearance and did not have proteinuria. Despite aging having had no effect on urinary Na(+) excretion, urinary K(+) excretion was increased and fractional Na(+) excretion was decreased with age. In renal proximal tubules and isolated renal cortical cells, 91 week old rats had decreased Na(+),K(+)-ATPase activity when compared to 13 and 52 week old rats. In renal medulla, 91 week old rats had increased Na(+),K(+)-ATPase activity, paralleled by an increase in protein expression of α(1)-subunit of Na(+),K(+)-ATPase. In addition, renal H(2)O(2) production increased with age and at 91 weeks of age renal medulla H(2)O(2) production was significantly higher than renal cortex production. The present work demonstrates that although at 91 weeks of age WKY rats were able to maintain Na(+) homeostasis, aging was accompanied by alterations in renal Na(+),K(+)-ATPase function. The observed increase in oxidative stress may account, in part, for the observed changes. Possibly, altered Na(+),K(+)-ATPase renal function may precede the development of age-related pathologies and loss of renal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号