首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birth complications involving fetal hypoxia and stress at adulthood, which are risk factors for schizophrenia, can produce alterations in subcortical dopamine (DA) function in rat models. As adults, rats born either by cesarean section (C-section) or by C-section with added global anoxia show increased stress-induced DA release from nucleus accumbens and increased amphetamine-induced locomotion, compared to vaginally born controls. Moreover, stress at adulthood interacts with these birth insults to modulate DA receptor and transporter levels. Glutamatergic transmission at the level of the nucleus accumbens, prefrontal cortex, and hippocampus are known to modulate subcortical DA activity. Thus, altered excitatory amino acid (EAA) function might contribute to the dopaminergic changes observed in rats after birth insult and/or stress at adulthood. To test this possibility, rats born vaginally, by C-section, or by C-section with 15 min of anoxia, were either repeatedly stressed (15 min of tail pinch daily for 5 days) at adulthood or received no stress, and levels of EAA receptor binding were measured by ligand autoradiography in limbic brain regions. As adults, rats born by C-section showed increases in AMPA receptor binding in nucleus accumbens shell, NMDA receptor binding in cingulate cortex, and kainate receptor binding in the hippocampal CA1 region. Anoxic rats showed increases in CA1 kainate receptor and anterior olfactory NMDA receptor binding. Stress at adulthood increased AMPA receptor binding in several regions of prefrontal cortex and reduced NMDA receptor binding in infralimbic cortex and dentate gyrus, across all birth groups. Two instances of interactions between birth insult and stress at adulthood were observed. Stress reduced cingulate cortex NMDA receptor binding and increased olfactory tubercle kainate receptor binding only in C-sectioned animals, but not in controls. The possibility that the observed EAA receptor changes contribute to dopaminergic dysfunction in these animal models is discussed, in light of known glutamate-DA interactions.  相似文献   

2.
There is an epidemiological association between increased obstetric complications and disorders involving CNS dopamine dysregulation, such as schizophrenia. In light of this, a rat model of global hypoxia during Caesarean section (C-section) birth has been used to directly test if birth complications can produce long-term dopaminergic dysregulation. Previous studies have shown that, compared to vaginal birth, C-section birth alone (without additional global hypoxia) is sufficient to increase D1-like receptor binding in rat brain at adulthood. The current study examined (1) the developmental time course of changes in D1-like or D2-like receptors following C-section birth; (2) whether C-section birth from isoflurane-anesthetized dams also results in altered D1-like receptor levels, as does C-section from decapitated dams; and (3) behavioral responses to D1 and D2 agonists in rats born vaginally compared to C-section. Increases in nucleus accumbens D1-like receptor binding due to C-section birth were observed only at adulthood (3 months) but not prepubertally (1 month or 2 weeks). D2-like receptor binding levels were unaffected by C-section birth across the three developmental time points. Compared to vaginal birth, D1-like receptors were increased following C-section birth from isoflurane-anesthetized dams, as well as from decapitated dams. Adult rats that had been born by C-section showed enhanced D1 potentiation of D2-induced locomotor behavior. These studies indicate that C-section birth, from either anesthetized or unanesthetized dams, results in postpubertal increases in D1-like receptor binding and enhanced functional responses to D1 receptor activation.  相似文献   

3.
The aim of this study was to test if two birth complications, namely, transient global hypoxia during Caesarean section (C-section) birth or C-section birth per se, produce long-term changes in behavioral responses to repeated stress. Adult rats, that had been born vaginally, by C-section or by C-section with 10 min of global anoxia, were stressed for 8 days (15 min tail pinch daily) followed by challenge with the same stressor 2 weeks later. The main finding is that adult rats born by C-section + 10 min of anoxia showed enhanced locomotor activity on days 5 and 6 of the repeated stress period and at stress challenge 2 weeks later, compared to animals born vaginally or by C-section. It is concluded that transient global birth hypoxia can render the adult rat behaviorally hyper-responsive to repeated stress.  相似文献   

4.
Using a rat model, several laboratories have demonstrated long-term effects of Caesarean section (C-section) birth or of global hypoxia during C-section birth on a variety of central nervous system (CNS) parameters. These studies used C-section delivery from rapidly decapitated dams, to avoid confounding anesthetic effects, or from dams anesthetized with halothane or ether under unspecified conditions. Systemic oxygenation or cerebral energy metabolites in the pups at birth have not been systematically measured in this model. To develop and characterize a C-section model with relevance to the human situation, the present study measured arterial/venous blood gases and pH and brain ATP and lactate, a widely accepted measure of CNS hypoxia, in pups born either vaginally, by C-section from decapitated dams, or by C-section from dams anesthetized with nitrous oxide (N2O) and increasing concentrations of isoflurane under well-defined conditions. Immediately after birth, pups born vaginally, by C-section with maternal decapitation, or by C-section with 2.5% isoflurane showed no group differences in systemic pO2 or pH or brain ATP levels, but pCO2 was elevated in the C-section/2.5% isoflurane group. Pups born by C-section with 3.0, 3.5, or 4.0% isoflurane, showed progressive reductions in blood pO2 and increases in pCO2 and blood pH was reduced with 3.5% isoflurane. Relative to vaginal birth, brain lactate levels were unchanged in pups born by C-section with any concentration (2.5-4.0%) of isoflurane, but reduced in pups born by C-section from decapitated dams. At 1 h (and 4 h) after birth, in both vaginally born controls and the 2.5% isoflurane group, brain lactate fell while blood pO2 and brain ATP remained stable. In the 3.0, 3.5, or 4.0% isoflurane groups, blood gases and pH and brain lactate also normalized to control values. In conclusion, rat neonates show minimal signs of systemic or CNS hypoxia following C-section birth under 2.5% isoflurane with N2O. However, there is a rather narrow window of isoflurane concentrations which produces effective maternal anesthesia without producing respiratory compromise in the neonate. Thus the results indicate that the level of maternal anesthesia employed is an important factor influencing neonatal systemic and CNS oxygenation during C-section birth.  相似文献   

5.
H Yamamoto  T Kato 《Brain research》1986,391(2):285-288
The effect of neonatal anoxia upon cholecystokinin-8-like immunoreactivity (CCK-8-I) concentrations was investigated in different brain areas of mature rats. Anoxia within 24 h after birth resulted in significantly lower CCK-8-I levels in the cortex, nucleus accumbens, amygdala and hypothalamus of 10-week-old rats. In contrast, no change was observed in the monoamine levels of these brain areas. The data suggest that neonatal anoxia selectively affects CCK-containing neurons.  相似文献   

6.
Streptozotocin-induced diabetes produced marked alterations of monoamine concentrations in several hypothalamic nuclei of male and female rats. Norepinephrine (NE) concentrations were significantly elevated in the median eminence (ME), supraoptic nucleus (SON) and periventricular nucleus (PEVN) in both sexes of diabetic rats. NE concentrations in the suprachiasmatic nucleus (SCN) and ventromedial nucleus (VMN) of male and female diabetic animals remained unaltered. Serotonin (5-HT) concentrations were increased in PEVN of male and female diabetic rats. No significant changes in hypothalamic dopamine (DA) concentrations were observed. Insulin treatment reversed the diabetes-related changes in monoamine concentrations in most of the nuclei. The significance of these biochemical changes relative to the endocrine and behavioral abnormalities in diabetes is discussed.  相似文献   

7.
The concentration of brain catecholamines was measured in the hypothalamus, preoptic area (POA), frontal cortex, cerebellum, and striatum of rats exposed in utero to morphine (5–10 mg/kg/twice daily) during gestation days 11–18. Prenatal morphine induced regionally specific, sexually dimorphic alterations in male and female norepinephrine (NE), and dopamine (DA) content at different postnatal ages. Prenatal morphine significantly increased NE content in the hypothalamus of both sexes at postnatal day (PND) 23. In the POA, on the other hand, morphine increased NE content in exposed males at PND 23 and in females at PND 33. In the cerebellum, the NE content of both sexes was significantly elevated at PND 45. In the striatum, NE content was increased by the prenatal morphine only in females at PND 16. The concentration of DA was also affected in a sexually dimorphic manner. At PND 16, prenatal morphine increased the levels of hypothalamic DA only in males, and it reduced the content of DA in female but not male PDA. At PND 45, prenatal morphine increased DA in the hypothalamus of females and decreased it in males. In the cerebellum of 16-day-old morphine-exposed animals, DA levels were increased only in males; at PND 45, the levels of DA were still increased in males but had not changed in females. In the striatum, the DA content was reduced only in males at PND 16. Thus, prenatal morphine alters the development of both NE and DA neurotransmitter systems in the hypothalamus, POA, striatum, and cerebellum in a sexually dimorphic manner.  相似文献   

8.
The purpose of this study was to determine whether the regional brain biogenic amine levels in adult rats were altered by pre- and post-natal exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg per day of 2,4-D from gestation day (GD) 16 to post-partum day (PPD) 23. After weaning, the pups were assigned to one of two subgroups: T1 fed with untreated diet up to post-natal day (PND) 90 and T2 (maintained with 2,4-D diet up to PND 90). In addition, we wanted to know the effect of 2,4-D on lateralization in the monoamine systems of the basal ganglia of these adult rats and whether there was any correlation with the behavioral developmental pattern previously reported by us. In this study the content of noradrenaline (NA) was significantly increased in substantia nigra (SN) while it decreased in cerebellum in male and female rats of T2 group. The decreased dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovallinic acid (HVA) contents in cerebellum, midbrain, ventral tegmental area (VTA) and prefrontal cortex (PFc) showed an alteration in the mesocorticolimbic system. However, an increase of DA in SN and of DOPAC and HVA in nucleus accumbens (NAc) in both sexes and of DA and DOPAC (only in females) in striatum was detected. The contents of serotonin (5-hydroxytryptamine, 5-HT) were significantly increased in both sexes in PFc, striatum (St), midbrain, SN and cerebellum. Variations of any monoamine levels in NAc and VTA were determined. T1 rats were irreversibly altered: a diminution in DA and/or DOPAC levels in PFc, midbrain, VTA and cerebellum was determined. Indolamines of these rats were increased in both sexes in PFc and St. There was also a large increase in 5-HT levels in midbrain of male rats. Although no changes in the dopaminergic system with respect to their control values in any side of these brain structures were observed, DA and DOPAC levels were found to be decreased in the right side with respect to the left side in striata and accumbens nuclei in T2 female rats supporting the behavioral rotation previously registered by us in these rats. In addition, the increased 5-HT content detected in both the right and left striata observed in this study could be the answer to the behaviors observed and to the early alterations in dopamine in basal ganglia by 2,4-D in neonatal exposed rats, mediated by a serotonergic modulation on the dopaminergic system.  相似文献   

9.
El-Khodor BF  Boksa P 《Neuroreport》2002,13(2):201-206
This study investigated whether mild birth complications (C-section birth, C-section + 15 min global anoxia) interact with stress at adulthood to modulate levels of [3H]WIN 35428 binding to dopamine transporters (DAT) in rat brain. Without stress, adult C-sectioned rats showed increased DAT binding in the dorsal striatum and nucleus accumbens core compared to vaginal birth, while anoxic rats showed increased DAT binding in cingulate and infralimbic cortices. Stress at adulthood had differential effects on DAT binding in the three birth groups. Thus, after repeated tail pinch stress at adulthood, DAT binding was significantly lower in the nucleus accumbens in both the C-section group and the anoxic group, compared to vaginal birth. It is concluded that a history of birth complications can alter the manner in which DAT is regulated by stress in the adult rat brain.  相似文献   

10.
Transient global anoxia after Cesarean birth in rats may produce alterations in the subcortical DA function and related behaviors. The reports only tested the behavioral changes induced by a general DA agonist, such as amphetamine or apomorphine, in adult rats. Here we investigated the role of perinatal anoxia on the locomotion induced by a specific dopamine (DA) agonist and its relation to the DA D1-like and D2-like receptors, measured by autoradiography at two different ages, prepubertal (35 days old, P35) and postpubertal (60 days old, P60). Cesarean birth with or without (C-only) an additional period of 10 min of the anoxia was done in Sprague-Dawley rats, and the effects of the DA D1-like and D2-like agonist and their receptors were studied at P35 and P60. In addition, a third group of animals born vaginally served as the control. The quantitative autoradiography study of the DA D1-like and D2-like receptors revealed an enhancement of the DA D1-like receptor levels in the nucleus accumbens (NAcc) and dorsolateral part of the caudate-putamen in the prepubertal C-only animals. The postpubertal C-only rats showed a decrease in the levels of DA D2-like receptors in the NAcc. However, quinpirole, a DA D2 agonist (0.125 and 0.25 mg/kg, s.c.), induced a dose-dependent increase of the locomotor activity in the animals born by Cesarean with anoxia at birth at both ages. Our results suggest that Cesarean with or without anoxia at birth may mediate differently the neurodevelopmental aspects of the dopaminergic system before and after puberty.  相似文献   

11.
Recent evidence has suggested a role for free radicals in tardive dyskinesia. We, therefore, investigated the effects of chronic administration of fluphenazine decanoate (FLU) and/or vitamin E (VIT E) on regional monoamine metabolism in rat brain. Chronic FLU caused significant increases in dopamine (DA) in nucleus accumbens and brainstem, significant decreases in dihydroxyphenylacetic acid (DOPAC) in frontal cortex, nucleus accumbens and hippocampus and significant decreases in homovanillic acid (HVA) in nucleus accumbens, caudate-putamen and brainstem. Coadministration of FLU and VIT E normalized HVA in caudate-putamen, nucleus accumbens and brainstem as well as DOPAC in nucleus accumbens and hippocampus. Chronic FLU caused significant increases in norepinephrine (NE) levels in all regions studied. VIT E attenuated FLU-induced increases in NE levels in nucleus accumbens and hippocampus. Significant increases in serotonin (5-HT) levels occurred in nucleus accumbens and hippocampus whereas significant decreases in 5-hydroxyindole-acetic acid (5-HIAA) occurred in all brain regions after chronic FLU. Coadministration of VIT E attenuated the changes observed in hippocampal 5-HIAA but potentiated the FLU-induced increases in 5-HT in this region. Our data suggest that VIT E can attenuate some of the FLU-induced changes in monoamine metabolism. Results are discussed in relation to possible involvement of free radicals in monoamine metabolism during chronic neuroleptic use.  相似文献   

12.
Obstetric complications involving anoxia or prolonged hypoxia are suspected to increase the risk for such mental disorders as schizophrenia and attention deficit-hyperactivity disorder. In previous studies, we reported evidence of enhanced nucleus accumbens (NAcc) dopamine (DA) function in adult rats subjected to intrauterine anoxia during cesarean (C) section birth. In the present study, we used voltammetry and monoamine-sensitive electrodes to investigate the possibility that this functional hyperactivity of the meso-NAcc system is attributable to a loss of inhibitory control from the medial prefrontal cortex (PFC). We monitored the DA responses to repeated once-daily stress in the right or left PFC of adult male rats born vaginally (VAG) or by C-section, either with (C + 15) or without (C + 0) an additional 15 min of intrauterine anoxia. In C + 15 animals, we observed a pronounced and persistent blunting of stress-induced DA release in the right PFC but not in the left; with repeated testing, a similar pattern of dampened right PFC DA stress responses emerged in C + 0 animals. In addition, C + 15 animals were spontaneously more active than VAG and C + 0 animals and displayed an increase in PFC DA transporter density that was also lateralized to the right hemisphere. There was no evidence, however, that PFC D(1) and D(2) receptor levels differed between birth groups or hemisphere. These findings suggest a mechanism by which perinatal complications involving anoxia might contribute to the etiology of mental disorders that have been linked to disturbances in central DA transmission and lateralized PFC dysfunction.  相似文献   

13.
Although estradiol (E2) mediates many behaviors in females, relatively little is known about its role in female aggression. Previous studies in female mountain spiny lizards indicated that female aggression is modulated by ovariectomy and sex steroid hormone replacement and that expression of aggressive behavior is accompanied by changes in serotonin activity. This study examines if E2 modulates the activity of serotonin and other central monoamines. Free-living females were caught and housed in the laboratory and received one of 3 treatments: sham surgery (SHAM), ovariectomy plus empty implant (OVEX), or sham surgery plus a long lasting E2 implant (E2-IMP). After 3 weeks of treatment, selected brain areas were examined for levels of monoamines and their metabolites. Changes in monoamine activity were most pronounced in the septum where levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were higher in E2-IMP females relative to SHAM, and levels of 5-HIAA were higher in OVEX females relative to SHAM. Changes in dopamine (DA) activity were also found, with increased DA concentration and decreased ratio of forebrain:brainstem HVA concentrations in E2-IMP relative to SHAM females. These results suggest that the actions of E2 on aggression might be mediated, in part, by dose-dependent effects on 5-HT activity in the septum.  相似文献   

14.
Miura H  Qiao H  Ohta T 《Brain research》2002,926(1-2):10-17
Isolation and acute environmental change are risk factors in human depression. In the present study, we investigated the differences in the brain monoamine activity of rats between two rearing conditions, isolated and group. Moreover, we examined the responses to novelty stress. Male F344 rats aged 11 weeks were divided into the above two groups. Four weeks later they were further divided into non-stress and stress groups. The latter received 20 min exposure to novelty stress. Isolation significantly changed brain monoamine levels, with the levels of dopamine (DA) in the nucleus accumbens and midbrain, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the midbrain, and 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus increasing. Serotonin (5-HT) levels also increased in all brain areas except the raphe nuclei. HVA levels in the raphe nuclei decreased. Novelty stress significantly altered brain monoamine levels. DA, DOPAC, and HVA levels in the prefrontal cortex decreased, as did those of 5-HT in the prefrontal cortex and hippocampus. DA levels in the nucleus accumbens increased. Isolation attenuated the enhanced brain monoamine turnover elicited by novelty stress. The enhanced DA turnover ratio in the prefrontal cortex of the group-reared group was attenuated in the isolated-reared group, and the unchanged DA turnover ratio in the nucleus accumbens of the group-reared group declined in the isolated-reared group. The enhanced 5-HT turnover ratio in the prefrontal cortex, nucleus accumbens, and hippocampus of the group-reared group was attenuated in the isolated-reared group. Isolation may exacerbate adaptation to stress, and be related to the etiology of human depression.  相似文献   

15.
The effect of prenatal exposure to methadone via maternal osmotic minipumps was studied on brain regional acetylcholine (ACh) turnover and dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytryptamine, 5-HT) and their metabolites in 21-day-old female and male rats. ACh content was not affected in any region studied. However, the turnover rate of ACh (TRAch) was increased significantly in the striata and parietal cortices of both sexes. Two gender-specific changes were observed: a profound decrease in hypothalamic TRACh in the females and an increase in hippocampal TRACh in the males. No changes were observed in TRACh in the medulla-pons or the frontal cortex of either sex. The reduction in TRACh was accompanied by a threefold increase in DA content in the hypothalamus of the methadone-exposed females. No other changes were observed in DA, NE, or 5-HT, save for increased 5-HT content in the medulla-pons of the male methadone-exposed rats. Thus, prenatal methadone exposure produces several lingering changes in cholinergic function, many of which were not apparent in the immediate postnatal period. Although striatal ACh content was no longer reduced in methadone-exposed rats, striatal cholinergic function remains disrupted. It remains to be proven whether these differences are a direct effect of methadone exposure or are a consequence of neonatal withdrawal.  相似文献   

16.
Age-dependent changes in monoaminergic systems and their relationship to senescent memory decline were investigated in 4- and 25-26-month-old, female, Fischer 344 rats. Spatial memory performance was tested on an 8-arm radial maze, and levels of norepinephrine (NE), dopamine (DA) and metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid, serotonin (5-HT) and metabolite 5-hydroxyindoleacetic acid were measured in brain areas which contribute to memory function--basal forebrain cholinergic nuclei, subfields of the hippocampus, frontal and entorhinal cortex--and in monoaminergic cell body areas. The performance of aged subjects was significantly impaired as compared to young subjects, and alterations of 20-60% in monoamine and metabolite levels were measured in specific brain areas of aged rats. Decreased NE levels were found in basal forebrain nuclei and cortical areas but not in hippocampal subfields of aged rats. Changes in the 5-HT system were present in hippocampal, cortical and basal forebrain sites. Changes in the DA system were the most pervasive with aged rats showing decreased DA and/or metabolites in several basal forebrain nuclei, cortical areas, and the hippocampus. Aged rats showed 50% decreases of monoamines in locus coeruleus and substantia nigra and 30% decreases in the dorsal raphe nucleus. Some but not all of the changes correlated with memory performance. The present results in rats support evidence that age-dependent changes in monoaminergic function in discrete brain sites contribute to senescent memory decline and suggest that monoaminergic-cholinergic interactions within basal forebrain nuclei may be important in this decline.  相似文献   

17.
柴胡对肝郁证大鼠脑内单胺类神经递质的影响   总被引:3,自引:0,他引:3  
目的探索柴胡对肝郁证大鼠中枢神经递质的作用。方法利用中医证候模型,研究柴胡对单胺类神经递质的作用。结果肝郁证模型组大鼠脑内去甲肾上腺素(NE)与多巴胺(DA)水平与对照组比较下降明显(P<0.05),肝郁证模型加逍遥散组大鼠脑内NE与DA水平与对照组比较差异无统计学意义(P>0.05),肝郁证模型加柴胡组大鼠脑内NE与DA水平与对照组比较差异无统计学意义(P>0.05)。结论肝郁证大鼠脑内NE与DA水平明显降低,柴胡舒肝解郁,有增加肝郁证大鼠脑内NE、DA神经递质的作用。  相似文献   

18.
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.  相似文献   

19.
We demonstrated that neonatal isolation (ISO) enhances cocaine self-administration in male and female adult rats and alters ventral striatal extracellular levels of serotonin (5-HT) and dopamine (DA) basally or in response to psychostimulants in infant rats. Now, we examine basal 5-HT, DA, and norepinephrine (NE) levels in nucleus accumbens (NAc) using in vivo microdialysis in adult male and female rats with or without ISO experience. NAc shows estrous cycle-dependent effects as do behavioral responses to cocaine. Because our prior work showed ISO eliminated estrous-cycle effects on behavior, we now test separate groups of females in proestrus, estrus, or diestrus stages. Litters were assigned to the ISO (1-h isolation; postnatal days 2-9) or non-handled (NH) condition. During adulthood (postnatal day 70-90), microdialysis probes were implanted and aimed at NAc core. Ten samples were collected over 150-min and measures of 5-HT, DA, and NE were analyzed via HPLC. ISO did not affect 5-HT levels in males. However, ISO modified estrous stage effects on 5-HT. The pattern of 5-HT levels in NH females (higher in diestrus and proestrus vs. estrus) was reversed in ISO females. DA levels were unaffected by ISO, similar to our findings at other ages, and did not differ by gender or estrous stage. None of these factors affected NE levels. Because 5-HT modulates DA and levels of both transmitters are increased by cocaine, this neurochemical effect of ISO may contribute to the ability of ISO to alter the behavioral responses to cocaine as we showed previously.  相似文献   

20.
Steady state levels of monoamine neurotransmitters were examined in SHR, a genetic model of hypertension and compared to its normotensive control (WKY). SHR and WKY were also challenged with alpha 2-adrenergic antagonists, (yohimbine, YOH, idazoxan) or an alpha 1-antagonist (prazosin) and alterations in CNS monoamine metabolism evaluated. SHR were found to have elevated levels of NE and 5-HT in a number of brain regions involved in cardiovascular control when compared to WKY. DA levels and metabolism were also altered in the SHR. Blockade of alpha 2-adrenoceptors and other direct and indirect actions of YOH exacerbated the abnormalities in central monoaminergic neurotransmission in SHR. Significant decreases in NE content were produced by YOH or idazoxan treatment in both SHR and WKY, presumably the result of the inhibition of alpha 2-adrenoceptor medicated presynaptic control of NE release. YOH treatment abolished the differences in steady state levels of NE between SHR and WKY, however, idazoxan did not. YOH administration resulted in significant increases in DA and 5-HT in a number of brain regions of both SHR and WKY. Idazoxan or prazosin produced few changes in DA and 5-HT metabolism except for increases in DA content in the spinal cord and brainstem of SHR given idazoxan. The YOH-induced increases in DA and 5-HT content of SHR were of a greater magnitude than the WKY in several brain regions. DOPAC levels were significantly elevated by YOH in both WKY and SHR, reflecting the antidopaminergic properties of YOH. 5-HIAA content was significantly reduced by YOH in a number of brain regions in both SHR and WKY, however, this effect was attenuated in several brain regions in SHR. The results of the present study demonstrate the multifarious nature of the alterations in CNS monoamine metabolism in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号