首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release profiles of acidic and neutral drugs from poly(L-lactic acid) [P(L)LA] matrices were investigated to reveal their release mechanism. Cylindrical matrices (rods; 10 mmx1 mm diameter) were prepared by the heat compression method. The acidic and neutral drugs investigated were dissolved in the P(L)LA rods. It was found that the release profiles consisted of two sequential stages. At the first release stage, P(L)LA remained in an amorphous state and the drugs diffused through the hydrated matrices. At the second release stage, P(L)LA transformed to a semicrystalline state and the drugs diffused through water-filled micropores developed by polymer crystallization. In addition, the drugs were also found to precipitate out as crystals in the rods, resulting in a transformation of the rods into drug-dispersed matrices. On the basis of these findings, we derived a modified diffusion equation for the drug release at the second stage. This equation showed good fits to the release profiles of these drugs. Furthermore, the availability of the derived equation was supported by the acceleration in the fractional drug release rate noted both with decreases in the drug content in the rod and increases in the pH of the medium.  相似文献   

2.
The degradation rate of poly(lactic acid) (PLA) is typically modified by copolymerization of the glycolide with lactide. In the present study, the degradation rate of PDLLA was modified by a novel linking of PLA with 2,2'-bis(2-oxazoline). This modification resulted in formation of a more rapidly degrading poly(ester amide) (PEA) for controlled drug release. The hydrolytic degradation of PDLLA and PEA films was studied in PBS (pH 7.4, USP XXIV, 37 degrees C); the resulting decrease in molecular weight was determined by size exclusion chromatography and the weight loss of films was measured. Drug releases of guaifenesin (mw 198.2), timolol (mw 332.4), sodium salicylate (mw 160.1) and FITC-dextran (mw 4400) from PDLLA and PEA films and microspheres were examined in PBS (pH 7.4, 37 degrees C). The degradation rate of PEA was substantially greater than that of PDLLA. The release profiles of all small model drugs (mw <332.4) from PDLLA films were biphasic or triphasic, while the release profiles of small model drugs from PEA films varied extensively. Due to the faster weight loss of PEA, FITC-dextran (mw 4400) was released substantially more rapidly from PEA microspheres than from PDLLA microspheres. In conclusion, all model drugs, except guaifenesin, were released faster from PEA preparations than from PDLLA preparations.  相似文献   

3.
The release profiles of acidic and neutral drugs from poly(-lactic acid) [P(L)LA] matrices were investigated to reveal their release mechanism. Cylindrical matrices (rods; 10 mm×1 mm diameter) were prepared by the heat compression method. The acidic and neutral drugs investigated were dissolved in the P(L)LA rods. It was found that the release profiles consisted of two sequential stages. At the first release stage, P(L)LA remained in an amorphous state and the drugs diffused through the hydrated matrices. At the second release stage, P(L)LA transformed to a semicrystalline state and the drugs diffused through water-filled micropores developed by polymer crystallization. In addition, the drugs were also found to precipitate out as crystals in the rods, resulting in a transformation of the rods into drug-dispersed matrices. On the basis of these findings, we derived a modified diffusion equation for the drug release at the second stage. This equation showed good fits to the release profiles of these drugs. Furthermore, the availability of the derived equation was supported by the acceleration in the fractional drug release rate noted both with decreases in the drug content in the rod and increases in the pH of the medium.  相似文献   

4.
Poly(lactic acid) (PLA) was successfully grafted to both ends of Pluronic F127 block copolymer (PEO-PPO-PEO) to obtain amphiphilic PLA-F127-PLA block copolymers. The effect of enzymatic degradation on the release behaviors of hydrophobic model drug 9-(methylaminomethyl)anthracene (MAMA) from PLA-F127-PLA nano-particles with vesicular structure was studied by UV-Vis spectroscopy. It was observed that the release rate of MAMA from PLA-F127-PLA nano-particles with the enzymatic degradation varied with temperature due to the activity of the enzyme with temperature. However, the enzyme concentration has negligible effect on the release rates of MAMA.  相似文献   

5.
Recombinant human growth hormone (rhGH) was encapsulated by a double emulsion solvent evaporation method within two biodegradable microspheres having different polymer compositions. Semi-crystalline poly(L-lactic acid) (PLA) and amorphous poly(D,L-lactic-co-glycolic acid) (PLGA) were used for the encapsulation of hGH. Protein release profiles from the two microspheres were comparatively evaluated with respect to their morphological difference. Both of the microspheres similarly exhibited rugged surface and porous internal structures, but their inner pore wall morphologies were quite different. The slowly degrading PLA microspheres had many nano-scale reticulated pores on the wall, while the relatively fast degrading PLGA microspheres had a non-porous and smooth wall structure. From the PLA microspheres, hGH was released out in a sustained manner with an initial approximately 20% burst, followed by constant release, and almost 100% complete release after a 1-month period. In contrast, the PLGA microspheres showed a similar burst level of approximately 20%, followed by much slower release, but incomplete release of approximately 50% after the same period. The different hGH release profiles between PLA and PLGA microspheres were attributed to different morphological characters of the pore wall structure. The inter-connected nano-porous structure of PLA microspheres was likely to be formed due to the preferable crystallization of PLA during the solvent evaporation process.  相似文献   

6.
This work presents a systematic optimization framework to achieve desired release rates in drug delivery devices using multi-laminated layers. A simple mathematical model is used to describe the transient mass transfer between successive layers, laminated together to form matrices with different initial concentrations, drug diffusivities and thickness. First, an efficient analytical-based optimization approach is investigated to define the optimal nonuniform initial drug distribution for constant diffusivity profile. The results obtained are in a good agreement with relevant work from the literature resorting to advanced optimal control techniques. Then, a formal dynamic optimization approach is employed, to systematically explore the synergistic benefits when all the available controllable parameters are simultaneously optimized, in order to achieve a drug release profile as close to a desired profile as possible for the entire period of operation. The optimization results lead to significantly improved constant release profiles.  相似文献   

7.
Weakly basic drugs or salts thereof demonstrate pH-dependent solubility. The resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study was to overcome this problem and to achieve pH-independent drug release. Two different polymers were used as matrix formers, the water-insoluble and almost unswellable ethylcellulose (EC), and the water-soluble and highly swellable hydroxypropyl methylcellulose (HPMC). Two different approaches to solve the problem of pH-dependent release of weakly basic drugs are demonstrated in this paper. The first one is based on the addition of hydroxypropyl methylcellulose acetate succinate (HPMCAS, an enteric polymer), the second one on the addition of organic acids such as fumaric, succinic or adipic acid to the drug-polymer system. The first approach failed to achieve pH-independent drug release, whereas the addition of organic acids to both matrix formers was found to maintain low pH values within the tablets during drug release in phosphate buffer (pH 6.8 or 7.4). Thus, the micro-environmental conditions for the dissolution and diffusion of the weakly basic drug were almost kept constant. The release of verapamil hydrochloride from tablets composed of ethylcellulose or HPMC and organic acids was found to be pH-independent.  相似文献   

8.
The effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from a thermoresponsive hydrogel was examined. Hydrogels were loaded with drug and thermally triggered swelling/deswelling and release experiments were performed. Two series of drugs of contrasting hydrophilicity and varying physicochemical properties were examined. Benzoic acid (BA), its methyl and propyl esters, and diltiazem base were used as model hydrophobic drugs. Sodium benzoate (NaB), diltiazem HCl (DHCl), vitamin B12 (VB12) and various dextrans (MW 4300, 10,200, 42,000, 68,800) were used as model hydrophilic agents of increasing size. The hydrogel swelling rate was slowed by the presence of the hydrophobic drugs and this decreased rate was solubility dependant for the benzoates. The hydrophilic series increased the rate of swelling compared to the unloaded system. In all cases, the magnitude and rate of hydrogel contraction were proportional to the extent of swelling prior to temperature switch. Drug release was by diffusion below the lower critical solution temperature (LCST), while a solubility-dependent drug pulse release on temperature switch was observed for the hydrophobic series. Effectiveness of thermal control of hydrophobic drug release increased with increasing solubility. The hydrophilic series produced a molecular size-dependent drug pulse on temperature switch above the LCST. Pulsatile on-off drug release was shown with DHCl, VB12 and the various dextrans. Drug solubility, size and chemical nature were shown to be of particular importance in the control of hydrogel swelling and drug release from thermosensitive hydrogels.  相似文献   

9.
With the aim of developing an effective therapeutic modality for treatment of thrombosis, a tissue-type plasminogen activator (t-PA)-loaded porous poly(L-glutamic acid) (PLGA) semi-interpenetrating polymer network (semi-IPN) hydrogel was developed as a possible local drug delivery system. Porous structure of hydrogel was essential in this system to yield a large surface area so that t-PA release could be facilitated. This semi-IPN hydrogel was prepared using the method of free-radical polymerization and crosslinking of polyethylene glycol (PEG)-methacrylate through the PLGA network. Sodium bicarbonate (NaHCO(3)) was added to function as a foaming agent under acidic conditions, rendering the semi-IPN hydrogel to be porous. While the added NaHCO(3) provided gas foam in the reaction mixture, the pH in the hydrogel increased to about 7 to 8, which stimulated the polymerization. The porous structure that was presented at both the surface and sublayer was stabilized during hydrogel formation and freeze-drying. The hydrogel thus prepared possessed a porous structure of 10-20 microm in diameter, as determined by scanning electron microscopy. Results showed that the above hydrogel preparation process did not significantly alter the specific activity of the entrapped t-PA with regard to plasminogen activation and fibrin clot lysis ability. The t-PA release from this semi-IPN hydrogel was examined by measuring the plasmin activity using the chromogenic substrate S-2251. Findings in this paper demonstrated that the porous structure of the hydrogel facilitated t-PA release when compared to the dense structure. Aside from the porous structure, other factors including the content of the crosslinker, PLGA and t-PA could all be varied to regulate t-PA release from the hydrogel. These results suggest that a porous PLGA semi-IPN hydrogel could potentially be a useful local delivery system to release active t-PA primarily at the site of a thrombus.  相似文献   

10.
A model for simulating the drug release from a swelling and dissolving polymer tablet is presented and verified to data. The model is based on a mechanistic approach, and it can therefore be employed to study the sensitivity of true physical constants, for instance the drug diffusion coefficient or the drug solubility. The model generates the drug and polymer release profiles and the front positions of the total tablet, the solid core, and of the solid-drug-solubilized-drug interface. The convective contribution to mass transfer is shown to be of great importance. This is most markedly noticed for slowly diffusing drugs. In a simulation with a low value of the drug diffusion coefficient, it is shown that the initial drug release rate is faster than the polymer dissolution rate, followed by a second stage with a slower drug release rate. Furthermore, it is shown that polymer dissolution influences the drug release profile significantly, but not the front position of saturated drug in the gel layer. The model is verified against drug release and polymer dissolution data for the slightly soluble drug Methyl paraben and the soluble drug Saligenin in a poly (ethylene oxide) tablet, resulting in good agreement between model and experiments.  相似文献   

11.
背景:通过增加表面活性基团对生物支架材料进行表面改性,可提高材料对细胞的亲和力,有效提高材料的细胞相容性。目的:合成表面改性聚合膜左旋聚乳酸-多聚赖氨酸(PLLA-PLL),并观察其对骨髓基质细胞黏附、增殖的影响。方法:通过开环聚合反应合成不同组分高分子聚合膜PLLA139-PLL131,PLLA77-PLL72,PLLA45-PLL246,将人骨髓基质细胞接种至不同组分聚合膜PLLA-PLL表面、左旋聚乳酸及商品化的细胞培养板,寻找最佳PLLA-PLL组分。结果与结论:与左旋聚乳酸比较,不同组分PLLA-PLL聚合膜细胞黏附量均升高,以PLLA77-PLL72聚合膜组增高显著(P<0.05),所以最佳组分为PLLA77-PLL72,连续培养结果显示PLLA77-PLL72聚合膜表面骨髓基质细胞骨架蛋白表达丰富,清晰有序,增殖实验也证实了PLLA77-PLL72聚合膜可促进骨髓基质细胞增殖。  相似文献   

12.
OBJECTIVES: Biomaterial-associated bacterial infections present common and challenging complications with medical implants. The purpose of this study was to determine the antibacterial properties of a low molecular weight biodegradable poly(D,L-lactic acid) coating with integrated antibiotics gentamicin and teicoplanin. METHODS: Coating of Kirschner-wires was carried out by a solvent casting technique under aseptic conditions with and without incorporated antibiotics. Release kinetics of gentamicin and teicoplanin were studied in phosphate-buffered saline. Initial bacterial adhesion of Staphylococcus epidermidis on coated and bare implants was determined by radiolabelling and counts of detached viable organisms. RESULTS: The incorporated antibiotics showed a continuous release over a period of at least 96 h with an initial peak of release in the first 6 h. Attachment of non-viable microorganisms, detected by radiolabelled bacteria, was increased significantly by the polymer coatings (P < 0.05). In contrast, the number of viable bacteria was reduced by the pure polymer (P < 0.01) and further by the polymer-antibiotic combinations (P < 0.05). CONCLUSIONS: Poly(D,L-lactic acid) coating of implants could offer new perspectives in preventing biomaterial-associated infections. Combinations with other drugs to formulate custom-tailored implant surfaces are feasible.  相似文献   

13.
聚磷酸钙/左旋聚乳酸软骨组织工程支架复合材料的分析   总被引:1,自引:1,他引:1  
背景用左旋聚乳酸(PLLA),聚羟基乙酸(PGA)等可降解吸收性高分子材料加工而成的纤维状支架材料和海绵状支架材料在软骨组织工程中已获得广泛应用.但这类支架材料存在着弹性模量低,受力时易变形,容易导致种子细胞损伤和降解吸收时间过长等缺陷.目的研制出可任意调控降解速率且具有良好力学性能、生物相溶性能和毒理学性能的聚磷酸钙(Calcium Polyphosphate,CPP)纤维,并用该纤维为增强材料研制软骨组织工程复合材料.设计以不同质量比例分组对照的实验研究.地点和对象实验在兰州交通大学材料工程研究所完成,基体材料选用PLLA(中科院化学所高分子合成室提供),增强材料选用自制CPP纤维.干预以高强度、高模量可设计降解速率的CPP纤维为增强材料,PLLA为基体材料,应用溶媒投放、颗粒滤取技术制备出CPP/PLLA软骨组织工程支架复合材料,测试了该支架复合材料的物理力学性能和体外37℃下Hank's人工降解液中的生物降解特性.主要观察指标物理力学性能,降解性能.结果CPP/PLLA支架复合材料具有三维连通、微孔、网状微观结构,微孔分布均匀,微孔尺寸为130~350μm,孔隙率90%;压缩模量随CPP纤维体积分数的增加而增加;降解速率随CPP纤维体积分数的增大而增大.结论CPP/PLLA支架复合材料的物理力学性能和体外降解性能在体外构建的组织化软骨的早期生物学性能基本满足软骨组织工程的要求,故可用作软骨组织工程支架材料.  相似文献   

14.
A new polymeric prodrug was prepared coupling 5-iodo-2'-deoxyuridine (IDU) to poly(d,l-lactic acid) (PLA) via a succinic acid spacer. The PLA-IDU conjugate was characterised by thermal analysis, IR and 1H and 13C NMR spectroscopy. The IDU content (0.024 mequiv.g-1 of PLA) was consistent with the carboxylic acid endgroup present in the polymer sample (0.025 mequiv.g-1 of polymer). The PLA-IDU conjugate was susceptible to degradation in biological environments containing esterase, whereas IDU was not detected by chemical hydrolysis in pH 7.4 phosphate buffer. The conjugate should be used to prepare injectable microspheres and nanospheres containing IDU chemically coupled to the polymer carrier.  相似文献   

15.
The controlled release of 4-nitroanisole from polylactide nanoparticles with different morphologies is reported. Two theoretical equations have been used in an attempt to fit the experimental results. Good agreement between theory and experiment was found for short release time. The estimated values of the diffusion coefficient of 4-nitroanisole in these nanoparticles, at short times (up to 50% release), were all approximately 10(-19) m(2)s(-1). At long time some differences in release behaviour were observed for different morphologies.  相似文献   

16.
背景:突释问题是限制多肽蛋白类微球广泛应用的一个关键技术问题,已经成为PLGA微球控释系统面临的一个亟待解决的问题.目的:分析近年来国内外对乳酸-羟基乙酸共聚物多肽蛋白类药物微球的突释与控制的研究,对突释的原因、影响突释的因素以及减少突释的方法与措施进行了详细的介绍.方法:应用计算机检索CNKI和PubMed数据库中1999-01/2010-12关于乳酸-羟基乙酸共聚物多肽蛋白类药物微球控释系统研究的文章,在标题和摘要中以"聚乳酸-羟基乙酸;多肽;蛋白;微球;突释;控制"或"PLGA; peptide; protein ; microspheres; burst release; control"为检索词进行检索.通过阅读标题和摘要进行初选,排出较陈旧和重复研究文献,保留符合纳入标准的文献24篇.结果与结论:对乳酸-羟基乙酸共聚物多肽蛋白类药物微球突释机制的理解,可以更好地实现对微球突释的控制,以扩大多肽蛋白类药物在临床上的应用.PLGA的性质、微球的制备方法、微球的制备参数都在不同程度上影响微球的突释,并且可能是多因素协同作用.通过对上述各种因素加以适当控制,可在一定程度上减少微球的突释率.通过该方面的机制研究对指导新药开发具有重要意义.  相似文献   

17.
The combination of poly(ethylene glycol) (PEG) with a biodegradable poly(ester), such as poly(D,L-lactic acid) (PLA), is an approach that has been successfully used for the stabilization of proteins and peptides in several biodegradable delivery devices. The acylation of peptides inside degrading PLA microspheres has been described only recently as another instability mechanism related to the accumulation of polymer degradation products inside eroding PLA. We investigated whether the block copolymerization of PLA with PEG reduces peptide acylation inside degrading microspheres. Diblock copolymers consisting of poly(D,L-lactic acid) covalently bound to poly(ethylene glycol)-monomethyl ether (Me.PEG-PLA) were used for these investigations. Human atrial natriuretic peptide (ANP) was incorporated into microspheres manufactured from Me.PEG5-PLA45, a diblock copolymer with an overall PEG content of 10%. Peptide integrity inside the microspheres was monitored by HPLC-MS analysis during 4 weeks of microsphere degradation in isotonic phosphate buffer (pH 7.4) at 37 degrees C. Inside the degrading Me.PEG5-PLA45 microspheres, acylation products as well as an oxidation product of ANP were formed. The results demonstrate that the combination of PEG with PLA does not necessarily display a favorable effect concerning peptide acylation inside degrading polymer microspheres. However, they also suggested that the acylation reaction is mainly driven by the formation and accumulation of polymer degradation products inside the degrading microspheres.  相似文献   

18.
Degradable shape-memory polymers are multifunctional materials with broad applicability for medical devices. They are designed to acquire their therapeutically relevant shape and mechanical properties after implantation. In this study, the potential of a completely amorphous shape-memory polymer matrix for controlled drug release was comprehensively characterized according to a four step general strategy which provides concepts for validating multifunctional materials for pharmaceutical applications. Independent functionalities are thereby crucial for fully exploiting the potential of the materials. The copolyester urethane network was synthesized by crosslinking star-shaped tetrahydroxy telechelics of oligo[(rac-lactide)-co-glycolide] with an aliphatic diisocyanate. In step 1 of the four step characterization procedure, this material showed the thermal and mechanical properties, which are required for the shape-memory effect under physiological conditions. Shape recovery could be realized by a one-step or a multi-step methodology. In step 2, feasibility of drug loading of pre-formed shape-memory networks has been demonstrated with drugs of different hydrophobicities. The presence of drugs did not disturb the material's functionalities directly after loading (step 3) and under release conditions (step 4). A predictable release of about 90% of the payload in 80 days was observed. Overall, the synthesized amorphous polymer network showed three independent functionalities, i.e., a shape-memory effect combined with biodegradability and controlled drug release.  相似文献   

19.
Poly(methylmethacrylate) (PMMA) is a widely used material with both dental and orthopaedic applications. The acrylic cement is produced by the combination of polymethylacrylate beads with methylmethacrylate monomer. After polymerisation, a heterogeneous and porous matrix is formed which can be used to deliver therapeutic agents. In this work, the release of antibiotic, growth hormone and serum albumin is demonstrated. The mechanism is similar for all agents; a rapid release followed by a slow continuous release. The quantity of drug released depends upon the formulation of both the PMMA and the drug. The polymer-to-monomer ratio can greatly affect the ratio of drug release; increased polymer-to-monomer ratio leads to increased release of antibiotic. Optimum release is achieved if a crystalline formulation of the drug is used rather than a fine powder. Experimental methods to improve the drug release performance of bone cements are presented.  相似文献   

20.
Experimental and mathematical studies were performed to understand the release mechanism of small molecular weight compounds from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer gels (trademarked Pluronic by BASF Corp.) of various concentrations. Studies of the diffusion coefficient of solutes in the polymer gels were performed using a novel technique to predict movement of drugs within the gel as release occurs. Studies were also performed to determine the diffusion coefficient of water in the polymer gel, as it is this parameter that controls the dissolution rate of the polymer, and in turn, the drug release rate. A model was formulated and solved numerically to determine the controlling release mechanism. By parameter modification, this algorithm for determining the overall mass of drug released from a drug loaded gel can be used for a number of drugs and for a wide range of initial polymer concentrations. Drug release data were obtained with a novel experimental setup and were used to verify the accuracy of the overall solution of the model. The results of the model indicate that although the rate of polymer dissolution ultimately controls the drug release, about 5% of the release is due to diffusion at the gel/liquid interface, giving rise to a slightly non-linear release. It was also found that agitation speed greatly affects the dissolution rates of these polymer gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号