首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sporadic breast cancers often show allelic losses on the long arm of chromosome 17. Since the BRCA1 gene lies at 17q21.1 and the TOC locus, associated with esophageal cancer, lies at 17q25.1, either gene could be the target of those losses. We examined both loci in 178 primary breast cancers, using microsatellite markers covering the relevant regions of 17q, and observed allelic losses in 97 tumors (55%). Losses were most frequent at markers around the TOC locus (48% at D7S1839 and 43% at D17S1603), where we identified a distinct commonly deleted region within a I -cM interval. Another larger, separate commonly deleted region including the BRCA1 gene was also identified, which exhibited 45% of allelic loss (at D17S934). Allelic loss on 17q was more frequent in tumors of the solid-tubular histologic type (P = 0.0129) and in estrogen-negative and progesterone-negative tumors (P = 0.0281 and 0.0196, respectively). The results indicated that BRCA1 and TOC are independent targets of allelic loss on 17q in primary breast cancers, and that inactivation of the TOC locus in particular may play an important role in the genesis of sporadic breast tumors.  相似文献   

2.
11q23-24 chromosome is a region containing frequent allelic loss (loss of heterozygosity; LOH) in human cancers. To examine cancer-related allelic loss in the region between D11S940 and APOC3, we used 17 polymorphic markers and allotyped 28 lung cancer-derived cell lines and their corresponding matched lymphoblastoid cell lines. LOH was found in 71.4% (20/28) of the lung cancer cell lines and was localized to two distinct minimal regions of loss. One region is bracketed by markers D11S1647 and NCAM2 and contains the gene encoding the beta isoform of the A subunit of the human protein phosphatase 2A (PPP2R1B). Recently, mutations in this gene were described in lung and colon cancers, suggesting that PPP2R1B functions as a tumor-suppressor gene. A second minimal region of loss was defined between markers D11S1792 and D11S1885, a region estimated to be less than I Mb. Thus, chromosome 11 likely harbors two sites of suppressor oncogene activity in lung cancer, one defined by the PPP2R1B gene and the second located telomeric to PPP2R1B. This study facilitates the identification and cloning of a second critical tumor-suppressor gene involved in lung cancer, and possibly a variety of other cancers, on human chromosome band 11q23.  相似文献   

3.
Defining a common region of deletion at 13q21 in human cancers.   总被引:4,自引:0,他引:4  
Previous molecular genetic analyses identified a region of deletion at 13q21 in a variety of human cancers, suggesting the existence of a tumor suppressor gene(s) at this locus. In our earlier study on prostate cancer, the region of deletion was confined to a 3.1 cM interval between D13S152 and D13S162. At present, however, no known gene located in this interval has been firmly implicated in cancer, and the region remains too large for gene identification. To fine-map the area of interest, we established a contig of bacterial artificial chromosome (BAC) clones, narrowed the region of deletion by loss of heterozygosity (LOH) and homozygosity-mapping-of-deletion (HOMOD) analyses in different types of cancers, and tested a candidate gene from the region for mutation and alteration of expression in prostate cancers. The contig consisted of 75 overlapping BAC clones. In addition to the generation of 47 new sequence-tagged-site (STS) markers from the ends of BAC inserts, 76 known STS and expressed sequence tag markers were mapped to the contig (25 kb per marker on average). The minimal region of deletion was further defined to be about 700 kb between markers D13S791 and D13S166 by LOH analysis of 42 cases of prostate cancer, and by HOMOD analysis of eight prostate cancer cell lines/xenografts and 49 cell lines from cancers of the breast, ovary, endometrium, and cervix, using 18 microsatellite markers encompassing the deletion region. A gene that is homologous to the WT1 tumor suppressor gene, AP-2rep (KLF12), was mapped in this region and was analyzed for its expression and genetic mutation. In addition to low levels of expression in both normal and neoplastic cells of the prostate, this gene did not have any mutations in a group of aggressive prostate cancers and cell lines/xenografts, as assessed by the methods of polymerase chain reaction-single strand conformational polymorphism analysis and direct sequencing. These studies suggest that a 700 kb interval at 13q21 harbors a tumor suppressor gene(s) that seems to be involved in multiple types of cancer, and that the AP-2rep gene is unlikely to be an important tumor suppressor gene in prostate cancer. The BAC contig and high-resolution physical map of the defined region of deletion should facilitate the cloning of a tumor suppressor gene(s) at 13q21.  相似文献   

4.
LASP1 (also known as MLN50) gene, located centromeric to the PPP1R1B-ERBB2-GRB7 locus on human chromosome 17q12, is amplified and over-expressed in breast cancer. Here, we identified and characterized a novel LASP1-related gene, LASP2, by using bioinformatics. Nucleotide sequence of human LASP2 cDNA was determined in silico by assembling EST BF699808 and 5'-truncated FLJ39221 cDNA. Nucleotide sequence of mouse Lasp2 cDNA was derived from 1200007O21Rik cDNA. Human LASP2 (270 aa) showed 97.4% and 63.7% total-amino-acid identity with mouse Lasp2 and human LASP1, respectively. LASP2 and LASP1 were the LASP family proteins consisting of LIM domain, Nebulin repeat, and SH3 domain. LASP2 and NEBL mRNAs were transcribed from the LASP2/NEBL gene on human chromosome 10p12 due to alternative splicing. LASP2 mRNA consists of exons 1a-4a, 24, 27, and 28 of the LASP2/NEBL gene, while NEBL mRNA consists of exons 1-28. Exon 1a-4a of the LASP2/NEBL gene were more homologous to exon 1-4 of the LASP1 gene on human chromosome 17q12, while exon 1-28 of the LASP2/NEBL gene were more homologous to exons of NEB gene on human chromosome 2q23. Some part of the LASP2/ NEBL-TEM7L-ARL8-CACNB2 locus on 10p12 was paralogous to the LASP1-TEM7-CACNB1 locus on 17q12, while the other part of the LASP2/NEBL-TEM7L-ARL8-CACNB2 locus was paralogous to the NEB-ARL5-CACNB4 locus on 2q23. These facts indicate that the LASP2/NEBL-TEM7L-ARL8-CACNB2 is a chimeric locus, which might be generated through the homologous recombination between the ancestral lasp2-tem7l-cacnb2 locus and the ancestral nebl-arl8 locus. Therefore, gene fusion during evolution is one of the mechanisms to generate alternative splicing.  相似文献   

5.
Caveolin-1是细胞膜微囊(caveolae)的重要组成结构,在大多数正常的细胞中表达丰富。通过其脚手架区域,在多种信号分子向胞内传递信息的过程中发挥着重要作用,其功能研究是生物学研究的热点。而近来研究表明caveolin-1在大多数肿瘤细胞中表达下降甚至缺如,过表达caveolin-1能抑制其恶性生长性状。近来的癌细胞转化及基因敲除等实验结果倾向于caveolin-1就是7q31位点的肿瘤抑制基因。但在少数肿瘤如前列腺癌、乳腺癌患者的细胞中检测到caveolin-1高表达。在纤维原细胞和上皮细胞的凋亡中起促进作用。Caveolin-1与多种肿瘤细胞的增殖、分化、侵袭、转移以及凋亡关系密切,且可能是肿瘤细胞多药耐药逆转的一个新靶点,以类似于介导胆固醇流出途径的方式将药物排出细胞导致细胞耐药性增强。  相似文献   

6.
PP1R1B-ERBB2-GRB7 locus on human chromo-some 17q12 is frequently amplified in gastric and breast cancer. Because recombination hot spot or fragile site is located around the terminus of amplified region (amplicon), we searched for a novel gene closely linked to the teromeric end of the ERBB2 amplicon. Here, we identified and characterized the ZPBP-like (ZPBPL) gene by using bioinformatics. ZPBPL gene, corresponding to BC043152 cDNA, was found to consist of seven exons. ZPBPL (316 aa) and ZPBP (351 aa) proteins, showing 34.8% total amino-acid identity, shared the zona pellucida binding protein homologous (ZPBH) domain with conserved 15 cysteine residues. ZPBPL was a secreted-type glycoprotein with the ZPBH domain, while ZPBP was a type 2 transmembrane protein with the extracellular ZPBH domain. ZPBPL mRNA was co-expressed with ZPBP mRNA in testis, germ cell tumor, and brain medulla. ZPBPL might be implicated in the gamete interaction during fertilization just like ZPBP. The MGC9753-ERBB2-MGC14832-GRB7-ZNFN1A3-ZPBPL-PRO2521-ORMDL3-GSDM locus on human chromosome 17q12-q21 and the ZPBP-ZNFN1A1-FIGNL1-DDC-GRB10-COBL-SEC61G-EGFR-LANCL2 locus on human chromosome 7p12-p11 were next compared. Comparative genomics revealed that ZPBPL-ZNFN1A3-GRB7-ERBB2 and ZPBP-ZNFN1A1-GRB10-EGFR loci were paralogous regions within the human genome. This is the first report on identification and characterization of the ZPBPL gene.  相似文献   

7.
Human cancers derived from breast, esophageal, or ovarian tissues frequently show allelic losses on chromosome band 17q25. Moreover, a locus responsible for hereditary focal nonepidermolytic palmoplantar keratoderma, a condition associated with esophageal cancer (TOC; tylosis with oesophageal cancer), has been mapped to the same band. During efforts to sequence, by shotgun methods, a 1-Mb target region that we had defined as the DNA segment harboring the putative tumor suppressor gene(s) involved in these events, we identified a novel cDNA. The full-length cDNA is 2495 bp long and is expressed predominantly in skeletal muscle, heart, kidney, and placenta. The predicted product, a 627-amino-acid protein, exhibited significant sequence homology to the canine 68-kd subunit of the signal recognition particle that has been implicated in the transport of secreted and membrane proteins to the endoplasmic reticulum for proper processing. We confirmed the location of this gene at chromosome 17q25.1 by radiation-hybrid mapping and by fluorescence in situ hybridization. Received: September 18, 2000 / Accepted: November 10, 2000  相似文献   

8.
9.
10.
11.
We previously found frequent loss of heterozygosity at 12q21 and 12q22-q23.1 in primary pancreatic cancers, and the DUSP6/MKP-3 gene residing in this region at 12q22 lost its expression in the great majority of pancreatic cancer cell lines. The DUSP6/MKP-3 protein is a dual-specificity phosphatase that dephosphorylates the active form of ERK, making a feedback loop to control ERK activity. Gain-of-function mutations of KRAS2 occur in the great majority of pancreatic cancer cells, and loss of expression of DUSP6/MKP-3 may synergistically promote constitutive activation of ERK and uncontrolled cell growth. To study loss of the feedback pathway and its impact on pancreatic cancer cell growth, we first investigated the expression of DUSP6/MKP-3 in primary pancreatic cancer tissues immunohistochemically; we found up-regulation in mildly as well as severely dysplastic/in situ carcinoma cells and down-regulation in invasive carcinoma, especially in the poorly differentiated type. Adenovirus-mediated reintroduction of DUSP6/MKP-3 into cultured pancreatic cancer cells induced strong expression of recombinant DUSP6/MKP-3 and reduction of phosphorylated ERK in a dose-dependent manner based on the multiplicity of infection and resulted in suppression of cell growth. Moreover, analyses by flow cytometry and immunocytochemistry revealed that the exogenous expression of DUSP6/MKP-3 induced apoptosis. These results show that DUSP6 exerts apparent tumor-suppressive effects in vitro and suggest that DUSP6 is a strong candidate tumor suppressor gene at 12q22 locus.  相似文献   

12.
Underrepresentation of chromosome 9 is a common finding in bladder cancer. Frequent loss of the whole chromosome suggests the presence of at least one relevant tumor suppressor gene on each arm. Candidate regions identified by loss of heterozygosity (LOH) analysis include a region at 9p21 containing CDKN2A, which encodes p16 and p14(ARF), a large region at 9q12-31 including PTCH and many other genes, a small region at 9q32-33, which includes the DBCCR1 gene, and a region at 9q34 including the TSC1 gene. Experimental replacement of genes or chromosomes into tumor cells with appropriate deletions or mutations represents an important approach to test the functional significance of candidate tumor suppressor genes. Loss of an entire copy of chromosome 9 in many bladder tumor cell lines provides no indication of which gene or genes are affected, and selection of appropriate recipient cells for gene replacement is difficult. We have investigated three candidate tumor suppressor genes on chromosome 9 (CDKN2A, DBCCR1, and TSC1), at the DNA level and by expression analysis in a panel of bladder tumor cell lines, many of which have probable LOH along the length of the chromosome, as indicated by homozygosity for multiple polymorphic markers. Cytogenetically, we found no reduction in the numbers of chromosomes 9 relative to total chromosome count. Homozygous deletion of the CDKN2A locus was frequent but homozygous deletion of TSC1 was not found. A new cell line, DSH1, derived from a pT1G2 transitional cell carcinoma with known homozygous deletion of DBCCR1, is described. This study identifies suitable cell lines for future functional analysis of both CDKN2A and DBCCR1.  相似文献   

13.
14.
The association of rare chromosomal rearrangements involving a specific 17q breakpoint with campomelic syndrome (CMPS) and or sex reversal (SR) has led to an assignment of the CMPS1 SRA1 locus to 17q24.3→q25.1. We describe a patient with multiple anomalies and SR, who had a de novo t(12;17) translocation. The phenotype was consistent with that of CMPS except for the lack of lower limb bowing and talipes equinovarus. Chromosome painting indicated that the breakpoints appeared to have occurred at 12q21.32 and 17q24.3 or q25.1. This study suggests that acampomelic CMPD with SR represents a variant of the CMPS1/SRA1 locus disorder. We emphasize the likelihood that CMPS may be a contiguous gene syndrome. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Common fragile sites (CFS) are large, genomically unstable regions, which are hot-spots for deletions and other alterations, especially in cancer cells. Several have been shown to contain genes that span large genomic regions, such as FHIT (1.5 Mb), WWOX (1.0 Mb), GRID2 (1.36 Mb), PARK2 (1.3 Mb), and RORA (730 kb). These genes are frequently inactivated in multiple different cancers, and FHIT and WWOX are shown to function as tumor suppressors. The disabled-1 gene (DAB1) is one of the human homologs of the Drosophila disabled locus, which in mammals is involved in neuronal migration and lamination in the developing cerebral cortex. Mice DAB1 inactivation results in the neurological mutant Scrambler, having similarities to mice with the inactivation of PARK2 (Quaker), GRID2 (Lurcher), and RORA (Staggerer). We were interested in whether DAB1 was another large CFS gene that could have cancer development importance. We demonstrated here that the human DAB1 gene (spanning 1.25 Mb) mapped within FRA1B CFS region on chromosomal band 1p32.2. Real-time RT-PCR analysis revealed that the expression level of DAB1 was decreased in many human cancer samples, including primary tumor tissues and cancer-derived cell lines, from several different cancers, especially in brain and endometrial cancer. Additionally, the introduction of an over-expression DAB1 plasmid into two different cell lines, having insignificant endogenous DAB1 expression, resulted in decreased cell growth. In summary, DAB1 is another gene that resides within an unstable CFS region and might play a role in human tumorigenesis. These data may provide further linkage between neurological development and cancer.  相似文献   

16.
To investigate the patterns of genetic lesions in a panel of 23 human multiple myeloma cell lines (HMCLs), we made a genomic integrative analysis involving FISH, and both gene expression and genome-wide profiling approaches. The expression profiles of the genes targeted by the main IGH translocations showed that the WHSC1/MMSET gene involved in t(4;14)(p16;q32) was expressed at different levels in all of the HMCLs, and that the expression of the MAF gene was not restricted to the HMCLs carrying t(14;16)(q32;q23). Supervised analyses identified a limited number of genes specifically associated with t(4;14) and involved in different biological processes. The signature related to MAF/MAFB expression included the known MAF target genes CCND2 and ITGB7, as well as genes controlling cell shape and cell adhesion. Genome-wide DNA profiling allowed the identification of a gain on chromosome arm 1q in 88% of the analyzed cell lines, together with recurrent gains on 8q, 18q, 7q, and 20q; the most frequent deletions affected 1p, 13q, 17p, and 14q; and almost all of the cell lines presented LOH on chromosome 13. Two hundred and twenty-two genes were found to be simultaneously overexpressed and amplified in our panel, including the BCL2 locus at 18q21.33. Our data further support the evidence of the genomic complexity of multiple myeloma and reinforce the role of an integrated genomic approach in improving our understanding of the molecular pathogenesis of the disease. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.  相似文献   

17.
Cables is a cyclin-dependent kinase-binding nuclear protein that maps to chromosome 18q11-12. Here, we assessed Cables expression in 160 colorectal cancers (CRCs), its role in colon cancer cell growth, and the potential mechanisms of Cables inactivation. Expression levels, promoter methylation, and mutational status of Cables were investigated in colon cancer cell lines and primary colon tumors. Chromosome 18q loss of heterozygosity (LOH) was evaluated with multiple polymorphic markers. Cables inhibited cellular proliferation and colony formation in colon cancer cell lines. Cables expression was reduced in 65% of primary CRCs. No mutations were detected in 10 exons of Cables in 20 primary colon tumors. Cables promoter was methylated in cell lines with decreased Cables expression and vice versa. 5-Aza-2'-deoxycytidine resulted in increased Cables expression in methylated cell lines. There was a significant correlation between promoter methylation and Cables gene expression in primary colon tumors. Sixty-five percent of primary colon tumors demonstrated chromosome 18q LOH. LOH involving the Cables region was observed in 35% of cases, including those in which more distal portions of chromosome 18q were retained, and Cables expression was decreased in all such cases. Loss of Cables expression in 65% of CRCs suggests that it is a common event in colonic carcinogenesis, with promoter methylation and LOH appearing to be important mechanisms of Cables gene inactivation.  相似文献   

18.
19.
A large number of nevi (LNN) is a high risk phenotypic trait for developing cutaneous malignant melanoma (CMM). In this study, the breakpoints of a t(9;12)(p21;q13) balanced chromosome translocation were finely mapped in a family with LNN and CMM. Molecular characterization of the 9p21 breakpoint identified a novel gene C9orf14 expressed in melanocytes disrupted by the translocation. Integrative analysis of functional genomics data was applied to determine the role of C9orf14 in CMM development. An analysis of genome-wide DNA copy number alterations in melanoma tumors revealed the loss of the C9orf14 locus, located proximal to CDKN2A, in approximately one-fourth of tumors. Analysis of gene expression data in cancer cell lines and melanoma tumors suggests a loss of C9orf14 expression in melanoma tumorigenesis. Taken together, our results indicate that C9orf14 is a candidate tumor-suppressor for nevus development and late stage melanoma at 9p21, a region frequently deleted in different types of human cancers.  相似文献   

20.
A tumor suppressor gene at 10q 23.3, designated PTEN, encoding a dual specificity phosphatase with lipid and protein phosphatase activity, has been shown to play an important role in the pathogenesis of a variety of human cancers. Germline mutations in PTEN cause Cowden syndrome (CS), which is characterized by multiple hamartomas and a high risk of breast and thyroid cancers. Frequent loss of heterozygosity at 10q is found in both early and advanced-stage sporadic melanomas; however, mutations or deletions in PTEN are detected mainly in melanoma cell lines. In this study, we examined PTEN expression in 34 unselected sporadic melanomas (4 primary melanomas, 30 metastases) using immunohistochemistry and correlated this with the results of structural studies of this gene. Immunostaining of 34 melanoma samples revealed no PTEN expression in 5 (15%) and low PTEN expression in 17 (50%), whereas the rest of the tumors (35%) had high levels of expression. Hemizygous deletion was found in 32% of the tumors but neither intragenic PTEN mutation nor biallelic deletion was found in any of the samples. Of the 5 melanomas showing no PTEN expression, 4 had no mutation or deletion of PTEN. Of the 13 tumors having weak PTEN immunoreactivity and informative loss of heterozygosity results, 6 had evidence of hemizygous allelic loss of PTEN while the remaining 7 had intact PTEN. These results strongly support PTEN as a major tumor suppressor on 10q involved in melanoma tumorigenesis and suggest an epigenetic mechanism of biallelic functional inactivation not previously observed in other cancers where PTEN might be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号