首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV) is a mosquito-transmitted flavivirus and an emerging pathogen in many parts of the world. In the elderly and immunosuppressed, infection can progress rapidly to debilitating and sometimes fatal neuroinvasive disease. Currently, no WNV vaccine is approved for use in humans. As there have been several recent outbreaks in the United States and Europe, there is an increasing need for a human WNV vaccine. In this study, we formulated the ectodomain of a recombinant WNV envelope (E) protein with the particulate saponin-based adjuvant Matrix-M™ and studied the antigen-specific immune responses in mice. Animals immunized with Matrix-M™ formulated E protein developed higher serum IgG1 and IgG2a and neutralizing antibody titers at antigen doses ranging from 0.5 to 10 μg compared to those immunized with 3 or 10 μg of E alone, E adjuvanted with 1% Alum, or with the inactivated virion veterinary vaccine, Duvaxyn® WNV. This phenotype was accompanied by strong cellular recall responses as splenocytes from mice immunized with Matrix-M™ formulated vaccine produced high levels of Th1 and Th2 cytokines. Addition of Matrix-M™ prolonged the duration of the immune response, as elevated humoral and cellular responses were maintained for more than 200 days. Importantly, mice vaccinated with Matrix-M™ formulated E protein were protected from lethal challenge with both lineage 1 and 2 WNV strains. In summary, Matrix-M™ adjuvanted E protein elicited potent and durable immune responses that prevented lethal WNV infection, and thus is a promising vaccine candidate for humans.  相似文献   

2.
West Nile Virus (WNV) is an emerging pathogenic flavivirus with increasing distribution worldwide. Birds are the natural host of the virus, but also mammals, including humans, can be infected. In some cases, a WNV infection can be associated with severe neurological symptoms. All currently available WNV vaccines are in the veterinary sector, and there is a need to develop safe and effective immunization technologies, which can also be used in humans. An alternative to current vaccination methods is DNA immunization. Most current DNA vaccine candidates against flaviviruses simultaneously express the viral envelope (E) and membrane (prM) proteins, which leads to the formation of virus-like particles. Here we generated a DNA plasmid, which expresses only the E-protein ectodomain. Vaccination of mice stimulated anti-WNV T-cell responses and neutralizing antibodies that were higher than those obtained after immunizing with a recombinant protein previously shown to be a protective WNV vaccine. A single dose of the plasmid was sufficient to protect animals from a lethal challenge with the virus. Moreover, immunogenicity could be boosted when DNA injection was followed by immunization with recombinant domain DIII of the E-protein. This resulted in significantly enhanced neutralizing antibody titers and a more prominent cellular immune response. The results suggest that the WNV E-protein is sufficient as a protective antigen in DNA vaccines and that protection can be significantly improved by adding a recombinant protein boost to the DNA prime.  相似文献   

3.
Little SF  Ivins BE  Webster WM  Norris SL  Andrews GP 《Vaccine》2007,25(15):2771-2777
The serological response and efficacy of Bacillus anthracis recombinant protective antigen (rPA) vaccines formulated with aluminum hydroxide adjuvant, either with or without formaldehyde, were evaluated in rabbits. Rabbits that had been injected with a single dose of 25 microg of rPA adsorbed to 500 microg of aluminum in aluminum hydroxide gel (Alhydrogel) had a significantly higher quantitative anti-rPA IgG ELISA titers (p<0.0001) and toxin neutralizing antibody (TNA) assay titers (p<0.0001) than rabbits tested at the next lowest concentration of aluminum (158 microg). Rabbits injected with two doses of 50 microg of rPA formulated with 500 microg of aluminum also had significantly higher serological responses, as measured by a quantitative anti-rPA IgG ELISA (p<0.0001) and TNA assay (p<0.0001), than sera from rabbits injected with a rPA vaccine formulated without adjuvant. Short-term protection against an aerosol spore challenge (448 LD(50)), however, was not significantly different between the two groups (12/12 and 11/12, respectively). Rabbits injected with a single dose of 50 microg of rPA formulated with 500 microg of aluminum and 0.2% formaldehyde had significantly higher ELISA (p<0.0001) and TNA assay (p<0.0001) titers than rabbits that had been injected with a rPA vaccine formulated with adjuvant but without formaldehyde. Short-term protection against a 125 LD(50) parenteral spore challenge, however, was not significantly different between the two groups (14/24 and 9/24, respectively; p=0.2476). Under the conditions tested in the rabbit animal model, significantly higher serological responses were observed in rabbits that had been injected with rPA formulated with aluminum hydroxide gel adjuvant and formaldehyde. However, differences in short-term efficacy were not observed.  相似文献   

4.
Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine.  相似文献   

5.
Ljutic B  Ochs M  Messham B  Ming M  Dookie A  Harper K  Ausar SF 《Vaccine》2012,30(19):2981-2988
We investigated the immunogenicity, stability and adsorption properties of an experimental pneumococcal vaccine composed of three protein vaccine antigens; Pneumococcal histidine triad protein D, (PhtD), Pneumococcal choline-binding protein A (PcpA) and genetically detoxified pneumolysin D1 (PlyD1) formulated with aluminum salt adjuvants. Immunogenicity studies conducted in BALB/c mice showed that antibody responses to each antigen adjuvanted with aluminum hydroxide (AH) were significantly higher than when adjuvanted with aluminum phosphate (AP) or formulated without adjuvant. Lower microenvironment pH and decreased strength of antigen adsorption significantly improved the stability of antigens. The stability of PcpA and PlyD1 assessed by RP-HPLC correlated well with the immunogenicity of these antigens in mice and showed that pretreatment of the aluminum hydroxide adjuvant with phosphate ions improved their stability. Adjuvant dose-ranging studies showed that 28 μg Al/dose to be the concentration of adjuvant resulting in optimal immunogenicity of the trivalent vaccine formulation. Taken together, the results of theses studies suggest that the type of aluminum salt, strength of adsorption and microenvironment pH have a significant impact on the immunogenicity and chemical stability of an experimental vaccine composed of the three pneumococcal protein antigens, PhtD, PcpA, and PlyD1.  相似文献   

6.
《Vaccine》2018,36(16):2086-2092
The outer capsid protein VP4 is an important target for the development of a recombinant rotavirus vaccine because it mediates the attachment and penetration of rotavirus. Due to the poor solubility of full-length VP4, VP8 was explored as candidate rotavirus vaccines in the past years. In previous studies, it has been found that the N-terminal truncated VP8 protein, VP8-1 (aa26-231), could be expressed in soluble form with improved immunogenicity compared to the core of VP8 (aa65-223). However, this protein stimulated only a weak immune response when aluminum hydroxide was used as an adjuvant. In addition, it should be noted that the protective efficacy of VP4 was higher than that of VP8 and VP5. In this study, it was found that when the N-terminal 25 amino acids were deleted, the truncated VP41 (aa26-476) containing VP8 and the stalk domain of VP5 could be expressed in soluble form in E. coli and purified to homogeneous trimers. Furthermore, the truncated VP4 could induce high titers of neutralizing antibodies when aluminum adjuvant was used and conferred high protective efficacy in reducing the severity of diarrhea and rotavirus shedding in stools in animal models. The immunogenicity of the truncated VP4 was significantly higher than that of VP81 and VP51 alone. Taken together, the truncated VP41 (aa26-476), with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development and has the potential to become a parenterally administered rotavirus vaccine.  相似文献   

7.
Diseases resulting from infection by group A streptococcus (GAS) are an increasing burden on global health. A novel vaccine was developed targeting infection by Streptococcus pyogenes. The vaccine incorporates a recombinant fusion protein antigen (SpeAB) which was engineered by combining inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB) from S. pyogenes. A rational, scientific approach to vaccine development was utilized to determine optimal formulation conditions with aluminum adjuvants. Investigations of the pH stability profile of SpeAB concluded the antigen was most stable near pH 8. Incorporation of the stabilizers sucrose and mannitol significantly enhanced the stability of the antigen. Vaccines were formulated in which most of the SpeAB was adsorbed to the adjuvant or remained in solution. A SpeAB vaccine formulation, stabilized with sucrose, in which the antigen remains adsorbed to the aluminum adjuvant retained the greatest potency as determined by evaluation of neutralizing antibody responses in mice. This vaccine has great potential to provide a safe and effective method for prevention of GAS disease.  相似文献   

8.
Zhou Z  Post P  Chubet R  Holtz K  McPherson C  Petric M  Cox M 《Vaccine》2006,24(17):3624-3631
A recombinant SARS-CoV spike (S) glycoprotein vaccine produced in insect cells in a pre-clinical development stage is described. A truncated version of S glycoprotein, containing only the ecto-domain, as well as a His-tagged full-length version were cloned and expressed in a serum-free insect cell line, ExpresSF+. The proteins, purified to apparent homogeneity by liquid column chromatography, were formulated without adjuvant at 3, 9, 27, and 50 microg per dose in phosphate saline and used to immunize mice. Both antigens in each formulation elicited a strong immune response after two or three vaccinations with the antigen. Neutralizing antibody titers correlated closely with standard ELISA reactivity against the S glycoprotein. The truncated S protein was also formulated with an adjuvant, aluminum hydroxide, at 1 microg per dose (+/-adjuvant), and 5 microg per dose (+/-adjuvant). Significantly enhanced immune responses, manifested by higher titers of serum ELISA and viral neutralizing antibodies, were achieved in adjuvanted groups with fewer doses and lower concentration of S glycoprotein. These findings indicate that the ecto-domain of SARS-CoV S glycoprotein vaccine, with or without adjuvant, is immunogenic and induces high titers of virus neutralizing antibodies to levels similar to those achieved with the full S glycoprotein vaccine.  相似文献   

9.
《Vaccine》2016,34(16):1915-1926
West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA–WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA–WNV vaccines in other preclinical models and use them as candidate vaccine in humans.  相似文献   

10.
The investigational vaccine, NDV-3, contains the N-terminal portion of the Candida albicans agglutinin-like sequence 3 protein (Als3p) formulated with an aluminum hydroxide adjuvant in phosphate-buffered saline. Preclinical studies demonstrated that the Als3p vaccine antigen protects mice from oropharyngeal, vaginal and intravenous challenge with C. albicans and other selected species of Candida as well as both intravenous challenge and skin and soft tissue infection with Staphylococcus aureus. The objectives of this first-in-human Phase I clinical trial were to evaluate the safety, tolerability and immunogenicity of NDV-3 at two different antigen levels compared to a saline placebo. Forty healthy, adult subjects were randomized to receive one dose of NDV-3 containing either 30 or 300 μg of Als3p, or placebo. NDV-3 at both dose levels was safe and generally well-tolerated. Anti-Als3p total IgG and IgA1 levels for both doses reached peak levels by day 14 post vaccination, with 100% seroconversion of all vaccinated subjects. On average, NDV-3 stimulated peripheral blood mononuclear cell (PBMC) production of both IFN-γ and IL-17A, which peaked at day 7 for subjects receiving the 300 μg dose and at day 28 for those receiving the 30 μg dose. Six months after receiving the first dose of NDV-3, nineteen subjects received a second dose of NDV-3 identical to their first dose to evaluate memory B- and T-cell immune responses. The second dose resulted in a significant boost of IgG and IgA1 titers in >70% of subjects, with the biggest impact in those receiving the 30 μg dose. A memory T-cell response was also noted for IFN-γ in almost all subjects and for IL-17A in the majority of subjects. These data support the continued investigation of NDV-3 as a vaccine candidate against Candida and S. aureus infections.  相似文献   

11.
There is a need for novel rabies vaccines suitable for short course, pre- and post-exposure prophylactic regimens which require reduced doses of antigen to address the current worldwide supply issue. We evaluated in rhesus macaques the immunogenicity of a quarter-dose of a standard rabies vaccine formulated with Merck's amorphous aluminum hydroxylphosphate sulfate adjuvant, the saponin-based ISCOMATRIX™ adjuvant, or a synthetic TLR9 agonist. All adjuvants significantly increased the magnitude and durability of the humoral immune response as measured by rapid fluorescent focus inhibition test (RFFIT). Several three-dose vaccine regimens resulted in adequate neutralizing antibody of ≥0.5 IU/ml earlier than the critical day seven post the first dose. Rabies vaccine with ISCOMATRIX™ adjuvant given at days 0 and 3 resulted in neutralizing antibody titers which developed faster and were up to one log 10 higher compared to WHO-recommended intramuscular and intradermal regimens and furthermore, passive administration of human rabies immunoglobulin did not interfere with immunogenicity of this reduced dose, short course vaccine regimen. Adjuvantation of whole-killed rabies vaccine for intramuscular injection may therefore be a viable alternative to intradermal application of non-adjuvanted vaccine for both pre- and post-exposure regimens.  相似文献   

12.
《Vaccine》2020,38(35):5653-5658
The COVID-19 outbreak has become a global pandemic responsible for over 2,000,000 confirmed cases and over 126,000 deaths worldwide. In this study, we examined the immunogenicity of CHO-expressed recombinant SARS-CoV-2 S1-Fc fusion protein in mice, rabbits, and monkeys as a potential candidate for a COVID-19 vaccine. We demonstrate that the S1-Fc fusion protein is extremely immunogenic, as evidenced by strong antibody titers observed by day 7. Strong virus neutralizing activity was observed on day 14 in rabbits immunized with the S1-Fc fusion protein using a pseudovirus neutralization assay. Most importantly, in <20 days and three injections of the S1-Fc fusion protein, two monkeys developed higher virus neutralizing titers than a recovered COVID-19 patient in a live SARS-CoV-2 infection assay. Our data strongly suggests that the CHO-expressed SARS-CoV-2 S1-Fc recombinant protein could be a strong candidate for vaccine development against COVID-19.  相似文献   

13.

Background

Immune responses to novel pandemic influenza vaccines may be influenced by previous exposure to antigenically similar seasonal strains.

Methods

An open-label, randomized, phase I/II study was conducted to assess the immunogenicity and safety of a non-adjuvanted, inactivated whole-virus H1N1 A/California/07/2009 vaccine. 408 subjects were stratified by age (18–59 and >60 years) and randomized 1:1 to receive two vaccinations with either 3.75 or 7.5 μg hemagglutinin antigen 21 days apart. Safety, immunogenicity and the influence of seasonal influenza vaccination and antibody cross-reactivity with a seasonal H1N1 strain was assessed.

Results

A single vaccination with either dose induced substantial increases in H1N1 A/California/07/2009 hemagglutination inhibition (HI) and neutralizing (MN) antibody titers in both adult and elderly subjects. A single 7.5 μg dose induced seroprotection rates of 86.9% in adults and 75.2% in elderly subjects. Two 7.5 μg vaccinations induced seroprotection rates in adult and elderly subjects of 90.9% and 89.1%, respectively. The robust immune response to vaccination was confirmed by analyses of neutralizing antibody titers. Both HI and MN antibodies persisted for ≥6 months post-vaccination. Between 34% and 49% of subjects had seroprotective levels of H1N1 A/California/07/2009 antibodies at baseline. Higher baseline HI titers were associated with receipt of the 2008–09 or 2009–10 seasonal influenza vaccine. High baseline A/California/07/2009 neutralizing antibody titers were also associated with high baseline titers against A/New Caledonia/20/99, a seasonal H1N1 strain which circulated and was included in the seasonal vaccine from 2000–01 to 2006–07. Pre-adsorption with A/H1N1/New Caledonia/20/99 antigen reduced A/H1N1/California/07/2009 baseline titers in 55% of tested sera. The vaccine was well tolerated with low rates of fever.

Conclusions

A whole-virus H1N1 A/California/07/2009 vaccine was safe and well tolerated and a single dose induced substantial immune responses similar to seasonal influenza vaccines, probably due to immunological priming by previous seasonal influenza vaccines or infections.  相似文献   

14.
《Vaccine》2021,39(48):7001-7011
COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).  相似文献   

15.
《Vaccine》2019,37(31):4344-4353
BackgroundHand, foot and mouth disease (HFMD), especially that caused by enterovirus 71 (EV71) infection, is a public health concern in the Asia-Pacific region. We report a phase I clinical trial of an EV71 candidate vaccine (INV21) based on a binary ethylenimine inactivated B2 sub-genotype formulated with aluminum hydroxide.MethodsIn this double-blind, placebo-controlled, randomized, dose escalation study adult volunteers received two vaccinations 28 days apart of low or high dose formulations of the candidate vaccine and were then monitored for safety and reactogenicity for four weeks after each dose, and for their immune responses up to 28 weeks.ResultsOf 36 adults enrolled, 35 completed the study as planned. Either no or mild adverse events were observed, mainly injection site pain and tiredness. Seroconversion was 100% after two vaccinations. High geometric mean neutralizing antibody titers (GMT) were observed 14 days post first dose, peaking 14 days post second dose (at Day 42) in both high and low dose groups; GMTs on days 14, 28, 42, and 56 were 128, 81, 323, 203 and 144, 100, 451, 351 in low- and high-dose groups, respectively. Titers for both doses declined gradually to Day 196 but remained higher than baseline and the placebo groups, which had low GMTs throughout the duration of the study. Cross-neutralizing antibody activity against heterologous sub-genotypes was demonstrated.ConclusionThese data show that the EV71 candidate vaccine is safe and immunogenic in adults and supports further clinical development as a potential pediatric vaccine by initiating a dose-escalation study for determining the dose-dependent safety and immunogenicity of the vaccine in young naïve children.  相似文献   

16.
Dengue (DEN) viruses (serotypes 1 to 4) are mosquito-borne flaviviruses which cause about fifty million human infections annually and represent an expanding public health problem in the tropics. At present, there are no safe and effective vaccines which induce protective immunity to all four serotypes of DEN. Natural infection or vaccination with native and recombinant proteins may induce an immune response to the surface envelope E-protein which was shown to be protective to super-infection with homologous serotype of the virus. Purified recombinant E-protein was made in the baculovirus-Spodoptera frugiperda expression system. This protein induced neutralizing antibodies in mice. These results prompted us to immunize cynomolgus monkeys (Macaca fascicularis) with either a live attenuated DEN-2 vaccine or the recombinant E-protein complexed to aluminum hydroxide. After immunization, the monkeys were challenged with the homologous DEN virus. Serum was collected at several time points and a virus-specific antibody response including a virus neutralizing antibody response was measured. Antibody kinetics and levels were similar to those recorded in humans with a natural DEN-virus infection. Virus isolation and type specific RT-PCR were performed on the serum samples. The virus was isolated from sham vaccinated control monkeys but not from monkeys vaccinated with the live attenuated vaccine. One of the two monkeys immunized with the recombinant E-protein was also protected. Taken together these data indicate the potential of both candidate vaccines and stress the need for evaluation of different antigen presentation systems for the development of a subunit vaccine approach for DEN.  相似文献   

17.
《Vaccine》2023,41(1):109-118
BackgroundData from previous studies of the MVC-COV1901 vaccine, a subunit vaccine against SARS-CoV-2 based on the stable prefusion spike protein (S-2P) adjuvanted with CpG 1018 adjuvant and aluminum hydroxide, suggest that the vaccine is generally safe and elicits a good immune response in healthy adults and adolescents. By comparing with AZD1222, this study adds to the findings from previous trials and further evaluates the breadth of protection offered by MVC-COV1901.MethodsIn this phase 3, parallel group, randomized, double-blind, active-controlled trial conducted in 2 sites in Paraguay, we assigned adults aged 18–91 years in a 1:1 ratio to receive intramuscular doses of MVC-COV1901 or AZD1222 administered as scheduled in the clinical trial. Serum samples were collected on the day of vaccination and 14 days after the second dose. Primary and secondary safety and immunogenicity endpoints were assessed. In addition, other outcomes investigated were cross-reactive immunity against the Omicron strain and the induction of IgG subclasses.ResultsA total of 1,030 participants underwent randomization. Safety data was derived from this set while primary immunogenicity data involved a per-protocol immunogenicity (PPI) subset including 225 participants. Among the participants, 58% are seropositive at baseline. When compared against AZD1222, MVC-COV1901 exhibited superiority in terms of neutralizing antibody titers and non-inferiority in terms of seroconversion rates. Reactogenicity was generally mild and no serious adverse event was attributable to MVC-COV1901. Both vaccines have a Th1-biased response predominated by the production of IgG1 and IgG3 subclasses. Omicron-neutralizing titers were 44.5 times lower compared to wildtype-neutralizing titers among seronegative individuals at baseline. This fold-reduction was 3.0 times among the seropositive.ConclusionSafety and immunogenicity data of MVC-COV1901 from the study in Paraguay confirm previous results. The previous infection coupled with vaccination of this vaccine may offer protection against the Omicron strain though its durability is still unknown.  相似文献   

18.
The capsid (Cap) protein of PCV2 is the major immunogenic protein that is crucial to induce PCV2-specific neutralizing antibodies and protective immunity; thus, it is a suitable target antigen for the research and development of genetically engineered vaccines against PCV2 infection. IFN-γ has exhibited potential efficacy as an immune adjuvant that enhances the immunogenicity of certain vaccines in experimental animal models. In this study, three recombinant proteins: PCV2-Cap protein, porcine IFN-γ (PoIFN-γ), and the fusion protein (Cap-PoIFN-γ) of PCV2-Cap protein and PoIFN-γ were respectively expressed in the baculovirus system, and analyzed by Western blot and indirect ELISA. Additionally, we evaluated the enhancement of the protective immune response to the Cap protein-based PCV2 subunit vaccine elicited by co-administration of PoIFN-γ in mice. Vaccination of mice with the PCV2-Cap + PoIFN-γ vaccine elicited significantly higher levels of PCV2-specific IPMA antibodies, neutralizing antibodies, and lymphocyte proliferative responses compared to the Cap-PoIFN-γ vaccine, the PCV2-Cap vaccine, and LG-strain. Following virulent PCV2 challenge, no viraemia was detected in all immunized groups, and the viral loads in lungs of the PCV2-Cap + PoIFN-γ group were significantly lower compared to the Cap-PoIFN-γ group, the LG-strain group, and the mock group, but slightly lower compared to the PCV2-Cap group. These findings suggested that PoIFN-γ substantially enhanced the protective immune response to the Cap protein-based PCV2 subunit vaccine, and that the PCV2-Cap + PoIFN-γ subunit vaccine potentially serves as an attractive candidate vaccine for the prevention and control of PCV2-associated diseases.  相似文献   

19.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

20.
《Vaccine》2015,33(50):7126-7134
This review focuses on a dengue virus (DENV) vaccine candidate based on a recombinant subunit approach which targets the DENV envelope glycoprotein (E). Truncated versions of E consisting of the N-terminal portion of E (DEN-80E) have been expressed recombinantly in the Drosophila S2 expression system and shown to have native-like conformation. Preclinical studies demonstrate that formulations containing tetravalent DEN-80E adjuvanted with ISCOMATRIX™ adjuvant induce high titer virus neutralizing antibodies and IFN-γ producing T cells in flavivirus-naïve non-human primates. The preclinical data further suggest that administration of such formulations on a 0, 1, 6 month schedule may result in higher maximum virus neutralizing antibody titers and better durability of those titers compared to administration on a 0, 1, 2 month schedule. In addition, the virus neutralizing antibody titers induced by adjuvanted tetravalent DEN-80E compare favorably to the titers induced by a tetravalent live virus comparator. Furthermore, DEN-80E was demonstrated to be able to boost virus neutralizing antibody titers in macaques that have had a prior DENV exposure. A monovalent version of the vaccine candidate, DEN1-80E, was formulated with Alhydrogel™ and studied in a proof-of-principle Phase I clinical trial by Hawaii Biotech, Inc. (NCT00936429). The clinical trial results demonstrate that both the 10 μg and 50 μg formulations of DEN1-80E with 1.25 mg of elemental aluminum were immunogenic when administered in a 3-injection series (0, 1, 2 months) to healthy, flavivirus-naïve adults. The vaccine formulations induced DENV-1 neutralizing antibodies in the majority of subjects, although the titers in most subjects were modest and waned over time. Both the 10 μg DEN1-80E and the 50 μg DEN1-80E formulations with Alhydrogel™ were generally well tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号