首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligopeptides play important roles in bacterial nutrition and signaling. Using sequences from the available genome database for Mycobacterium tuberculosis H37Rv, the oligopeptide permease operon (oppBCDA) of Mycobacterium bovis BCG was cloned from a cosmid library. An opp mutant strain was constructed by homologous recombination with an allele of oppD interrupted by kanamycin and streptomycin resistance markers. The deletion was complemented with a wild-type copy of the opp operon. Two approaches were taken to characterize the peptide transporter defect in this mutant strain. First, growth of wild-type and mutant strains was monitored in media containing a wide variety of peptides as sole source of carbon and/or nitrogen. Among 25 peptides ranging from two to six amino acids in length, none was capable of supporting measurable growth as the sole carbon source in either wild-type or mutant strains. The second approach exploited the resistance of permease mutants to toxic substrates. The tripeptide glutathione (gamma-glutamyl-L-cyteinylglycine [GSH]) is toxic to wild-type BCG and was used successfully to characterize peptide uptake in the opp mutant. In 2 mM GSH, growth of the wild-type strain is inhibited, whereas the opp mutant is resistant to concentrations as high as 10 mM. Similar results were found with the tripeptide S-nitrosoglutathione (GSNO), thought to be a donor of NO in mammalian cells. Using incorporation of [(3)H]uracil to monitor the effects of GSH and GSNO on macromolecular synthesis in growing cells, it was demonstrated that the opp mutant is resistant, whereas the wild type and the mutant complemented with a wild-type copy of the operon are sensitive to both tripeptides. In uptake measurements, incorporation of [(3)H]GSH is reduced in the mutant compared with wild type and the complemented mutant. Finally, growth of the three strains in the tripeptides suggests that GSH is bacteriostatic, whereas GSNO is bacteriocidal.  相似文献   

2.
Deletion mutants for the yeast transketolase gene TKL1 were constructed by gene replacement. Transketolase activity was below the level of detection in mutant crude extracts. Transketolase protein could be detected as a single protein band of the expected size by Western-blot analysis in wild-type strains but not in the delection mutant. Deletion of TKL1 led to a reduced but distinct growth in synthetic medium without an aromatic amino-acid supplement. We also isolated double and triple mutants for transketolase (tkl1), transaldolase (tal1), and glucose 6-phosphate dehydrogenase (zwf1) by crossing the different mutants. A tal1 tkl1 double mutant grew nearly like wild-type in rich medium. Only the tkl1 zwf1 double and the tal1 tkl1 zwf1 triple mutant grew more slowly than the wild-type in rich medium. This growth defect could be partly alleviated by the addition of xylulose but not ribose. The triple mutant still grew slowly on a synthetic mineral salts medium without a supplement of aromatic amino acids. This suggests the existence of an alternative but limited source of pentose phosphates and erythrose 4-phosphate in the tkl1 zwf1 double mutants. Hybridization with low stringency showed the existence of a sequence with homology to transketolase, possibly a second gene.  相似文献   

3.
4.
MCM2 and MCM3 are essential genes believed to play important roles in the initiation of DNA replication in Saccharomyces cerevisiae. Mutants defective in Mcm2 or Mcm3 are remarkably similar in phenotype. They both show an autonomously replicating sequence (ARS)-specific minichromosome maintenance defect, although their ARS specificities are not identical. In addition, these mutants exhibit a premitotic cell cycle arrest and an increase in chromosome loss and recombination. Genetic studies suggest that the two MCM gene products play interacting or complementary roles in DNA replication. Double mutants of mcm2-1 and mcm3-1 are inviable at the permissive growth temperature (23 degrees C) for each of the single mutants. Furthermore, overproduction of Mcm3 accentuates the deleterious effect of the mcm2-1 mutation, whereas overproduction of Mcm2 partially complements the mcm3-1 mutation. MCM2 encodes a protein of 890 amino acids containing a putative zinc-finger domain that is essential for Mcm2 function. Mcm2 shows striking homology to Mcm3 and three other proteins, Cdc46 of S. cerevisiae, and Nda4 and Cdc21 of Schizosaccharomyces pombe. The phenotypes of mutants defective in these proteins suggest that they belong to a protein family involved in the early steps of DNA replication.  相似文献   

5.
Objective: To knock out the entire Luxs gene of Streptococcus mutans (S mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. mutans. To study the difference between the acid resistance of S. mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S. mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. mutans transformants, which was identified by polymerase chain reaction, V. harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period. Terminal growth situation was compared. Firstly acidized in pH 5.5 BHI liquid, the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared. Results : Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxsdeleted status of S. mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S. mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S. mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S. mutans standard strain and LuxS mutant strain. The acid resistance of standard strain was stronger than that of LuxS mutant strain. The two strains both displayed the capability of acid tolerance responses. Conclusion:The S. mutans gene allelic exchange plasmid is constructed correctively and a Luxs-negative mutants of S. mutans is constructed, which can help to further study the role of Luxs in the pathogenesis of S. mutans. LuxS mutant strain is more sensitive to acid inactivation, but the capability of acid tolerance responses exist still.  相似文献   

6.
Tran AT  Xu W  Racine T  Silaghi DA  Coombs KM 《Virology》2008,375(2):504-513
Avian reoviruses (ARV) are less well understood than their mammalian counterparts. ARV are ubiquitous in commercial poultry and frequently isolated from acutely infected chickens. We previously described isolation of ARV temperature-sensitive (ts) mutants after nitrosoguanidine mutagenesis of wild-type ARV138, their assignment to 7 recombination groups (A-G), and genetic mapping of mutants in groups A-D to specific gene segments. For this study, wild-type serotype ARV176 was crossed with ts mutants tsE158 (Group E), tsF206 (Group F), or tsG247 (Group G) and reassortant progenies analyzed. Reassortant temperature-sensitivities were determined by efficiency of plating at permissive and non-permissive temperatures. Mapping results indicated tsE158, tsF206, and tsG247 mapped to the L1, S4, and L3 genes, respectively, which encode the lambdaA core shell, sigmaNS non-structural, and lambdaC core spike proteins, respectively. Specific amino acid substitutions in each mutant were determined and locations of structural protein alterations were placed within the 3-dimensional structure of homologous mammalian reovirus proteins. Mapping recombination groups E-G marks completion of gene assignments for all seven ts mutant groups previously generated.  相似文献   

7.
Rhodococcus equi is an important pathogen of foals, causing severe pyogranulomatous pneumonia. Virulent R. equi strains grow within macrophages, a process which remains poorly characterized. A potential source of carbon for intramacrophage R. equi is membrane lipid-derived fatty acids, which following beta oxidation are assimilated via the glyoxylate bypass. To assess the importance of isocitrate lyase, the first enzyme of the glyoxylate bypass, in virulence of a foal isolate of R. equi, a mutant was constructed by a strategy of single homologous recombination using a suicide plasmid containing an internal fragment of the R. equi aceA gene encoding isocitrate lyase. Complementation of the resulting mutant with aceA showed that the mutant was specific for this gene. Assessment of virulence in a mouse macrophage cell line showed that the mutant was killed, in contrast to the parent strain. Studies in the liver of intravenously infected mice showed enhanced clearance of the mutant. When four 3-week-old foals were infected intrabronchially, the aceA mutant was completely attenuated, in contrast to the parent strain. In conclusion, the aceA gene was shown to be essential for virulence of R. equi, suggesting that membrane lipids may be an important source of carbon for phagocytosed R. equi.  相似文献   

8.
In this study we have investigated whether streptolysin O contributes to the virulence of group A streptococci. For this purpose we generated M-negative and SLO-negative mutants by insertion mutagenesis into the chromosome of an M type 1 strain. The inactivation of M1 protein expression was achieved by the construction of the integrative plasmid pSFABS, which contains the internal fragment abs of the emm1 gene. Integration of pSFABS by homologous recombination into the chromosome of strain 38 541 resulted in the generation of mutant EMM1. Inactivation of slo with plasmid pFWSLOD resulted in two different mutant forms. The homologous recombination with plasmid pFWSLOD carrying the two slo fragments slo1 (899 base pairs in the 5' region) and slo2 (709 base pairs in the downstream part) resulted in mutants SLO3, SLO4 and SLO17. In SLO17 a double crossover event took place with insertion of the spectinomycin resistance gene aad9 between the slo fragments 1 and 2. In mutants SLO3 and SLO4 the homologous recombination with the same plasmid led to the integration of the whole plasmid construct into the chromosome of strain 38 541. Both forms of mutation failed to express SLO. In mutant SLO4 additionally M1 protein expression was significantly decreased. The mutants EMM1 (M-, SLO+) and SLO4 (M decreased, SLO-) showed a reduced binding to collagen-coated surfaces. In contrast the mutants SLO3 and SLO17 (both M+, SLO-) and the wild-type strain 38 541 (M+, SLO+) showed an affinity to collagen similar to purified M1 protein. All mutants were less virulent for chicken embryos compared to the wild-type strain after infection by intravenous injection as well as by application onto the chorioallantoic membrane. The results show that besides M protein SLO can also influence virulence of group A streptococci. Moreover, it became obvious that streptococci need more than one tool to fully develop their infectious potential.  相似文献   

9.
Summary The REV2 gene of Saccharomyces cerevisiae was cloned and sequenced; it contains an open reading frame of 1985 bp with a coding potential of 662 amino acids. Interruption of the chromosomal REV2 gene by integrating the URA3 gene coupled with partial deletion of the 3 terminal region produced viable haploid rev2 mutants. This indicates that the REV2 gene is non-essential for growth. The rev2 mutant is slightly more UV-sensitive than strains carrying various rev2 alleles (rev2-1, rev2x, rad5-1, rad5-8). The putative Rev2 protein is probably a globular protein containing a highly conserved nucleotide-binding site and two zinc-finger domains.  相似文献   

10.
Summary Spontaneous mitotic intragenic and intergenic recombination at various sites is enhanced 10 to 100 fold in the methyl methanesulfonate (MMS)-sensitive mutants mms9-1, mms13-1, and mms21-1 of Saccharomyces cerevisiae. All three mutants show elevated rates of spontaneous mutation. Sporulation is reduced in diploids homozygous for any of the three mutations, and a deficiency in meiotic recombination and meiotic chromosome segregation is observed. Pleiotropic effects on cell viability, growth rate, and radiation sensitivity, in combination with the alterations in recombination and mutagenesis displayed by mutant strains, suggest that the MMS9, MMS13, and MMS21 genes play important roles in DNA replication and/or genetic recombination.  相似文献   

11.
Summary.  In a bovine herpesvirus 1 (BHV1) vaccine strain, a spontaneous BHV1 mutant (Za) was found that arose from a recombination between two isomeric forms of the BHV1 genome. In this Za mutant one end of the US region, containing part of the US1.5 gene, was found duplicated in an inverted orientation at the other end of the US region. Concurrently, a 2.7 kb deletion was found in Za that encompasses both the US8 (gE) and US9 gene. Analysis of the in vitro growth properties of a genetically modified BHV1gE mutant showed that at 11 hours post infection BHV1gE viruses were secreted ten times more efficiently than wild type virus. Using this observation we developed a protocol to enrich for spontaneous gE deletion mutants in a BHV1 field isolate and found another mutant (Rof3) with similar properties as the Za mutant. Rof3 has a duplication/inversion of the US1.5 gene and part of the US2 gene and a simultaneous 3.5 kb deletion that encompasses the US7 (gI), US8 (gE) and US9 genes. The nucleotide sequences of the recombination points of both recombinants were determined and compared. No obvious sequence similarities were found, suggesting that non-homologous recombination events led to the observed recombinations. The implications for the use of BHV1 gE deletion mutants as marker or diva vaccines are discussed. Received January 10, 1999 Accepted March 29, 1999  相似文献   

12.
The overgrowth disorder Beckwith-Wiedemann syndrome (BWS) is associated with dysregulation of imprinted genes at chromosome 11p15.5. The molecular defects are heterogeneous but most of the cases are associated with defective DNA methylation at either one of two Imprinting Control Regions (IC1 and IC2) or Uniparental paternal Disomy (UPD) at 11p15.5. In rare cases, the BWS phenotype has been found associated with maternal transmission of IC1 microdeletions. We describe a family with a novel 1.8 kb deletion that is associated with hypermethylation at IC1. The mutation results from recombination between highly homologous sequences containing target sites for the zinc-finger protein CTCF (CTSs). This finding supports the hypothesis that the function of IC1 and the penetrance of the clinical phenotype depend on the spacing of the CTSs resulting from recombination in the mutant allele.  相似文献   

13.
To generate severe combined immunodeficient (SCID) livestocks for xenotransplantation, we have attempted to generate a SCID phenotype without gene knockout. Based on the reported mouse RAG1 mutants, we constructed the corresponding rabbit RAG1 mutants by mutagenesis of three residues within the catalytic domain: D602A, D710A, and E964A. As expected, these mutants each exhibited no catalytic activity on artificial substrates and inhibited recombination by the wild type RAG1. Moreover, replacement of the N-terminus of RAG1 with enhanced green fluorescent protein (EGFP) greatly increased protein stability, and the triple mutant RAG1 showed a twofold increase in its ability to inhibit wild type activity in vitro. We generated mice transgenic for the latter mutant to assess its effect on V(D)J recombination in vivo. Serum IgM levels in four out of seven transgenic mice were reduced to approximately 30-50% of control levels in four out of seven transgenic mice. Our results suggest that immunodeficient animals for regenerative medicine could be generated without gene knockout.  相似文献   

14.
The Escherichia coli human fecal isolates F-18 and K-12 are excellent colonizers of the streptomycin-treated mouse intestine. E. coli F-18 and E. coli K-12 eda mutants (unable to utilize glucuronate, galacturonate, and gluconate) were constructed by insertional mutagenesis. Neither the E. coli F-18 eda nor the E. coli K-12 eda mutant was able to colonize the streptomycin-treated mouse intestine, whether they were fed to mice together with their respective parental strains or alone. Complementation of the eda mutants with pTC190 (containing a functional E. coli K-12 eda gene) completely restored the colonization ability of both eda mutants. Relative to their parental strains, the E. coli F-18 eda mutant and the E. coli K-12 eda mutant grew poorly in cecal mucus isolated from mice fed either normal mouse chow or a synthetic diet containing sucrose as the sole carbon source, yet the mutants and parental strains demonstrated identical growth rates in minimal medium with glucose as the carbon source. E. coli F-18 edd eda and E. coli K-12 edd eda double mutants colonized the streptomycin-treated intestine when fed to mice alone; however, when fed simultaneously with their respective parental strains, they were poor colonizers. Since the edd gene is involved only in gluconate metabolism via the Entner-Doudoroff pathway, these results implicate the utilization of gluconate and the Entner-Doudoroff pathway as important elements in E. coli colonization of the streptomycin-treated mouse large intestine.  相似文献   

15.
16.
A gene encoding a 28-kDa protein of Ehrlichia canis was cloned, sequenced, and expressed, and a comparative molecular analysis with homologous genes of E. canis, Cowdria ruminantium, and Ehrlichia chaffeensis was performed. The complete gene has an 834-bp open reading frame encoding a protein of 278 amino acids with a predicted molecular mass of 30.5 kDa. An N-terminal signal sequence was identified, suggesting that the protein undergoes posttranslational modification to a mature 27.7-kDa protein (P28). The E. canis p28 gene has significant nucleic acid and amino acid sequence homologies with the E. chaffeensis outer membrane protein-1 (omp-1) gene family, with the Cowdria ruminantium map-1 gene, and with other E. canis 28-kDa-protein genes. Southern blotting revealed the presence of at least two additional homologous p28 gene copies in the E. canis genome, confirming that p28 is a member of a polymorphic multiple-gene family. Amino acid sequence analysis revealed that E. canis P28 has four variable regions, and it shares similar surface-exposed regions, antigenicity, and T-cell motifs with E. chaffeensis P28. The p28 genes from seven different E. canis isolates were identical, indicating that the gene for this major immunoreactive protein is highly conserved. In addition, reactivity of sera from clinical cases of canine ehrlichiosis with the recombinant P28 demonstrated that the recombinant protein may be a reliable serodiagnostic antigen.  相似文献   

17.
The mutant alleles mms9-1, mms13-1, or mms21-1 of Saccharomyces cerevisiae confer pleiotropic effects, including sensitivity to the alkylating agent methyl methanesulfonate, elevations in spontaneous mutation and mitotic recombination, defects in meiosis, and cross-sensitivity to radiation. We constructed double-mutant strains containing an mms mutation and a defect in either excision repair, mutagenic repair, or recombinational repair and measured the levels of spontaneous mutation and mitotic reombination. Double mutants lacking excision repair show elevations in spontaneous mutation but with predominantly unchanged levels of mitotic recombination. RAD52 function was required for the expression of the hyper-recombination phenotype of the mms9-1, mms13-1, and mms21-1 alleles; double mutants displayed the very low recombination levels characteristic of rad52 mutants. Phenotypes of double mutants containing one of the mms alleles and either of the hyper-recombination/mutator rad6-1 or rad3-102 alleles suggest that the mutagenic lesions in mms strains may not be identical to the recombinogenic lesions.  相似文献   

18.
Shigella flexneri possesses multiple iron acquisition systems, including proteins involved in the synthesis and uptake of siderophores and the Feo system for ferrous iron utilization. We identified an additional S. flexneri putative iron transport gene, sitA, in a screen for S. flexneri genes that are induced in the eukaryotic intracellular environment. sitA was present in all Shigella species and in most enteroinvasive Escherichia coli strains but not in any other E. coli isolates tested. The sit locus consists of four genes encoding a potential ABC transport system. The deduced amino acid sequence of the S. flexneri sit locus was homologous to the Salmonella enterica serovar Typhimurium Sit and Yersinia pestis Yfe systems, which mediate both manganese and iron transport. The S. flexneri sit promoter was repressed by either iron or manganese, and the iron repression was partially dependent upon Fur. A sitA::cam mutation was constructed in S. flexneri. The sitA mutant showed reduced growth, relative to the wild type, in Luria broth containing an iron chelator but formed wild-type plaques on Henle cell monolayers, indicating that the sitA mutant was able to acquire iron and/or manganese in the host cell. However, mutants defective in two of these iron acquisition systems (sitA iucD, sitA feoB, and feoB iucD) formed slightly smaller plaques on Henle cell monolayers. A strain carrying mutations in sitA, feoB, and iucD did not form plaques on Henle cell monolayers.  相似文献   

19.
20.
Leishmania promastigote cells transmitted by their insect vector get phagocytosed by macrophages and convert into the amastigote form. In a recently performed proteomic study, a thymidine kinase (TK) was found to be preferentially expressed in amastigotes. Western blot analysis showing a marked increase in TK protein synthesis during stage differentiation from promastigotes to amastigotes confirmed this result. After comparison of the amino acid sequence of Leishmania donovani and Leishmania major thymidine kinases with thymidine kinases of other organisms the Leishmania protein has to be classified as a type II TK. Therefore, in accordance with the nomenclature of other thymidine kinases we named the Leishmania enzymes LdTK1 and LmTK1, respectively. The LdTK1 is localised within the cytoplasm of promastigotes. In amastigotes, increased expression and a clustered distribution of the protein can be observed. Lmtk1 single allele gene replacement mutants have significantly elongated flagellum. In contrast, lmtk1 double allele gene replacement mutants show a remarkably reduced flagellar length, diminished overall size and a deformed body shape. In addition, they have a 12-fold reduced growth rate. For both mutant strains, macrophage infectivity is clearly reduced compared to a L. major wildtype infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号