首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new technique for acquiring T2-weighted, balanced steady-state free precession (b-SSFP) images is presented. Based on the recently proposed transition into driven equilibrium (TIDE) method, T2-TIDE uses a special flip angle scheme to achieve T2-weighted signal decay during the transient phase. In combination with half-Fourier image acquisition, T2-weighted images can be obtained using T2-TIDE. Numerical simulations were performed to analyze the signal behavior of T2-TIDE in comparison with TSE and b-SSFP. The results indicate identical signal evolution of T2-TIDE and TSE during the transient phase. T2-TIDE was used in phantom experiments, and quantitative ROI analysis shows a linear relationship between TSE and T2-TIDE SNR values. T2-TIDE was also applied to abdominal and head imaging on healthy volunteers. The resulting images were analyzed quantitatively and compared with standard T2-weighted and standard b-SSFP methods. T2-TIDE images clearly revealed T2 contrast and less blurring compared to T2-HASTE images. In combination with a magnetization preparation technique, STIR-weighted images were obtained. T2-TIDE is a robust technique for acquiring T2-weighted images while exploiting the advantages of b-SSFP imaging, such as high signal-to-noise ratio (SNR) and short TRs.  相似文献   

2.
PURPOSE: To introduce and evaluate the performance of an automated fat quantification method for water-saturated magnetic resonance images. MATERIALS AND METHODS: A fat distribution model is proposed for fat quantification on water saturated magnetic resonance images. Fat from both full- and partial-volume voxels are accounted for in this model based on image intensity histogram analysis. An automated threshold method is therefore proposed to accurately quantify total fat. This method is compared to a traditional full-volume-fat-only method in phantom and human studies. In the phantom study, fat quantification was performed on MR images obtained from a human abdomen oil phantom and was compared with the true oil volumes. In the human study, results of the two fat quantification methods of six subjects were compared on abdominal images with different spatial resolutions. RESULTS: In the phantom study, the proposed method provided significantly more accurate estimations of true oil volumes compared to the reference method (P < 0.0001). In human studies, fat quantification using the proposed method gave much more consistent results on images with different spatial resolutions, and on regions with different degrees of partial volume averaging. CONCLUSION: The proposed automated method is simple, rapid, and accurate for fat quantification on water-saturated MR images.  相似文献   

3.
PURPOSE: To test the theoretical benefits of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) technique in clinical abdominal MRI by comparison to conventional inversion-recovery (IR) FS combined with T2-weighted (T2W) partial Fourier single shot fast spin echo (SSFSE). MATERIALS AND METHODS: 1.5T MRI studies of the abdomen were performed in 28 patients with liver lesions (hemangiomas n = 14; metastases n = 14). T2W sequences were acquired using IR and SPAIR SSFSE. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. RESULTS: SPAIR-SSFSE images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR SSFSE was 20.5 +/- 10.2 (+/-1 SD) and 12.7 +/- 6.2, compared to 43.2 +/- 24.1 (P = 0.000006) and 29.3 +/- 16.8 (P = 0.0000005) for IR-SSFSE. SPAIR-SSFSE images produced higher CNR for both hemangiomas CNR = 164 +/- 88 vs. 126 +/- 83 (P = 0.00005) and metastases CNR = 75 +/- 27 vs. 53 +/- 19 (P = 0.007). Bowel wall visualization was significantly improved using SPAIR-SSFSE (P = 0.002). CONCLUSION: The theoretical benefits of SPAIR over conventional IR FS translate into significant multiple improvements that can be measured on clinical abdominal MRI scans.  相似文献   

4.
PURPOSE: The purpose of this study was to compare brain and tumor signal characteristics of T1-weighted turbo spin-echo (TSE) and gradient recalled echo (GRE) sequence techniques at 3 T compared to TSE at 1.5 T, focusing on the detection of contrast enhancement, in a standardized animal model of a brain glioma. MATERIALS AND METHODS: Twelve rats with implanted brain gliomas were evaluated at 1.5 and 3 T using matched hardware configurations. At 1.5 T, scanning was performed using a TSE sequence optimized for field strength (480/15 milliseconds; 125 Hz/Px) with postcontrast scans acquired at multiple time points after gadoteridol injection (0.1 mmol/kg). At 3 T, scanning was performed using the 1.5 T equivalent TSE as well as with TSE and GRE techniques optimized for 3 T. Signal-to-noise ratio (SNR) of brain and tumor and tumor contrast-to-noise ratio (CNR) were evaluated for all techniques at both field strengths. RESULTS: Postcontrast tumor SNR (63.7 +/- 10.8 vs. 29.5 +/- 4.3; P < 0.0001) and brain SNR (35.8 +/- 1.5 vs. 19.1 +/- 0.7; P < 0.0001) showed significant increase at 3 T using matched TSE. Comparing TSE optimized to each field strength (for optimized gray-white contrast), tumor and brain SNR still showed a significant increase at 3 T of 73% and 56%, respectively (both P < 0.0001). Comparing TSE at 1.5 T and GRE at 3 T, tumor SNR increased by 105%, whereas brain SNR increased by 141% (both P < 0.0001). Tumor CNR with matched TSE increased by 168% (P < 0.0001), with optimized TSE by 111% (P < 0.0001), and with GRE at 3 T versus TSE at 1.5 T by 36% (P < 0.001). With additional adjustments for echo time the gain in tumor CNR for 2D GRE may again reach 60%. CONCLUSIONS: With TSE at 3 T, the SNR gain comes close to the theoretically expected doubling with an even higher tumor CNR increase. In a clinical like setting at 3 T, where a T1w GRE sequence is used, tumor CNR gain is limited. Contrast dose should therefore not be decreased at 3 T.  相似文献   

5.
目的 评价自旋回波平面成像 (SE EPI)T2 W序列对肝脏实性病变的检出能力。方法74例病人 (2 0 2个病灶 )接受肝脏 3种SE EPIT2 W序列磁共振扫描 ,评价其图像信噪比 (SNR)、肝脾对比噪声比 (L SCNR)、病灶对比噪声比 (CNR)及病变检出率 ,并与真实稳态进动快速成像 (true FISP)、快速自旋回波 (TSE)及半傅立叶采集单次激发快速自旋回波 (HASTE)等屏气T2 W序列相比较。结果SE EPI的SNR高于TSE (P <0 0 5 ) ,与true FISP相近 (P >0 0 5 ) ,但低于HASTE(P <0 0 1)。SE EPI序列的L SCNR及实性病变的CNR均显著高于true FISP、HASTE及TSE(P <0 0 1)。对于囊性病变 ,各序列间的检出率无明显差异 (P >0 0 5 )。各序列均检出所有直径大于 5cm的实性病变。直径 2~ 5cm的实性病变 ,SE EPI序列的检出率略高于true FISP、HASTE及TSE ,但无显著性差异 (P >0 0 5 )。直径小于 2cm的实性病灶 ,SE EPI序列的检出率 (93 9% )明显高于true FISP(5 7 6 % )、HASTE(71 2 % )及TSE(6 8 2 % ) (P <0 0 1)。结论 与其他屏气T2 W序列相比 ,SE EPIT2 WI有较高的病灶对比 ,能提高肝脏实性病变的检出率  相似文献   

6.
PURPOSE: To compare two multislice turbo spin-echo (TSE) carotid artery wall imaging techniques at 1.5 T and 3.0 T, and to investigate the feasibility of higher spatial resolution carotid artery wall imaging at 3.0 T. MATERIALS AND METHODS: Multislice proton density-weighted (PDW), T2-weighted (T2W), and T1-weighted (T1W) inflow/outflow saturation band (IOSB) and rapid extended coverage double inversion-recovery (REX-DIR) TSE carotid artery wall imaging was performed on six healthy volunteers at 1.5 T and 3.0 T using time-, coverage-, and spatial resolution-matched (0.47 x 0.47 x 3 mm3) imaging protocols. To investigate whether improved signal-to-noise ratio (SNR) at 3.0 T could allow for improved spatial resolution, higher spatial resolution imaging (0.31 x 0.31 x 3 mm3) was performed at 3.0 T. Carotid artery wall SNR, carotid lumen SNR, and wall-lumen contrast-to-noise ratio (CNR) were measured. RESULTS: Signal gain at 3.0 T relative to 1.5 T was observed for carotid artery wall SNR (223%) and wall-lumen CNR (255%) in all acquisitions (P < 0.025). IOSB and REX-DIR images were found to have different levels of SNR and CNR (P < 0.05) with IOSB values observed to be larger. Normalized to a common imaging time, the higher spatial resolution imaging at 3.0 T and the lower spatial resolution imaging at 1.5 T provided similar levels of wall-lumen CNR (P = NS). CONCLUSION: Multislice carotid wall imaging at 3.0 T with IOSB and REX-DIR benefits from improved SNR and CNR relative to 1.5 T, and allows for higher spatial resolution carotid artery wall imaging.  相似文献   

7.
PURPOSE: The aim of this study was to evaluate our preliminary experience at 3.0 T with imaging of the carotid bifurcation in healthy and atherosclerotic subjects. Application at 3.0 T is motivated by the signal-to-noise gain for improving spatial resolution and reducing signal averaging requirements. MATERIALS AND METHODS: We utilized a dual phased array coil and applied 2D, 3D time of flight (TOF) and turbo spin echo (TSE) sequences with comparison of two lumen signal suppression methods for black blood (BB) TSE imaging including double inversion preparation (DIR) and spatial presaturation pulses. The signal-to-noise ratios (SNR) of healthy carotid vessel walls were compared in 2D and 3D BB TSE acquisitions. The bright and black blood multi-contrast exam was demonstrated for a complex carotid plaque. RESULTS: Contrast-to-noise (CNR) greater than 150 was achieved between the lumen and suppressed background for 3D TOF. For BB, both methods provided sufficient lumen signal suppression but slight residual flow artifacts remained at the bifurcation level. As expected 3D TSE images had higher SNR compared to 2D, but increased motion sensitivity is a significant issue for 3D at high field. For multi-contrast imaging of atherosclerotic plaque, fibrous, calcified and lipid components were resolved. The CNR ratio of fibrous (bright on PDW, T2W) and calcified (dark in T1W, T2W, PDW) plaque components was maximal in the T2W images. The 3D TOF angiogram indicating a 40% stenosis was complemented by 3D multi-planar reformat of BB images that displayed plaque extent. Detection of intimal thickening, the earliest change associated with atherosclerotic progression was observed in BB PDW images at 3.0 T. CONCLUSIONS: High SNR and CNR images have been demonstrated for the healthy and diseased carotid. Improvements in RF coils along with pulse sequence optimization, and evaluation of endogenous and exogenous contrast mechanisms will further enhance carotid imaging at 3.0T.  相似文献   

8.
ACUT(2)E TSE-SSFP is a hybrid between steady state free precession (SSFP) and turbo spin echo (TSE) for bright-blood T2-weighted imaging with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) similar to dark-blood TSE. TSE-SSFP uses a segmented SSFP readout during diastole with 180 degrees pulses following a 90 degrees preparation. The 180 degrees refocusing pulses make TSE-SSFP similar to TSE but TSE-SSFP uses gradient moment nulling, whereas TSE uses gradient crushing. TSE-SSFP produced T2-weighted images with minimal T1 weighting. TSE-SSFP and TSE had similar SNR (155.9 +/- 6.0 vs 160.9 +/- 7.0; P = NS) for acute myocardial infarction (MI) and twice the SNR of T2-prepared SSFP (73.1 +/- 3.4, P < 0.001). TSE-SSFP and TSE had approximately double the CNR of T2-prepared SSFP for differentiating acute MI from normal myocardium. Imperfect blood suppression, present in all animals on some TSE images, was a problem eliminated by TSE-SSFP and T2-prepared SSFP.  相似文献   

9.
IntroductionTo investigate the impact of parameter optimisation for novel three-dimensional 3D sequences at 1.5T and 3T on resultant image quality.MethodsFollowing institutional review board approval and acquisition of informed consent, MR phantom and knee joint imaging on healthy volunteers (n = 16) was performed with 1.5 and 3T MRI scanners, respectively incorporating 8- and 15-channel phased array knee radiofrequency coils. The MR phantom and healthy volunteers were prospectively scanned over a six-week period. Acquired sequences included standard two-dimensional (2D) turbo spin echo (TSE) and novel three-dimensional (3D) TSE PDW (SPACE) both with and without fat-suppression, and T21W gradient echo (TrueFISP) sequences. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured for knee anatomical structures. Two musculoskeletal radiologists evaluated anatomical structure visualisation and image quality. Quantitative and qualitative findings were investigated for differences using Friedman tests. Inter- and intra-observer agreements were determined with κ statistics.ResultsPhantom and healthy volunteer images revealed higher SNR for sequences acquired at 3T (p-value <0.05). Generally, the qualitative findings ranked images acquired at 3T higher than corresponding images acquired at 1.5T (p < 0.05). 3D image data sets demonstrated less sensitivity to partial volume averaging artefact (PVA) compared to 2D sequences. Inter- and intra-observer agreements for evaluation across all sequences ranged from 0.61 to 0.79 and 0.71 to 0.92, respectively.ConclusionBoth 2D and 3D images demonstrated higher image quality at 3T than at 1.5T. Optimised 3D sequences performed better than the standard 2D PDW TSE sequence for contrast resolution between cartilage and joint fluid, with reduced PVA artefact.Implications for practiceWith rapid advances in MRI scanner technology, including hardware and software, the optimisation of 3D MR pulse sequences to reduce scan time while maintaining image quality, will improve diagnostic accuracy and patient management in musculoskeletal MRI.  相似文献   

10.
不同MR扫描序列在SPIO增强大鼠肝癌模型的对比研究   总被引:3,自引:2,他引:1       下载免费PDF全文
目的:比较多种扫描序列超顺磁氧化铁(SPIO)增强扫描对显示大鼠肝癌病灶的能力,找出最佳扫描方案。TSE T2WI、SE双回波的T2WI+PDWI、GRE T1WI、T2^*WI,分析增强前后大鼠肝癌病灶的强化特征,并进行病理学检查对照分析。结果:注射SPIO对比剂后,所有扫描序列均显示肝脏的信号强度较增强前有不同程度的下降,肝癌病灶CNR均分别高于平扫。增强后GRE T2^*WI中病灶的CNR明显高于其它序列,但增强后TSE T2WI和常规SE T2WI在显示病变的SNR、CNR方面没有显著性差异。结论:SPIO增强后检测肝癌病灶的各种序列中,以GRE T2^*WI最为敏感,其次是双回波的T2WI+PDWI序列。  相似文献   

11.
Sun J  Zhang S  Jiang D  Zhang D  Xu X 《Clinical imaging》2008,32(2):103-108
PURPOSE: Although fluid-attenuated inversion-recovery (FLAIR) magnetic resonance imaging (MRI) is widely applied to diagnose central nervous system diseases, its role in diagnosis of intraspinal tumors is unclear. In this study, we evaluated the potential clinical application of a turbo FLAIR sequence for imaging of intraspinal tumors. MATERIALS AND METHODS: Forty-eight consecutive patients with intraspinal tumors underwent MRI with turbo FLAIR and turbo spinal echo (TSE) sequences. Turbo FLAIR images were then qualitatively and quantitatively compared with T2-weighted TSE images. RESULTS: Turbo FLAIR images were evaluated as superior to T2-weighted TSE images for image artifact, extradural tumor conspicuity, and intradural extramedullary tumor conspicuity and detection. Intramedullary tumor conspicuity with turbo FLAIR was less than T2-weighted TSE. Similar capabilities in detection of extradural and intramedullary tumors were found between turbo FLAIR and T2-weighted TSE. Turbo FLAIR and T2-weighted TSE displayed similar normal spinal cord signal-noise ratio (SNR) and tumor-to-cerebrospinal fluid (CSF) contrast-to-noise ratio (CNR). In addition, turbo FLAIR yielded significantly higher tumor-to-CSF contrast than T2-weighted TSE. However, tumor SNR, tumor-to-normal spinal cord contrast and CNR with turbo FLAIR images were lower than those with T2-weighted TSE images. CONCLUSION: This study demonstrated (a) a superiority of turbo FLAIR to T2-weighted TSE in displaying and detecting intradural extramedullary tumors, (b) a superiority of turbo FLAIR to T2-weighted TSE in demonstrating extradural tumors, and (c) less usefulness in displaying intramedullary tumors with turbo FLAIR than with T2-weighted TSE.  相似文献   

12.
PURPOSE: To compare conspicuity of liver hemangiomas on STIR, T1-weighted, and T2-weighted magnetic resonance (MR) images before and after administration of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) (hepatocellular contrast agent), using contrast-to-noise ratios (CNRs). MATERIALS AND METHODS: Thirteen hemangiomas were imaged using breath-hold gradient echo (GRE) T1, fat-saturated turbo spin echo (TSE)-T2, and short tau inversion recovery (STIR) sequences. Background noise and signal-to-noise ratios (SNRs) for liver and hemangioma, along with CNR for normal liver and hemangioma, were measured on each sequence before and after administration of Gd-EOB-DTPA. Hemangioma conspicuity was also evaluated qualitatively. RESULTS: After Gd-EOB-DTPA administration, the quantitative liver SNR decreased 54% on STIR, increased 45% on T1-weighted images, and increased 14.5% on TSE-T2-weighted images. The CNR for liver and hemangioma increased 50% on STIR images (P < 0.0001), increased 46% on T1-weighted imaging (P = 0.0033), and increased 22% on TSE-T2-weighted MR imaging (MRI) (P = 0.0083). After contrast, the CNR for TSE-T2 images was greater than those for both the T1 and STIR images (P < 0.0001 for both). Qualitatively, signal change was visually apparent in the liver on T1 and STIR, but not on T2 images or in the hemangiomas on any sequence. CONCLUSION: Despite the statistically significant T1 and STIR increase in CNR, liver hemangiomas were most conspicuous on TSE-T2 images after Gd-EOB-DTPA. This pilot study with hemangiomas highlights the newly recognized potential benefit of TSE-T2 imaging with hepatocellular contrast.  相似文献   

13.
PURPOSE: To evaluate the efficacy of contrast-enhanced coronary magnetic resonance angiography (MRA) at 3.0 T. MATERIALS AND METHODS: Nine healthy human volunteers were studied on a 3.0-T whole-body MR system. A three-dimensional, breathhold, magnetization-prepared, segmented, gradient-echo sequence was used, with injection of 20 mL gadopentetate dimeglumine for each three-dimensional slab. Imaging parameters were optimized based on computer simulations. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), depicted coronary artery length, lumen diameter, and imaging sharpness with contrast agent were evaluated. SNR and CNR were compared to the results from a previous 1.5-T study. RESULTS: A 53% increment in SNR and a 305% enhancement in CNR were measured with contrast. Vessel length and sharpness depicted were higher and the lumen diameter was lower (all P values < 0.05) in postcontrast images. Compared to previous results from 1.5-T, the SNR, CNR, and vessel sharpness were enhanced at 3.0 T with higher spatial resolution. CONCLUSION: Contrast-enhanced, three-dimensional, coronary MRA at 3.0 T is a promising technique for diagnosing coronary artery diseases. Patient studies are necessary to evaluate its clinical utility.  相似文献   

14.
A novel fat-suppressed balanced steady-state free precession (b-SSFP) imaging method based on the transition into driven equilibrium (TIDE) sequence with variable flip angles is presented. The new method, called fat-saturated (FS)-TIDE, exploits the special behavior of TIDE signals from off-resonance spins during the flip angle ramp. As shown by simulations and experimental data, the TIDE signal evolution for off-resonant isochromats during the transition from turbo spin-echo (TSE)-like behavior to the true fast imaging with steady precession (TrueFISP) mode undergoes a zero crossing. The resulting signal notch for off-resonant spins is then used for fat suppression. The efficiency of FS-TIDE is demonstrated in phantoms and healthy volunteers on a 1.5T system. The resulting images are compared with standard TrueFISP data with and without fat suppression. It is demonstrated that FS-TIDE provides a fast and stable means for homogenous fat suppression in abdominal imaging while maintaining balanced SSFP-like image contrast and signal-to-noise ratio (SNR). The scan time of FS-TIDE is not increased compared to normal TrueFISP imaging without fat suppression and identical k-space trajectories. Because of the intrinsic fat suppression, no additional preparation is needed. Possible repetition times (TRs) are not firmly limited to special values and are nearly arbitrary.  相似文献   

15.
Our purpose was to analyze and compare the image quality and contrast-to-noise ratio (CNR) of different fast T1- and T2-weighted sequences with conventional spin-echo sequences in renal MRI. Twenty-three patients with focal renal lesions were examined with a T2-weighted ultrafast turbo spin-echo (UTSE) sequence with and without frequency selective fat suppression (SPIR), a combined gradient-and-spin-echo sequence (GraSE), and a conventional spin-echo sequence (SE). In addition, T1-weighted images were obtained pre-and postcontrast, using a fast spin-echo sequence (TSE) with and without SPIR and the conventional SE sequence. Among the T2-weighted images, the highest CNR and the best image quality were obtained with the UTSE sequence, followed by the fat-suppressed UTSE sequence. GraSE and conventional SE sequences showed a significantly lower CNR and image quality (p < 0.05). The T1-weighted sequences did not show significant differences, in either precontrast or postcontrast measurements. T2-weighted UTSE with and without fat suppression combined excellent image quality and high CNR for imaging and detection of renal lesions. The T1-weighted fast sequences provided no alternative to the gradient-echo or to the conventional SE sequences. The results of this systematic study suggest the use of T2-weighted fast techniques for improved diagnostic accuracy of renal MRI.  相似文献   

16.
PURPOSE: To develop a fast T1-weighted, fat-suppressed three-dimensional dual echo Dixon technique and to demonstrate its use in contrast agent enhanced MRI. MATERIALS AND METHODS: A product fast three-dimensional gradient echo pulse sequence was modified to acquire dual echoes after each RF excitation with water and fat signals in-phase (IP) and opposed-phase (OP), respectively. An on-line reconstruction algorithm was implemented to automatically generate separate water and fat images. The signal to noise ratio (SNR) of the new technique was compared to that of the product technique in phantom. In vivo abdomen and breast images of cancer patients were acquired at 1.5 Tesla using both techniques before and after intravenous administration of gadolinium contrast agent. RESULTS: In phantom, the new technique yields a close to the theoretically predicted 41% increase in SNR in comparison to the product technique without fat suppression (FS). In vivo images of the new technique show noticeably improved FS and image quality in comparison to the images acquired of the same patients using the product technique with FS. CONCLUSION: The three-dimensional dual echo Dixon technique provides excellent image quality and can be used for T1-weighted, fat-suppressed imaging with contrast agent injection.  相似文献   

17.
3.0T MR双反转恢复序列在海马硬化诊断中的应用价值   总被引:1,自引:0,他引:1  
目的 探讨3.0 T MR双反转恢复(DIR)序列在海马硬化(HS)诊断中的价值,分析DIR显示HS患者海马信号强度升高的能力.方法 回顾性分析12例单侧HS患者和12名健康志愿者的临床和影像资料,所有受试者均采用3.0 T MR行斜冠状面DIR、液体衰减反转恢复(FLAIR)序列和快速自旋回波(TSE)序列检查;分别在病变侧与对侧海马结构设置ROI,计算病变侧、对侧及正常对照组海马的相对信号强度,以及病灶的信噪比(SNR)、对比噪声比(CNR)、信号强度比(RSI)和不对称指数(AI),比较3种序列之间各评价指标有无差异.统计学处理采用单因素方差分析.结果 病侧海马于DIR上呈极高信号,病变侧、对侧及正常对照组海马相对信号强度分别为1.50±0.05、1.26±0.03、1.18±0.05,3者间差异有统计学意义(F=172.609,P=0.000).DIR、FLAIR、T2 TSE序列上的病侧海马SNR分别为84.13±16.62、50.90±12.38、63.25±15.46,3者间差异有统计学意义(F=15.185,P=0.000);海马CNR分别为13.72±3.73、6.67±3.02、7.33±3.65,3者间差异有统计学意义(F=14.985,P=0.000);3种序列之间两侧海马的RSI、AI差异均无统计学意义(P值均为0.078).结论 HS于DIR序列上呈特征性的极高信号,DIR图像显示HS的SNR和CNR优于常规MRI序列,其对HS的诊断具有一定价值.
Abstract:
Objective To investigate the imaging feature of hippocampal sclerosis (HS), and evaluate the diagnostic value of double inversion recovery (DIR) sequence at 3.0 T MR for its diagnosis. Methods Twelve patients with unilateral HS proven by pathology and 12 healthy volunteers were enrolled. All patients received DIR, fluid attenuated inversion recovery (FLAIR) and T2 TSE sequences scans on oblique coronal plane vertical to the hippocampal axis on a 3.0 T MR scanner. Regions of interest (ROI) were set respectively in ipsilateral and contralateral hippocampi hippocampi in patients with HS, and the bilateral hippocampi in healthy volunteneers were placed respectively. Signal to noise ratio (SNR), contrast to noise ratio (CNR), ratio of signal intensity (RSI) and asymmetry index (AI) of each ROI in all hippocampi were calculated and compared among the three sequences. Statistical analysis was performed with one-way ANOVA. Results On DIR images, ipsilateral hippocampal lesions demonstrated extremely high signal intensity. Relative signal intensity of ipsilateral hippocampal lesions, contralateral hippocampi and the hippocampi in control groups healthy volunteneers were 1.50±0.05, 1.26±0.03, 1.18±0.05 (F=172.609,P=0.000), respectively. SNR of ipsilateral hippocampal lesions on DIR, FLAIR and T2 TSE sequences were 84.13±16.62, 50.90±12.38, 63.25±15.46 (F=15.185,P=0.000), respectively. CNR of hippocampus were 13.72±3.73, 6.67±3.02, 7.33±3.65 (F=14.985,P=0.000), respectively.In HS patients, RSI and AI of the ipsilateral hippocampal lesions and contralateral hippocampi among the three sequences did not show statistically significant difference(P=0.078). Conclusions HS manifests extremely high signal intensity on DIR images. On DIR images, the SNR and CNR of HS were higher than those on conventional MR sequences which provide valuable information for the diagnosis of HS.  相似文献   

18.
超顺磁性氧化铁(SPIO)对比剂肝脾MR成像的比较研究   总被引:4,自引:1,他引:3  
目的 比较两种超顺磁性氧化铁(superparamagnetic iron oxide,SPIO)对比剂,Ferumoxides及SHU-555A在肝脾MR成像中的效应。材料与方法 36例已知为肝转移癌患者于SPIO造影前后进行T2WI快速自旋回波成像(T2WI TSE)及T1WI梯度回波快去速相位成像(T1WI FLASH)。扫描伪为1.0T MR机。18例患者行Ferumoxides增强后90分钟进行MR成像;另18例行SHU-55A快速团柱增强,注药后即刻、30秒及480秒行T1WI FLASH成像,10分钟行T2WI TSE成像。测量肝脾、肝转移癌SPIO增强前后的信号强度(signal intensity,SI),计算两种SPIO对比剂在肝脾、肝转移癌增强前后SI变化的百分比(percentage signal intensity change,PSIC)及病灶肝脏对比噪声比(lesion-to-liver contrast-to-noise ratio,CNR)及其变化(ΔCNR)。结果 在T2WI TSE图像上,两种SPIO对比剂造成的肝实质SI下降无显著性差异(P>0.05)。Ferumoxides引的脾信号下降显著大于SHU-555A(P<0.05)。两种SPIO对比剂均导致肝实转移癌SNR显著增高。T1WI FLASH图像上,两种对比剂均可导致延迟像上肝脏SI的轻度下降及肝转移癌CNR下降,两者肝脏SIC之间无显著性差异。T1WI上两种对比剂均可导致脾脏SI显著升高,两者脾脏PSIC之间无显著性差异(P>0.05)。结论 两种SPIO在肝脏的TI及T2增强效应相似,而脾脏的T2增强效应,Ferumoxides强于SHU-555A。  相似文献   

19.
The purpose of this study was to compare 3T and 7T signal-to-noise and contrast-to noise ratios of clinical sequences for imaging of the ankles with optimized sequences and dedicated coils. Ten healthy volunteers were examined consecutively on both systems with three clinical sequences: (1) 3D gradient-echo, T(1)-weighted; (2) 2D fast spin-echo, PD-weighted; and (3) 2D spin-echo, T(1)-weighted. SNR was calculated for six regions: cartilage; bone; muscle; synovial fluid; Achilles tendon; and Kager's fat-pad. CNR was obtained for cartilage/bone, cartilage/fluid, cartilage/muscle, and muscle/fat-pad, and compared by a one-way ANOVA test for repeated measures. Mean SNR significantly increased at 7T compared to 3T for 3D GRE, and 2D TSE was 60.9% and 86.7%, respectively. In contrast, an average SNR decrease of almost 25% was observed in the 2D SE sequence. A CNR increase was observed in 2D TSE images, and in most 3D GRE images. There was a substantial benefit from ultra high-field MR imaging of ankles with routine clinical sequences at 7T compared to 3T. Higher SNR and CNR at ultra-high field MR scanners may be useful in clinical practice for ankle imaging. However, carefully optimized protocols and dedicated extremity coils are necessary to obtain optimal results.  相似文献   

20.
目的 评价true FISP(真实稳态进动快速成像 )T2 WI序列在肝脏病变中的应用。方法45 2例临床拟诊肝胆疾患病人行横断面、冠状面或 (和 )矢状面true FISPT2 WI,对其中临床证实的 6 8例 (16 3个病灶 )进行评价 ,包括肝脏局灶病变的检出率、对比信噪比、肝内静脉的显示、周围脏器的显示及伪影等 ,并与TSE(快速自旋回波 )T2 WI进行比较。结果 对肝海绵状血管瘤和肝囊肿的检出率 ,true FISP与TSE相近 ;true FISP对肝脏恶性结节的检出率略低于TSE(P >0 0 5 ) ;true FISP的病灶对比信噪比低于TSE(P <0 0 5 ) ;对肝内静脉的显示 ,true FISP明显优于TSE(P <0 0 1) ;对解剖结构的显示 ,true FISP优于TSE(P <0 0 1)。结论 true FISPT2 WI用于肝胆病变的优点 :(1)有较高的空间分辨率和信噪比 ;(2 )肝内静脉显示清晰 ;(3)解剖结构的显示优于常规TSE序列。缺点 :(1)T2 对比较差 ,易遗漏肝脏实性结节 ;(2 )近膈面及胆囊区易出现磁敏感伪影 ,可能造成误诊或漏诊  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号