首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fetal cells with the characteristics of neural stem cells (NSCs) can be derived from the nonhematopoietic fraction of human umbilical cord blood (HUCB), expanded as a nonimmortalized cell line (HUCB-NSC), and further differentiated into neuron-like cells (HUCB-NSCD); however, the functional and neuronal properties of these cells are poorly understood. To address this issue, we used whole-cell patch-clamp recordings, gene microarrays, and immunocytochemistry to identify voltage-gated channels and ligand-gated receptors on HUCB-NSCs and HUCB-NSCDs. Gene microarray analysis identified genes for voltage-dependent potassium and sodium channels and the neurotransmitter receptors acetylcholine (ACh), gamma-aminobutyric acid (GABA), glutamate, glycine, 5-hydroxytryptamine (5-HT), and dopamine (DA). Several of these genes (GABA-A, glycine and glutamate receptors, voltage-gated potassium channels, and voltage-gated sodium type XII alpha channels) were not expressed in the HUCB mono-nuclear fraction (HUCB-MC), which served as a starting cell population for HUCB-NSC. HUCB-NSCD acquired neuronal phenotypes and displayed an inward rectifying potassium current (Kir) and an outward rectifying potassium current (I(K+)). Kir was present on most HUCB-NSCs and HUCB-NSCDs, whereas I(K+) was present only on HUCB-NSCDs. Many HUCB-NSCDs were immunopositive for glutamate, glycine, nicotinic ACh, DA, 5-HT, and GABA receptors. Kainic acid (KA), a non-N-methyl-D-asparate (NMDA) glutamate-receptor agonist, induced an inward current in some HUCB-NSCDs. KA, glycine, DA, ACh, GABA, and 5-HT partially blocked Kir through their respective receptors. These results suggest that HUCB-NSCs differentiate toward neuron-like cells, with functional voltage- and ligand-gated channels identified in other neuronal systems.  相似文献   

2.
3.
4.
The N-methyl-D-aspartate (NMDA) receptor, a subtype of ionotropic glutamate receptors, plays an important role in the regulation of neuronal development, learning and memory, and neurodegenerative diseases. NMDA receptor blockade enhances neurogenesis in the hippocampal dentate gyrus in vivo. The effect of NMDA receptor antagonist on proliferation of neural progenitor cells, however, remains to be determined. We investigated changes in the diameter and number of neurospheres derived from the embryonic rat brain after NMDA receptor blockade. Cortical progenitor cells were isolated from gestational day 18 fetal rats according to the Percoll density gradient method. Cultured spheres expressed neural progenitor markers, musashi-1 and nestin. Immunohistochemical analysis demonstrated that cells in Dulbecco's modified Eagle medium/F12 containing 1% fetal bovine serum on day 8 differentiated to MAP-2-positive neurons and GFAP-positive astrocytes. The expression of NR1 and NR2B subunits of the NMDA receptor in neurospheres was detected. Neither brief nor sustained exposure to NMDA altered the diameter and number of neurospheres. Brief exposure to 30 μM MK-801, an NMDA receptor antagonist, decreased the diameter of neurospheres. Sustained exposure to 30 μM MK-801 decreased the diameter and number of neurospheres. Our results provide evidence that MK-801 directly decreased proliferation of neural progenitor cells.  相似文献   

5.
Hermann H  Marsicano G  Lutz B 《Neuroscience》2002,109(3):451-460
The cannabinoid receptor type 1 (CB1) displays unusual properties, including the dual capacity to inhibit or stimulate adenylate cyclase and a brain density considerably higher than the majority of G protein-coupled receptors. Together with overlapping expression patterns of dopamine and serotonin receptors this suggests a potential of CB1 to modulate the function of the dopamine and serotonin system. Indeed, pharmacological studies provide evidence for cross-talks between CB1 and receptors of these neurotransmitter systems. In trying to obtain further insights into possible functional and/or structural interactions between CB1 and the dopamine receptors and the serotonin receptors, we performed double-label in situ hybridization at the cellular level on mouse forebrain sections by combining a digoxigenin-labelled riboprobe for CB1 with 35S-labelled riboprobes for dopamine receptors D1 and D2, and for serotonin receptors 5-HT1B and 5-HT3, respectively. As a general rule, we found that CB1 colocalizes with D1, D2 and 5-HT1B only in low-CB1-expressing cells which are principal projecting neurons, whereas CB1 coexpression with 5-HT3 was also observed in high-CB1-expressing cells which are considered to be mostly GABAergic. In striatum and olfactory tubercle, CB1 is coexpressed to a high extent with D1, D2 and 5-HT1B. Throughout the hippocampal formation, CB1 is coexpressed with D2, 5-HT1B and 5-HT3. In the neocortex, coexpression was detected only with 5-HT1B and 5-HT3. In summary a distinct pattern is emerging for the cannabinoid system with regard to its colocalization with dopamine and serotonin receptors and, therefore, it is likely that different mechanisms underlie its cross-talk with these neurotransmitter systems.  相似文献   

6.
We studied differentiation of stem cells in dissociated cultures of olfactory epithelium. Staining with anti-nestin antibodies revealed stem cells in the primary monolayer culture of the olfactory epithelium from adult human. Proliferation of these cells during culturing in serum-containing medium in the presence of nerve growth factors FGF2 and NGF led to the formation of neurospheres freely floating in the medium or attached to the substrate. Further long-term culturing and cloning of dissociated cells from these neurospheres in media not containing nerve growth factors led to spontaneous neural differentiation of the olfactory epithelium stem cells. The cells with phenotypic signs of differentiated neurons were stained with antibodies against β-tubulin and neurospecific enolase. Differentiated neurons formed diffuse and spatially organized neuronal networks. We hypothesized that factors triggering neural differentiation of olfactory epithelium stem cells are produced by astrocytes present in these cultures. __________ Translated from Kletochnye Tehnologii v Biologii i Medicine, No. 4, pp. 183–188, October, 2007  相似文献   

7.
Brief flashes of light directed at neuronal cell bodies and proximal dendrites of neurons in culture can enhance whole-cell electrophysiological responses mediated by NMDA and GABA(A) receptors. In experiments aimed at identifying the molecular moieties responsible for mediating this phenomenon, we observed that broad-spectrum protein kinase inhibitors substantially amplified the actions of light. Kinase inhibitors, however, were surprisingly ineffective in altering light-induced potentiation of recombinant NMDA receptors expressed in Chinese hamster ovary (CHO) cells. Furthermore, receptors assembled from truncated NMDA receptor subunits, previously shown to be relatively insensitive to modulation via phosphorylation, remained light sensitive. Phosphatase inhibitors had no effects of light-induced NMDA receptor potentiation in neurons, and nucleated patches excised from neuronal somata behaved similarly to CHO cells. Taken together, these data suggests that the effects of kinase inhibitors were unrelated to the molecular mechanism of light-induced potentiation. We propose a model whereby kinase inhibition promotes an enrichment of NMDA receptors in the neuronal cell body vs. the distal dendrites. Under these conditions, NMDA receptor redistribution elicited by kinase inhibitors would increase the number of receptors exposed to light and, as a consequence, the whole cell response. These observations support a critical role for protein kinases in the rapid redistribution of neurotransmitter receptors, with profound physiological significance.  相似文献   

8.
Antineuronal autoantibodies are associated with the involuntary movement disorder Sydenham chorea (SC) and paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) which are characterized by the acute onset of tics and/or obsessive compulsive disorder (OCD). In SC and PANDAS, autoantibodies signal human neuronal cells and activate calcium calmodulin‐dependent protein kinase II (CaMKII). Animal models immunized with group A streptococcal antigens demonstrate autoantibodies against dopamine receptors and concomitantly altered behaviours. Human monoclonal antibodies (mAbs) derived from SC target and signal the dopamine D2L (long) receptor (D2R). Antibodies against D2R were elevated over normal levels in SC and acute‐onset PANDAS with small choreiform movements, but were not elevated over normal levels in PANDAS‐like chronic tics and OCD. The expression of human SC‐derived anti‐D2R autoantibody V gene in B cells and serum of transgenic mice demonstrated that the human autoantibody targets dopaminergic neurones in the basal ganglia and other types of neurones in the cortex. Here, we review current evidence supporting the hypothesis that antineuronal antibodies, specifically against dopamine receptors, follow streptococcal exposures and may target dopamine receptors and alter central dopamine pathways leading to movement and neuropsychiatric disorders.  相似文献   

9.
10.
Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid-responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300-500 microm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In approximately 27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.  相似文献   

11.
Nocjar C  Roth BL  Pehek EA 《Neuroscience》2002,111(1):163-176
Considerable evidence suggests that a dysfunction of the dopamine and serotonin (5-hydroxytryptamine or 5-HT) neurotransmitter systems contributes to a diverse range of pathological conditions including schizophrenia, depression and drug abuse. Recent electrophysiological and behavioral studies suggest that 5-HT modulates dopaminergic neurons in the ventral tegmental area via activation of 5-HT(2A) receptors. It is currently unknown if 5-HT(2A) receptors mediate their actions on dopaminergic neurons in the ventral tegmental area via direct or indirect mechanisms. This study investigated whether 5-HT(2A) receptors were localized on dopamine cells within the A10 dopamine subnuclei of the rat, including the ventral tegmental area. We discovered that 5-HT(2A) receptor-like immunoreactivity colocalized with tyrosine hydroxylase, a marker for dopamine neurons, throughout the A10 dopamine cell population. Colocalization was most prominent in rostral and mid A10 regions, including the paranigral, parabrachial, and interfascicular subnuclei. Though more rare, non-dopaminergic neurons also expressed 5-HT(2A) receptor immunoreactivity in the ventral tegmental area. Additionally, although a dense population of 5-HT(2A) immunoreactive cells was observed in the rostral dorsal raphe nucleus, rarely were these cells immunoreactive for tyrosine hydroxylase. The linear raphe A10 dopamine subdivisions also displayed a low degree of 5-HT(2A) receptor and tyrosine hydroxylase colocalization.These findings provide an anatomical basis for the physiological modulation of dopamine neurons in the rostral ventral tegmental area either directly, by 5-HT(2A) receptors localized on dopamine cells, or indirectly, through a non-dopaminergic mechanism. Interestingly, 5-HT(2A) receptors were expressed on dopamine neurons in several A10 subnuclei that project to mesolimbic forebrain regions implicated in drug addiction, and recent evidence indicates that ventral tegmental area 5-HT(2A) receptor activation may modulate reward-related behavior in rodents. 5-HT(2A) receptors were also expressed on dopamine cells in A10 subnuclei that project to forebrain areas that have been implicated in schizophrenia, and atypical antipsychotic drugs have high affinities for 5-HT(2A) receptors. Thus, findings in this study could have important implications for understanding 5-HT and dopamine circuitry dysfunction in schizophrenia.  相似文献   

12.
Becoming a new neuron in the adult olfactory bulb   总被引:14,自引:0,他引:14  
New neurons are continually recruited throughout adulthood in certain regions of the adult mammalian brain. How these cells mature and integrate into preexisting functional circuits remains unknown. Here we describe the physiological properties of newborn olfactory bulb interneurons at five different stages of their maturation in adult mice. Patch-clamp recordings were obtained from tangentially and radially migrating young neurons and from neurons in three subsequent maturation stages. Tangentially migrating neurons expressed extrasynaptic GABA(A) receptors and then AMPA receptors, before NMDA receptors appeared in radially migrating neurons. Spontaneous synaptic activity emerged soon after migration was complete, and spiking activity was the last characteristic to be acquired. This delayed excitability is unique to cells born in the adult and may protect circuits from uncontrolled neurotransmitter release and neural network disruption. Our results show that newly born cells recruited into the olfactory bulb become neurons, and a unique sequence of events leads to their functional integration.  相似文献   

13.
T-cell differentiation is driven by a complex network of signals mainly derived from the thymic epithelium. In this study we demonstrate in the human thymus that cortical epithelial cells produce bone morphogenetic protein 2 (BMP2) and BMP4 and that both thymocytes and thymic epithelium express all the molecular machinery required for a response to these proteins. BMP receptors, BMPRIA and BMPRII, are mainly expressed by cortical thymocytes while BMPRIB is expressed in the majority of the human thymocytes. Some thymic epithelial cells from cortical and medullary areas express BMP receptors, being also cell targets for in vivo BMP2/4 signalling. The treatment with BMP4 of chimeric human-mouse fetal thymic organ cultures seeded with CD34+ human thymic progenitors results in reduced cell recovery and inhibition of the differentiation of human thymocytes from CD4- CD8- to CD4+ CD8+ cell stages. These results support a role for BMP2/4 signalling in human T-cell differentiation.  相似文献   

14.
目的:研究早期离体培养的人胚胎海马神经干细胞(NSCs)中NMDA受体亚单位NR2A和NR2B的表达。方法:取胎龄8~12周人胚脑海马,进行NSCs分离、培养、传代和鉴定。通过免疫细胞化学和RT-PCR等方法检测传代1次和2次的人胚胎海马NSCs中NMDA受体亚单位NR2A和NR2B的蛋白和mRNA表达。结果:自孕8~12周人胚脑海马分离培养的NSCs,NMDA受体亚单位NR2A和NR2B免疫细胞化学反应呈阳性,这两种受体亚单位的mRNA均被检测到。结论:体外培养的早期人胚胎海马NSCs能稳定表达NMDA受体亚单位NR2A和NR2B。  相似文献   

15.
Effects of three neurotrophins, i.e., nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3, on the expression of four neurotransmitter-synthesizing enzymes, i.e. choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and glutamate decarboxylase 65 were investigated in cultured mouse neural stem cells. All three neurotrophins enhanced the mRNA expression of ChAT, TH, or DBH of the cells caused to differentiate by the removal of fibroblast growth factor (FGF)-2 from the culture medium, and increased the protein and mRNA levels of ChAT and TH of even the undifferentiated proliferating neural stem cells due to the presence of FGF-2. These results demonstrate that neurotrophins stimulate the synthesis of ChAT and TH of the neural stem cells prior to neuronal differentiation, and suggest that neurotrophins may play roles in the commitment to neuronal cells and choice of specific neurotransmitter phenotypes in early stages of neurogenesis.  相似文献   

16.
The vomeronasal system (VNS) is an accessory olfactory structure present in most mammals adhibited to the detection of specific chemosignals implied in social and reproductive behavior. The VNS comprises the vomeronasal organ (VNO), vomeronasal nerve and accessory olfactory bulb. VNO is characterized by a neuroepithelium constituted by bipolar neurons and supporting and stem/progenitor cells. In humans, VNO is present during fetal life and is supposed to possess chemoreceptor activity and participate in gonadotropin-releasing hormone neuronal precursor migration toward the hypothalamus. Instead, the existence and functions of VNO in postnatal life is debated. Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been demonstrated to play fundamental roles in various neurogenic events. However, there are no data regarding the localization and possible function of VEGF/VEGFRs in human fetal VNO. Therefore, this study was conceived to investigate the expression of VEGF/VEGFRs in human VNO in an early developmental period (9–12 weeks of gestation), when this organ appears well structured. Coronal sections of maxillofacial specimens were subjected to peroxidase-based immunohistochemistry for VEGF, VEGFR-1 and VEGFR-2. Double immunofluorescence for VEGF, VEGFR-1 or VEGFR-2 and the neuronal marker protein gene product 9.5 (PGP 9.5) was also performed. VEGF expression was evident in the entire VNO epithelium, with particularly strong reactivity in the middle layer. Strongly VEGF-immunostained cells with aspect similar to bipolar neurons and/or their presumable precursors were detected in the middle and basal layers. Cells detaching from the basal epithelial layer and detached cell groups in the surrounding lamina propria showed moderate/strong VEGF expression. The strongest VEGFR-1 and VEGFR-2 expression was detected in the apical epithelial layer. Cells with aspect similar to bipolar neurons and/or their presumable precursors located in the middle and basal layers and the detaching/detached cells displayed a VEGFR-1 and VEGFR-2 reactivity similar to that of VEGF. The basal epithelial layer exhibited stronger staining for VEGFRs than for VEGF. Cells with morphology and VEGF/VEGFR expression similar to those of the detaching/detached cells were also detected in the middle and basal VNO epithelial layers. Double immunofluorescence using anti-PGP 9.5 antibodies demonstrated that most of the VEGF/VEGFR-immunoreactive cells were neuronal cells. Collectively, our findings suggest that during early fetal development the VEGF/VEGFR system might be involved in the presumptive VNO chemoreceptor activity and neuronal precursor migration.  相似文献   

17.
The opioid peptide dynorphin A is known to elicit a number of pathological effects that may result from neuronal excitotoxicity. An up-regulation of this peptide has also been causally related to the dysesthesia associated with inflammation and nerve injury. These effects of dynorphin A are not mediated through opioid receptor activation but can be effectively blocked by pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists, thus implicating the excitatory amino acid system as a mediator of the actions of dynorphin A and/or its fragments. A direct interaction between dynorphin A and the NMDA receptors has been well established; however the physiological relevance of this interaction remains equivocal. This study examined whether dynorphin A elicits a neuronal excitatory effect that may underlie its activation of the NMDA receptors. Calcium imaging of individual cultured cortical neurons showed that the nonopioid peptide dynorphin A(2-17) induced a time- and dose-dependent increase in intracellular calcium. This excitatory effect of dynorphin A(2-17) was insensitive to (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine (MK-801) pretreatment in NMDA-responsive cells. Thus dynorphin A stimulates neuronal cells via a nonopioid, non-NMDA mechanism. This excitatory action of dynorphin A could modulate NMDA receptor activity in vivo by enhancing excitatory neurotransmitter release or by potentiating NMDA receptor function in a calcium-dependent manner. Further characterization of this novel site of action of dynorphin A may provide new insight into the underlying mechanisms of dynorphin excitotoxicity and its pathological role in neuropathy.  相似文献   

18.
Dopamine depletion impairs precursor cell proliferation in Parkinson disease   总被引:10,自引:0,他引:10  
Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.  相似文献   

19.
The development of drug addiction involves persistent cellular and molecular changes in the CNS. The brain dopamine and glutamate systems play key roles in mediating drug-induced neuroadaptation. Changes in dendritic morphology in medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and caudate putamen (CPu) accompany drug-induced enduring behavioral and molecular changes. We have investigated the potential involvement of dopamine D1 and D2 receptors, the N-methyl-d-aspartate (NMDA) receptor, and the extracellular signal-regulated kinase (ERK) in dendritic morphological changes induced by repeated cocaine administration. We show that either a genetic mutation or pharmacological blockade of dopamine D1 receptors attenuated cocaine-induced changes in both dendritic branching and spine density of MSNs in the shell of the NAc and CPu. In contrast, antagonism of dopamine D2 receptors had no obvious effect on changes in dendritic branching but had a partial effect on changes in spine density of MSNs in these brain regions following repeated cocaine injections. Pharmacological inhibition of either NMDA receptors or ERK attenuated cocaine-induced changes in both dendritic branching and spine density of MSNs in the shell of the NAc and CPu. These results suggest that dopamine D1 and NMDA receptors and ERK contribute significantly to neuronal morphological changes induced by repeated exposure to cocaine.  相似文献   

20.
Human papillomaviruses infect epithelia but little is known about the nature of cell surface receptors interacting with the viral particles. It has been proposed that glycosaminoglycans and integrins may be involved in the attachment process. In the present study, the putative interactions of virus-like particles of human papillomavirus type 11 (HPV11), which present a tropism for nasopharyngeal epithelia, with olfactory and taste receptors expressed in the human lingual epithelium were studied. The L1 protein of HPV11 was produced in insect cells. The presence of L1 virus-like particles was analyzed by ELISA using monoclonal antibodies specific for full-size particles and by electron microscopy. Using immunofluorescence, it was observed that virus-like particles interacted with taste buds from murine tongue, with the tagged human olfactory receptor hJCG5 expressed in HEK-293 but not with the tagged taste receptor hT2R4. This therefore suggests that hJCG5 may be involved in the adsorption process of HPV11 to lingual epithelium serving as a so-called "adsorption-adhesive molecule."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号