首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work is to illustrate a new coil decoupling strategy and its application to a transmit/receive sodium/proton phased array for magnetic resonance imaging (MRI) of the human brain. We implemented an array of eight triangular coils that encircled the head. The ensemble of coils was arranged to form a modified degenerate mode birdcage whose eight shared rungs were offset from the z‐axis at interleaved angles of ±30°. This key geometric modification resulted in triangular elements whose vertices were shared between next‐nearest neighbors, which provided a convenient location for counter‐wound decoupling inductors, whilst nearest‐neighbor decoupling was addressed with shared capacitors along the rungs. This decoupling strategy alleviated the strong interaction that is characteristic of array coils at low frequency (32.6 MHz in this case) and allowed the coil to operate efficiently in transceive mode. The sodium array provided a 1.6‐fold signal‐to‐noise ratio advantage over a dual‐nuclei birdcage coil in the center of the head and up to 2.3‐fold gain in the periphery. The array enabled sodium MRI of the brain with 5‐mm isotropic resolution in approximately 13 min, thus helping to overcome low sodium MR sensitivity and improving quantification in neurological studies. An eight‐channel proton array was integrated into the sodium array to enable anatomical imaging.  相似文献   

2.
The neuroimaging of nonhuman primates (NHPs) realised with magnetic resonance imaging (MRI) plays an important role in understanding brain structures and functions, as well as neurodegenerative diseases and pathological disorders. Theoretically, an ultrahigh field MRI (≥7 T) is capable of providing a higher signal‐to‐noise ratio (SNR) for better resolution; however, the lack of appropriate radiofrequency (RF) coils for 9.4 T monkey MRI undermines the benefits provided by a higher field strength. In particular, the standard volume birdcage coil at 9.4 T generates typical destructive interferences in the periphery of the brain, which reduces the SNR in the neuroscience‐focused cortex region. Also, the standard birdcage coil is not capable of performing parallel imaging. Consequently, extended scan durations may cause unnecessary damage due to overlong anaesthesia. In this work, assisted by numerical simulations, an eight‐channel receive RF coil array was specially designed and manufactured for imaging NHPs at 9.4 T. The structure and geometry of the proposed receive array was optimised with numerical simulations, so that the SNR enhancement region was particularly focused on monkey brain. Validated with rhesus monkey and cynomolgus monkey brain images acquired from a 9.4 T MRI scanner, the proposed receive array outperformed standard birdcage coil with higher SNR, mean diffusivity and fractional anisotropy values, as well as providing better capability for parallel imaging.  相似文献   

3.
fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non‐human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four‐channel receive‐only surface RF coil array with excellent signal‐to‐noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet‐based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home‐built low‐input‐impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22‐channel receive coil array was constructed specifically for rapid high‐resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal‐to‐noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single‐ and four‐channel receive coils routinely used for macaque MRI. The 22‐channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single‐ or four‐channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single‐ and four‐channel coils. Finally, the performance of the array for functional, anatomical and diffusion‐weighted imaging was evaluated. For all three modalities, the use of the 22‐channel array allowed for high‐resolution and accelerated image acquisition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
目的 比较小孔径正交相控阵小动物实验线圈与C3表面线圈在大鼠头部磁共振成像(MRI)检查的成像质量.方法 将10只雄性SD大鼠分别应用2种线圈进行头部MRI检查.测量大脑皮层、小脑、脑干、肌肉及眼球内的房水等部位的信号强度及背景噪声值,计算信噪比(SNR);由2位放射科医生对图像质量进行评分,将测量数据进行统计分析.结果 所有图像均得到了大脑皮层、小脑、脑干、肌肉及眼球内的房水等部位的SNR值.两种线罔成像质量比较,大脑皮层T1WI横断位(SNRsense-body=41.3±23.5;SNR C3=10.3±0.5;t=-3.21)、T2WI矢状位(SNR sense-body=63.8±16.6;SNR C3=37.9±4.4:t=-4.00)以及T2WI冠状位(SNR sense.body=91.6±23.8;SNR C3=38.5±11.8;t=-5.69)图像SNR差异均有统计学意义(P<0.01);且在小脑、脑干以及眼球房水测量的结果亦相仿;肌肉组织仅在T1WI横断位(SNR sense-body=39.9±21.1;SNR C3=8.3±1.7;t=-3.64)和T2WI冠状位(SNR sense-body=23.5±9.8:SNR C3=11.9±4.1;t=-3.10)的SNR差异有统计学意义(P<0.01).采用小孔径正交相控阵线圈检查获得的图像中T2WI冠状面得分最高,而2种线圈检查获得的弥散加权成像(DWI)图像质量评分均最低.结论 在大鼠头部成像MRI检查中,小孔径正交相控阵小动物实验线圈的信噪比和图像质量优于现在经常应用的C3表面线圈.  相似文献   

6.
The fidelity of gradient waveforms in MRI pulse sequences is essential to the acquisition of images and spectra with minimal distortion artefacts. Gradient waveforms can become nonideal when eddy currents are created in nearby conducting structures; however, the resultant magnetic fields can be characterised and compensated for by measuring the spatial and temporal field response following a gradient impulse. This can be accomplished using a grid of radiofrequency (RF) coils. The RF coils must adhere to strict performance requirements: they must achieve a high sensitivity and signal‐to‐noise ratio (SNR), have minimal susceptibility field gradients between the sample and surrounding material interfaces and be highly decoupled from each other. In this study, an apparatus is presented that accomplishes these tasks with a low‐cost, mechanically simple solution. The coil system consists of six transmit/receive RF coils immersed in a high‐molarity saline solution. The sensitivity and SNR following an excitation pulse are sufficiently high to allow accurate phase measurements during free‐induction decays; the intrinsic susceptibility matching of the materials, because of the unique design of the coil system, results in sufficiently narrow spectral line widths (mean of 19 Hz), and adjacent RF coils are highly decoupled (mean S12 of ?47 dB). The temporal and spatial distributions of eddy currents following a gradient pulse are measured to validate the efficacy of the design, and the resultant amplitudes and time constants required for zeroth‐ and first‐order compensation are provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In ultrahigh‐field MRI, such as 7 T, the signal‐to‐noise ratio (SNR) increases while transmit (Tx) field (B1+) can be degraded due to inhomogeneity and elevated specific absorption rate (SAR). By applying new array coil concepts to both Tx and receive (Rx) coils, the B1+ homogeneity and SNR can be improved. In this study, we developed and tested in vivo a new RF coil system for 7 T breast MRI. An RF coil system composed of an eight‐channel Tx‐only array based on a tic‐tac‐toe design (can be combined to operate in single‐Tx mode) in conjunction with an eight‐channel Rx‐only insert was developed. Characterizations of the B1+ field and associated SAR generated by the developed RF coil system were numerically calculated and empirically measured using an anatomically detailed breast model, phantom and human breasts. In vivo comparisons between 3 T (using standard commercial solutions) and 7 T (using the newly developed coil system) breast imaging were made. At 7 T, about 20% B1+ inhomogeneity (standard deviation over the mean) was measured within the breast tissue for both the RF simulations and 7 T experiments. The addition of the Rx‐only array enhances the SNR by a factor of about three. High‐quality MR images of human breast were acquired in vivo at 7 T. For the in vivo comparisons between 3 T and 7 T, an approximately fourfold increase of SNR was measured with 7 T imaging. The B1+ field distributions in the breast model, phantom and in vivo were in reasonable agreement. High‐quality 7 T in vivo breast MRI was successfully acquired at 0.6 mm isotropic resolution using the newly developed RF coil system.  相似文献   

8.
Composite MRI arrays consist of triplets where two orthogonal upright loops are placed over the same imaging area as a standard surface coil. The optimal height of the upright coils is approximately half the width for the 7 cm coils used in this work. Resistive and magnetic coupling is shown to be negligible within each coil triplet. Experimental evaluation of imaging performance was carried out on a Philips 3 T Achieva scanner using an eight‐coil composite array consisting of three surface coils and five upright loops, as well as an array of eight surface coils for comparison. The composite array offers lower overall coupling than the traditional array. The sensitivities of upright coils are complementary to those of the surface coils and therefore provide SNR gains in regions where surface coil sensitivity is low, and additional spatial information for improved parallel imaging performance. Near the surface of the phantom the eight‐channel surface coil array provides higher overall SNR than the composite array, but this advantage disappears beyond a depth of approximately one coil diameter, where it is typically more challenging to improve SNR. Furthermore, parallel imaging performance is better with the composite array compared with the surface coil array, especially at high accelerations and in locations deep in the phantom. Composite arrays offer an attractive means of improving imaging performance and channel density without reducing the size, and therefore the loading regime, of surface coil elements. Additional advantages of composite arrays include minimal SNR loss using root‐sum‐of‐squares combination compared with optimal, and the ability to switch from high to low channel density by merely selecting only the surface elements, unlike surface coil arrays, which require additional hardware. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
An introduction to coil array design for parallel MRI   总被引:3,自引:0,他引:3  
  相似文献   

10.
Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole‐body imaging and dual‐frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled‐wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled‐wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1H and 282.6 MHz for 19F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal‐to‐noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance.  相似文献   

11.
Abnormalities in brain γ‐aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by 1H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J‐editing difference technique on a 3‐T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight‐channel phased‐array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test–retest reliability of the measurement of GABA with this method. Sensitivity gains and test–retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three‐fold higher GABA detection sensitivity was attained with the eight‐channel head coil compared with the standard single‐channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non‐significant regional variation (p = 0.58). The test–retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single‐channel coil and the eight‐channel phased‐array coil. For the eight‐channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R2 = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co‐edited resonance of combined glutamate and glutamine (Glx) for both coils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non‐destructively and three‐dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7‐T preclinical scanner, we present a novel two‐coil system in which each coil is shielded, placed off‐isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal‐to‐noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil‐dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two‐coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade‐offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post‐processing techniques and biological variability impact mouse brain connectomics.  相似文献   

13.
The goal of this study was to evaluate a new method of combining multi‐channel 1H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7‐T MR scanner using a head coil with a 32‐channel array coil for receive‐only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the 1H MRSI data with a fast imaging pre‐scan was investigated with the volume coil. The array coil 1H MRSI data were combined using matching imaging data as coil combination weights. The signal‐to‐noise ratio (SNR), spectral quality, metabolic map quality and Cramér–Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér–Rao lower bounds (?34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre‐phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in 1H MRSI of the human brain at 7 T, and could be extended to other 1H MRSI techniques. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., op timized t runcation to i ntegrate m ulti‐channel MRS data u sing rank‐R s ingular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank‐R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank‐R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor‐supplied method, signal/noise2 weighting, previously reported whitened SVD (rank‐1), and OpTIMUS were evaluated using the signal‐to‐noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank‐1 SVD maximizes SNR was tested empirically, and a higher rank‐R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.  相似文献   

15.
For MRI at 16.4T, with a proton Larmor frequency of 698 MHz, one of the principal RF engineering challenges is to generate a spatially homogeneous transmit field over a larger volume of interest for spin excitation. Constructing volume coils large enough to house a receive array along with the subject and to maintain the quadrature symmetry for different loading conditions is difficult at this frequency. This calls for new approaches to RF coil design for ultra‐high field MR systems. A remotely placed capacitively tunable patch antenna, which can easily be adjusted to different loading conditions, was used to generate a relatively homogeneous excitation field covering a large imaging volume with a transversal profile similar to that of a birdcage coil. Since it was placed in front of the animal, this created valuable free space in the narrow magnet bore around the subject for additional hardware. To enhance the reception sensitivity, the patch antenna was combined with an actively detunable 3‐channel receive coil array. In addition to increased SNR compared to a quadrature transceive surface coil, we were able to get high quality gradient echo and spin‐echo images covering the whole rat brain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A 15‐channel transmit–receive (transceive) radiofrequency (RF) coil was developed to image the human brain at 7 T. A hybrid decoupling scheme was implemented that used both capacitive decoupling and the partial geometric overlapping of adjacent coil elements. The decoupling scheme allowed coil elements to be arrayed along all three Cartesian axes; this facilitated shimming of the transmit field, B, and parallel imaging acceleration along the longitudinal direction in addition to the standard transverse directions. Each channel was independently controlled during imaging using a 16‐channel console and a 16 × 1‐kW RF amplifier–matrix. The mean isolation between all combinations of coil elements was 18 ± 7 dB. After B shimming, the standard deviation of the transmit field uniformity was 11% in an axial plane and 32% over the entire brain superior to the mid‐cerebellum. Transmit uniformity was sufficient to acquire fast spin echo images of this region of the brain with a single B shim solution. Signal‐to‐noise ratio (SNR) maps showed higher SNR in the periphery vs center of the brain, and higher SNR in the occipital and temporal lobes vs the frontal lobe. Parallel imaging acceleration in a rostral–caudal oblique plane was demonstrated. The implication of the number of channels in a transmit–receive coil was discussed: it was determined that improvements in SNR and B shimming can be expected when using more than 15 independently controlled transmit–receive channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
目的:通过对MRI设备信噪比的检测,及时发现设备存在的问题并加以解决。方法:利用两种测试方法(国家标准方法、包尚联教授的方法)分别测试万东i-open磁共振设备头线圈、颈线圈和体线圈的信噪比,比较不同线圈在两种测试方法下的信噪比并分析结果。结果:测试计算出的信噪比均低于标准值,证实了测试设备的信噪比偏低且不同线圈的信噪比存在差异。结论:所测试MRI设备的信噪比低于标准值,可能与磁屏蔽不良有关。  相似文献   

18.
A new 2 T 3‐element orthogonal knee coil array based on the three‐dimensional orthogonality principle was designed, constructed and used in a series of pilot magnetic resonance imaging (MRI) studies on a standardized phantom, and human and pig knees. The coil elements within this new coil array are positioned orthogonal to one another allowing problematic mutual coupling effects to be minimized without the use of any passive mutual decoupling schemes. The proposed method is appropriate for the design of transmit, receive and/or transceive radiofrequency (RF) coil arrays for applications in animal/human MRI and spectroscopic studies. Experimental results demonstrated that the 3‐element orthogonal knee coil array could be angled arbitrarily, including at 90°, relative to the main static magnetic field (B0) whilst maintaining normal operation with minimal loss of efficiency and functionality. Initial trials with a pig knee specimen further showed that the greatest signal intensity in the patellar ligament (parallel collagen fibres) was observed when the orthogonal knee coil array and the pig knee specimen were angled at ~55° to B0, which may have potential uses in magic angle MR applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The quality of an RF detector coil design is commonly judged on how it compares with other coil configurations. The aim of this article is to develop a tool for evaluating the absolute performance of RF coil arrays. An algorithm to calculate the ultimate intrinsic signal‐to‐noise ratio (SNR) was implemented for a spherical geometry. The same imaging tasks modeled in the calculations were reproduced experimentally using a 32‐element head array. Coil performance maps were then generated based on the ratio of experimentally measured SNR to the ultimate intrinsic SNR, for different acceleration factors associated with different degrees of parallel imaging. The relative performance in all cases was highest near the center of the samples (where the absolute SNR was lowest). The highest performance was found in the unaccelerated case and a maximum of 85% was observed with a phantom whose electrical properties are consistent with values in the human brain. The performance remained almost constant for 2‐fold acceleration, but deteriorated at higher acceleration factors, suggesting that larger arrays are needed for effective highly‐accelerated parallel imaging. The method proposed here can serve as a tool for the evaluation of coil designs, as well as a tool to guide the development of original designs which may begin to approach the optimal performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this study was to investigate the signal‐to‐noise ratio (SNR) gain in early‐stage cervical cancer at ultrahigh‐field MRI (e.g. 7 T) using a combination of multiple external antennas and a single endorectal antenna. In particular, we used an endorectal monopole antenna to increase the SNR in cervical magnetic resonance imaging (MRI). This should allow high‐resolution, T2‐weighted imaging and magnetic resonance spectroscopy (MRS) for metabolic staging, which could facilitate the local tumor status assessment. In a prospective feasibility study, five healthy female volunteers and six patients with histologically proven stage IB1–IIB cervical cancer were scanned at 7 T. We used seven external fractionated dipole antennas for transmit–receive (transceive) and an endorectally placed monopole antenna for reception only. A region of interest, containing both normal cervix and tumor tissue, was selected for the SNR measurement. Separated signal and noise measurements were obtained in the region of the cervix for each element and in the near field of the monopole antenna (radius < 30 mm) to calculate the SNR gain of the endorectal antenna in each patient. We obtained high‐resolution, T2‐weighted images with a voxel size of 0.7 × 0.8 × 3.0 mm3. In four cases with optimal placement of the endorectal antenna (verified on the T2‐weighted images), a mean gain of 2.2 in SNR was obtained at the overall cervix and tumor tissue area. Within a radius of 30 mm from the monopole antenna, a mean SNR gain of 3.7 was achieved in the four optimal cases. Overlap between the two different regions of the SNR calculations was around 24%. We have demonstrated that the use of an endorectal monopole antenna substantially increases the SNR of 7‐T MRI at the cervical anatomy. Combined with the intrinsically high SNR of ultrahigh‐field MRI, this gain may be employed to obtain metabolic information using MRS and to enhance spatial resolutions to assess tumor invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号