首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
OBJECTIVE: All-trans-retinoic acid (RA) is a potent inducer of differentiation of acute promyelocytic leukemia (APL) cells in vitro and in vivo. It also exhibits synergistic effects with interferons on the induction of differentiation and growth inhibition in vitro. Recent studies showed that interferons engage a signaling pathway involving the CBL proto-oncogene and the CrkL adapter, which mediates interferon-induced growth inhibitory signals. The objective of this study was to determine whether the CBL-CrkL pathway is activated by treatment of the NB-4 and HL-60 acute leukemia cell lines with RA. MATERIALS AND METHODS: The effects of RA treatment on CBL and CrkL phosphorylation, as well as on protein-protein interactions, were determined in studies involving immunoprecipitations of cell extracts with specific antibodies and Western blots. In addition, glutathione-S-transferase fusion proteins were used in binding studies to determine whether the SH2 domain of CrkL interacts with CBL in a RA-dependent manner and whether Rapl is activated by RA. RESULTS: Treatment of NB-4 or HL-60 cells with RA resulted in strong tyrosine phosphorylation of CBL, which was time and dose dependent. Similarly, RA induced tyrosine phosphorylation of the CrkL adapter and the association of CrkL with CBL. The RA-dependent interaction of CrkL with CBL was mediated by binding of the SH2 domain of CrkL to tyrosine phosphorylated CBL, suggesting that CBL provides a docking site for engagement of CrkL in a RA-activated cellular pathway. The guanine exchange factor C3G was found to be associated with CrkL at similar levels before and after RA treatment, but Rapl activation downstream of C3G was not inducible by RA. CONCLUSIONS: These findings demonstrate that the CBL-CrkL pathway is one of the mediators of the effects of RA on APL cells and suggest that one of the mechanisms of synergy between RA and interferons may involve regulation of components of this signaling cascade.  相似文献   

2.
Interferons are potent regulators of normal and malignant hematopoietic cell proliferation in vitro and in vivo, but the signaling mechanisms by which they exhibit their growth inhibitory effects are unknown. We have recently shown that CrkL is engaged in Type I IFN signaling, as shown by its rapid tyrosine phosphorylation during engagement of the Type I IFN receptor. In the present study, we provide evidence that the related CrkII protein is also rapidly phosphorylated on tyrosine during treatment of U-266 and Daudi cells with IFNalpha or IFNbeta. We also show that both members of the Crk-family, CrkL and CrkII, are phosphorylated in an interferon-dependent manner in primary hematopoietic progenitors. Furthermore, inhibition of CrkL or CrkII protein expression by antisense oligonucleotides, reverses the inhibitory effects of IFNalpha or IFNgamma on the proliferation of normal bone marrow progenitor cells (colony forming units-granulocytic/monocytic [CFU-GM] and burst-forming units-erythroid [BFU-E]). Thus, both CrkL and CrkII are engaged in a signaling pathway (s) that mediates interferon-regulated inhibition of hematopoietic cell proliferation.  相似文献   

3.
4.
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2(V617F) in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1-induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2(V617F) failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2(V617F), and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs.  相似文献   

5.
Donato NJ  Wu JY  Stapley J  Gallick G  Lin H  Arlinghaus R  Talpaz M 《Blood》2003,101(2):690-698
Clinical studies have shown that the tyrosine kinase inhibitor STI571 effectively controls BCR-ABL-positive chronic myelogenous leukemia (CML). However, disease progression while on STI571 therapy has been reported, suggesting de novo or intrinsic resistance to BCR-ABL-targeted therapy. To investigate possible mediators of acquired STI571 resistance, K562 cells resistant to 5 microM STI571 (K562-R) were cloned and compared to the parental cell population. K562-R cells had reduced BCR-ABL expression and limited activation of BCR-ABL signaling cascades (Stat 5, CrkL, MAPK). STI571 failed to activate caspase cascades or to suppress expression of survival genes (bcl-xL) in resistant cells. Gene sequencing and tyrosine kinase activity measurements demonstrated that K562-R cells retained wild-type and active BCR-ABL tyrosine kinase that was inhibitable by in vitro incubation with STI571, suggesting that BCR-ABL was not coupled to proliferation or survival of K562-R cells. The src-related kinase LYN was highly overexpressed and activated in K562-R cells, and its inhibition reduced proliferation and survival of K562-R cells while having limited effects of K562 cells. Specimens taken from patients with advanced CML that progressed on STI571 therapy also were analyzed for LYN kinase expression, and they were found to be elevated to a level similar to that of K562-R cells. Comparison of samples from patients taken prior to and following STI571 failure suggested that expression and/or activation of LYN/HCK occurs during disease progression. Together, these results suggest that acquired STI571 resistance may be associated with BCR-ABL independence and mediated in part through overexpression of other tyrosine kinases.  相似文献   

6.
Constitutive tyrosine phosphorylation of CrkL was recently demonstrated in platelets from chronic myelogenous leukaemia (CML) patients but BCR-ABL tyrosine kinase could not be detected in the platelet lysates. We studied platelets from 14 CML patients with different types of BCR-ABL mRNA and with maximal platelet counts ranging from 149 to 3069 × 109/l. P2l0BCR-ABL protein was detected by Western blotting in platelet lysates of 12/13 CML patients with active disease but not in the lysate of platelets from a Ph-positive acute lymphoblastic leukaemia (ALL) patient in remission or eight BCR-ABL-negative controls including one essential thrombocythaemia (ET) patient. Immunoblotting of p2l0BCR-ABL-positive platelets lysates with anti-CrkL antibody revealed a CrkL triplet consisting of one unphosphorylated and two phosphorylated forms of the protein. This CrkL phosphorylation pattern was not observed in normal platelets or CML platelets treated with ABL tyrosine kinase inhibitor CGP57148B. The presence of BCR-ABL provides an explanation for the constitutive tyrosine phosphorylation of CrkL in CML platelets. As no correlation was observed between platelet counts and platelet BCR-ABL protein expression, thrombocytosis or thrombocythaemia in CML cannot be explained by constitutive BCR-ABL-mediated CrkL tyrosine phosphorylation.  相似文献   

7.
OBJECTIVE: The high incidence of acquired drug resistance to STI571 during treatment of chronic myelogenous leukemia (CML) patients in blast crisis has become a problem. We studied the effects of interferon-alpha (IFN-alpha) on a novel STI571-resistant CML cell line and its molecular mechanisms in vitro. MATERIALS AND METHODS: KT-1 is a unique CML cell line that remains sensitive to the therapeutic IFN-alpha concentration. We developed novel STI571-resistant KT-1 cells (designated KTR cells) by gradually increasing the concentration of STI571. RESULTS: All seven KTR clones became more sensitive to IFN-alpha than KT-1 cells. IFN-alpha induced more prolonged phosphorylation of Stat1 for 24 hours in all seven KTR clones than in KT-1cells. Tyrosine phosphorylation of Jak1 in KTR cells was not prolonged compared to KT-1cells. T-cell protein tyrosine phosphatase (TC-PTP) was down-regulated in all KTR clones, and SH-PTP1 phosphatase also was down-regulated in some KTR clones. The transient transduction of TC-PTP cDNA into the KTR subline prevented the IFN-alpha-induced prolonged phosphorylation of Stat1 and recovered the sensitivity against IFN-alpha. These results indicated that the loss of TC-PTP is involved in the IFN-alpha-induced prolonged phosphorylation of Stat1 and in the higher sensitivity to IFN-alpha in KTR cells. CONCLUSION: We demonstrated that STI571-resistance does not confer cross-resistance to IFN-alphain KT-1 cells. The loss of TC-PTP contributed to the IFN-alpha-induced prolonged phosphorylation of Stat1 and the higher sensitivity to IFN-alpha in KTR cells.  相似文献   

8.
Felschow DM  McVeigh ML  Hoehn GT  Civin CI  Fackler MJ 《Blood》2001,97(12):3768-3775
CD34 is a cell-surface transmembrane protein expressed specifically at the stem/progenitor stage of lymphohematopoietic development that appears to regulate adhesion. To elucidate intracellular signals modified by CD34, we designed and constructed glutathione-S-transferase (GST)- fusion proteins of the intracellular domain of full-length CD34 (GST-CD34i(full)). Precipitation of cell lysates using GST-CD34i(full) identified proteins of molecular mass 39, 36, and 33 kd that constitutively associated with CD34 and a 45-kd protein that associated with CD34 after adhesion. By Western analysis, we identified the 39-kd protein as CrkL. In vivo, CrkL was coimmunoprecipitated with CD34 using CD34 antibodies, confirming the association between CrkL and CD34. CD34 peptide inhibition assays demonstrated that CrkL interacts at a membrane-proximal region of the CD34 tail. To identify the CrkL domain responsible for interaction with CD34, we generated GST-fusion constructs of adapter proteins including GST-CrkL3' (C-terminal SH3) and GST-CrkL5' (N-terminal SH2SH3). Of these fusion proteins, only GST-CrkL3' could precipitate endogenously expressed CD34, suggesting that CD34 binds the C-terminal SH3 domain of CrkL. Interestingly, there appears to be differential specificity between CrkL and CrkII for CD34, because GST-CD34i(full) did not precipitate CrkII, a highly homologous Crk family member. Furthermore, GST-CD34i(full) did not bind c-Abl, c-Cbl, C3G, or paxillin proteins that are known to associate with CrkL, suggesting that CD34 directly interacts with the CrkL protein. CD34i(full) association with Grb or Shc adapter proteins was not detected. Our investigations shed new light on signaling pathways of CD34 by demonstrating that CD34 couples to the hematopoietic adapter protein CrkL. (Blood. 2001;97:3768-3775)  相似文献   

9.
The precise mechanisms by which imatinib mesylate (STI571) and interferon alpha (IFNalpha) exhibit antileukemic effects are not known. We examined the effects of IFNs or imatinib mesylate on signaling pathways regulating initiation of mRNA translation in BCR-ABL-expressing cells. Treatment of IFN-sensitive KT-1 cells with IFNalpha resulted in phosphorylation/activation of mammalian target of rapamycin (mTOR) and downstream activation of p70 S6 kinase. The IFN-activated p70 S6 kinase was found to regulate phosphorylation of S6 ribosomal protein, which regulates translation of mRNAs with oligopyrimidine tracts in the 5'-untranslated region. In addition, IFNalpha treatment resulted in an mTOR- and/or phosphatidyl-inositol 3'(PI 3') kinase-dependent phosphorylation of 4E-BP1 repressor of mRNA translation on sites that are required for its deactivation and dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. In contrast to the effects of IFNs, imatinib mesylate suppressed p70 S6 kinase activity, consistent with inhibition of BCR-ABL-mediated activation of the mTOR/p70 S6 kinase pathway. Moreover, the mTOR inhibitor rapamycin enhanced the suppressive effects of imatinib mesylate on primary leukemic granulocyte macrophage-colony-forming unit (CFU-GM) progenitors from patients with chronic myelogenous leukemia (CML). Taken altogether, our data demonstrate that IFNs and imatinib mesylate differentially regulate PI 3' kinase/mTOR-dependent signaling cascades in BCR-ABL-transformed cells, consistent with distinct effects of these agents on pathways regulating mRNA translation. They also support the concept that combined use of imatinib mesylate with mTOR inhibitors may be an appropriate future therapeutic strategy for the treatment of CML.  相似文献   

10.
11.
The emergence of resistance to imatinib (IM) mediated by mutations in the BCR-ABL domain has become a major challenge in the treatment of chronic myeloid leukemia (CML). Here, we report on studies performed with a novel small molecule inhibitor, PHA-739358, which selectively targets Bcr-Abl and Aurora kinases A to C. PHA-739358 exhibits strong antiproliferative and proapoptotic activity against a broad panel of human BCR-ABL-positive and -negative cell lines and against murine BaF3 cells ectopically expressing wild-type (wt) or IM-resistant BCR-ABL mutants, including T315I. Pharmacologic synergism of IM and PHA-739358 was observed in leukemia cell lines with subtotal resistance to IM. Treatment with PHA-739358 significantly decreased phosphorylation of histone H3, a marker of Aurora B activity and of CrkL, a downstream target of Bcr-Abl, suggesting that PHA-739358 acts via combined inhibition of Bcr-Abl and Aurora kinases. Moreover, strong antiproliferative effects of PHA-739358 were observed in CD34(+) cells derived from untreated CML patients and from IM-resistant individuals in chronic phase or blast crisis, including those harboring the T315I mutation. Thus, PHA-739358 represents a promising new strategy for treatment of IM-resistant BCR-ABL-positive leukemias, including those harboring the T315I mutation. Clinical trials investigating this compound in IM-resistant CML have recently been initiated.  相似文献   

12.
13.
In this study, we show that the adapter proteins CrkL and Cbl undergo increases in tyrosine phosphorylation and form an intracellular complex in platelets stimulated with the snake venom toxin convulxin, a selective agonist at the collagen receptor glycoprotein VI (GPVI). Constitutive tyrosine phosphorylation of CrkL has previously been reported in platelets from chronic myeloid leukaemia (CML) patients. This was confirmed in the present study, and shown to result in a weak constitutive association of CrkL with Cbl and a number of other unidentified tyrosine-phosphorylated proteins. There was no further increase in phosphorylation of CrkL in CML platelets in response to GPVI activation, whereas phosphorylation of Cbl and its association with CrkL were potentiated. In addition, this was accompanied by a small increase in p42/ 44 mapkinase (MAPK) activity in CML platelets. The functional consequence of the presence of constitutively phosphorylated proteins in CML platelets was investigated by measurement of aminophospholipid exposure and alpha-granule secretion. This revealed little alteration in the concentration-response curves for either in CML platelets stimulated via GPVI, although maximal levels of P-selectin were depressed. Despite the minimal effect on platelet activation in CML patients, we cannot exclude a role for CrkL or Cbl in signal transduction pathways stimulated via GPVI.  相似文献   

14.
It is generally believed that shutting down the kinase activity of BCR-ABL by imatinib will completely inhibit its functions, leading to inactivation of its downstream signaling pathways and cure of the disease. Imatinib is highly effective at treating human Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML) in chronic phase but not Ph(+) B cell acute lymphoblastic leukemia (B-ALL) and CML blast crisis. We find that SRC kinases activated by BCR-ABL remain fully active in imatinib-treated mouse leukemic cells, suggesting that imatinib does not inactivate all BCR-ABL-activated signaling pathways. This SRC pathway is essential for leukemic cells to survive imatinib treatment and for CML transition to lymphoid blast crisis. Inhibition of both SRC and BCR-ABL kinase activities by dasatinib affords complete B-ALL remission. However, curing B-ALL and CML mice requires killing leukemic stem cells insensitive to both imatinib and dasatinib. Besides BCR-ABL and SRC kinases, stem cell pathways must be targeted for curative therapy of Ph(+) leukemia.  相似文献   

15.
MECOM oncogene expression correlates with chronic myeloid leukaemia (CML) progression. Here we show that the knockdown of MECOM (E) and MECOM (ME) isoforms reduces cell division at low cell density, inhibits colony-forming cells by 34% and moderately reduces BCR-ABL1 mRNA and protein expression but not tyrosine kinase catalytic activity in K562 cells. We also show that both E and ME are expressed in CD34(+) selected cells of both CML chronic phase (CML-CP), and non-CML (normal) origin. Furthermore, MECOM mRNA and protein expression were repressed by imatinib mesylate treatment of CML-CP CD34(+) cells, K562 and KY01 cell lines whereas imatinib had no effect in non-CML BCR-ABL1 -ve CD34(+) cells. Together these results suggest that BCR-ABL1 tyrosine kinase catalytic activity regulates MECOM gene expression in CML-CP progenitor cells and that the BCR-ABL1 oncoprotein partially mediates its biological activity through MECOM. MECOM gene expression in CML-CP progenitor cells would provide an in vivo selective advantage, contributing to CML pathogenesis.  相似文献   

16.
OBJECTIVE: Acquired resistance to imatinib mesylate (STI571) in chronic myelogenous leukemia (CML) patients has become a serious clinical problem. We previously established STI571-resistant sublines (designated KTR cells) from the CML cell line KT-1. T cell protein tyrosine phosphatase (TC-PTP) was markedly downregulated in all KTR cells compared to parental KT-1 cells. Therefore, we examined whether the suppression of TC-PTP expression might contribute to imatinib mesylate-resistance in KTR cells. MATERIALS AND METHODS: We transduced the nuclear isoform of TC-PTP (TC45) and catalytically inactive TC45-D182A cDNAs into KTR cells by retroviral gene transfer. Subsequently, we analyzed the sensitivity to imatinib mesylate and the status of signaling pathways in the transduced cells. RESULTS: The overall levels of STAT5 phosphorylation were significantly higher in KTR cells as compared to KT-1 cells, but reconstitution of TC-PTP in KTR cells resulted in a dramatic decrease of STAT5 phosphorylation. Furthermore, STAT5 phosphorylation was ablated by imatinib mesylate in KT-1 cells but remained elevated in KTR cells. In contrast, we observed no difference in BCR-ABL or JAK2 phosphorylation and no difference in activation of other signaling pathways. Importantly, reconstitution of TC-PTP in KTR cells to levels found in parental KT-1 cells restored their sensitivity to imatinib mesylate as monitored by reduced proliferation and increased apoptosis. CONCLUSIONS: We have demonstrated that forced expression of TC-PTP in imatinib mesylate-resistant KTR cells can restore sensitivity to imatinib mesylate. Our studies indicate that loss of TC-PTP may represent a novel mechanism by which CML cells can acquire imatinib mesylate-resistance.  相似文献   

17.
McCallum L  Price S  Planque N  Perbal B  Pierce A  Whetton AD  Irvine AE 《Blood》2006,108(5):1716-1723
Chronic myeloid leukemia (CML) is characterized by the presence of the constitutively active BCR-ABL protein tyrosine kinase. Using a multipotent hemopoietic cell line, FDCP-Mix, expressing BCR-ABL tyrosine kinase, we investigated the initial effects of this kinase in primitive hematopoietic stem cells. We identified down-regulation of a novel gene, CCN3, as a direct consequence of BCR-ABL kinase activity. CCN3 has been reported to function as a tumor suppressor gene in solid tumors. Northern and Western blotting plus immunocytochemical analysis confirmed CCN3 expression is decreased and is tyrosine-phosphorylated in BCR-ABL kinase active FDCP-Mix cells. Decreased cellular CCN3 correlated with increased CCN3 secretion in BCR-ABL kinase active cells. In vitro treatment of human CML cell lines with imatinib or siRNA directed against BCR-ABL significantly reduced BCR-ABL while increasing CCN3 expression. Cells from patients responding to imatinib showed a similar decrease in BCR-ABL and increase in CCN3. CML CD34+ cells treated with imatinib in vitro demonstrated increased CCN3 protein. Transfecting CCN3 into BCR-ABL+ cells inhibited proliferation and decreased clonogenic potential. CCN3 plays an important role in internal and external cell-signaling pathways. Thus, BCR-ABL can regulate protein levels by governing secretion, a novel mechanism for this tyrosine kinase.  相似文献   

18.
To elucidate the role of mitogen-activated protein kinases (MAPKs) and Akt kinase in leukemogenesis caused by the breakpoint cluster region (BCR)-Abelson (ABL) tyrosine kinase oncoprotein, we examined the activities of MAPKs and Akt kinase and their roles in the action of STI571, a specific inhibitor of BCR-ABL tyrosine kinase, in chronic myelogenous leukemia (CML) cells. We found that extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase are constitutively active in the chronic phase of CML, blast crisis of CML, and the CML-derived K562 cell line. Both interferon-alpha and STI571 suppressed ERK1/2 activity in K562 cells. In contrast, Akt kinase activity was inhibited only by STI571. K562 cell proliferation was markedly suppressed by LY294002, a specific inhibitor of PI3K/Akt kinase, and STI571 but not by PD98059, a specific inhibitor of MEK1/2. In addition, caspase-3 was activated by treatment of cells with STI571 and LY294002 but not with PD98059. These data indicate that Akt kinase may play a role in the proliferation of CML leukemia cells and the action of STI571. Primary leukemia cells from patients with CML blast crisis did not show inhibition of ERK1/2 or Akt kinase activity and were resistant to caspase-3-associated apoptosis after treatment with STI571. These findings suggest that STI571 does not effectively block signaling molecules downstream of the BCR-ABL tyrosine kinase in some cases of CML blast crisis.  相似文献   

19.
20.
Mayotte N  Roy DC  Yao J  Kroon E  Sauvageau G 《Blood》2002,100(12):4177-4184
Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of the NUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL-transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpress BCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL or NUP98-HOXA9. We also provide evidence of high levels of HOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level with BCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role for NUP98-HOXA9 (and possibly HOXA9) in CML disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号