首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral nerves are a composite tissue consisting of neurovascular elements packaged within a well‐organized extracellular matrix. Their composition, size, and anatomy render nerves a challenging medical imaging target. In contrast to morphological MRI, which represents the predominant approach to nerve imaging, quantitative MRI sequences can provide information regarding tissue composition. Here, we applied standard clinical Carr‐Purcell‐Meiboom‐Gill (CPMG) and experimental three‐dimensional (3D) ultrashort echo time (UTE) Cones sequences for quantitative nerve imaging including T2 measurement with single‐component analysis, T2* measurement with single‐component and bi‐component analyses, and magnetization transfer ratio (MTR) analysis. We demonstrated the feasibility and the high quality of single‐component T2*, bi‐component T2*, and MTR approaches to analyze nerves imaged with clinically deployed 3D UTE Cones pulse sequences. For 24 single fascicles from eight nerves, we measured a mean single‐component T2* of 22.6 ±8.9 ms, and a short T2* component (STC) with a mean T2* of 1.7 ±1.0 ms and a mean fraction of (6.74 ±4.31)% in bi‐component analysis. For eight whole nerves, we measured a mean single‐component T2* of 16.7 ±2.2 ms, and an STC with a mean T2* of 3.0 ±1.0 ms and a mean fraction of (15.56 ±7.07)% in bi‐component analysis. For nine fascicles from three healthy nerves, we measured a mean MTR of (25.2 ±1.9)% for single fascicles and a mean MTR of (23.6 ±0.9)% for whole nerves. No statistically significant correlation was observed between any MRI parameter and routine histological outcomes, perhaps due to the small sample size and lack of apparent sample pathology. Overall, we have successfully demonstrated the feasibility of measuring quantitative MR outcomes ex vivo, which might reflect features of nerve structure and macromolecular content. These methods should be validated comprehensively on a larger and more diverse set of nerve samples, towards the interpretation of in vivo outcomes. These approaches have new and broad implications for the management of nerve disease, injury, and repair.  相似文献   

2.
The separation and quantification of collagen‐bound water (CBW) and pore water (PW) components of the cortical bone signal are important because of their different contribution to bone mechanical properties. Ultrashort TE (UTE) imaging can be used to exploit the transverse relaxation from CBW and PW, allowing their quantification. We tested, for the first time, the feasibility of UTE measurements in mice for the separation and quantification of the transverse relaxation of CBW and PW in vivo using three different approaches for T2* determination. UTE sequences were acquired at 4.7 T in six mice with 10 different TEs (50–5000 μs). The transverse relaxation time T2* of CBW (T2*cbw) and PW (T2*pw) and the CBW fraction (bwf) were computed using a mono‐exponential (i), a standard bi‐exponential (ii) and a new multi‐step bi‐exponential (iii) approach. Regions of interest were drawn at multiple levels of the femur and vertebral body cortical bone for each mouse. The sum of the normalized squared residuals (Res) and the homogeneity of variance were tested to compare the different methods. In the femur, approach (i) yielded mean T2* ± standard deviation (SD) of 657 ± 234 μs. With approach (ii), T2*cbw, T2*pw and bwf were 464 ± 153 μs, 15 777 ± 10 864 μs and 57.6 ± 9.9%, respectively. For approach (iii), T2*cbw, T2*pw and bwf were 387 ± 108 μs, 7534 ± 2765 μs and 42.5 ± 6.2%, respectively. Similar values were obtained from vertebral bodies. Res with approach (ii) was lower than with the two other approaches (p < 0.007), but T2*pw and bwf variance was lower with approach (iii) than with approach (ii) (p < 0.048). We demonstrated that the separation and quantification of cortical bone water components with UTE sequences is feasible in vivo in mouse models. The direct bi‐exponential approach exhibited the best approximation to the measured signal curve with the lowest residuals; however, the newly proposed multi‐step algorithm resulted in substantially lower variability of the computed parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Biological tissues usually contain distinct water compartments with different transverse relaxation times. In this study, two‐dimensional, multi‐slice, ultrashort echo time spectroscopic imaging (UTESI) was used with bi‐component analysis to detect bound and free water components in musculoskeletal tissues. Feasibility studies were performed using numerical simulation. Imaging was performed on bovine cortical bone, human cadaveric menisci and the Achilles' tendons of volunteers. The simulation study demonstrated that UTESI, together with bi‐component analysis, could reliably quantify both T2* and fractions of the short and long T2* components. The in vitro and in vivo studies each took less than 14 min. The bound water components showed a short T2* of ~0.3 ms for bovine bone, ~1.8 ms for meniscus and ~0.6 ms for the Achilles' tendon. The free water components showed about an order of magnitude longer T2* values, with ~2 ms for bovine bone, ~14 ms for meniscus and ~8 ms for the Achilles' tendon. Bound water fractions of up to ~76% for bovine bone, 50% for meniscus and ~75% for the Achilles' tendon were measured. The corresponding free water components were up to ~24% for bovine bone, 50% for meniscus and ~25% for the Achilles' tendon by volume. These results demonstrate that UTESI, combined with bi‐component analysis, can quantify the bound and free water components in musculoskeletal tissues in clinically realistic times. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We report the three‐dimensional ultrashort‐TE (3D UTE) and adiabatic inversion recovery UTE (IR‐UTE) sequences employing a radial trajectory with conical view ordering for bi‐component T2* analysis of bound water (T2*BW) and pore water (T2*PW) in cortical bone. An interleaved dual‐echo 3D UTE acquisition scheme was developed for fast bi‐component analysis of bound and pore water in cortical bone. A 3D IR‐UTE acquisition scheme employing multiple spokes per IR was developed for bound water imaging. Two‐dimensional UTE (2D UTE) and IR‐UTE sequences were employed for comparison. The sequences were applied to bovine bone samples (n = 6) and volunteers (n = 6) using a 3‐T scanner. Bi‐component fitting of 3D UTE images of bovine samples showed a mean T2*BW of 0.26 ± 0.04 ms and T2*PW of 4.16 ± 0.35 ms, with fractions of 21.5 ± 3.6% and 78.5 ± 3.6%, respectively. The 3D IR‐UTE signal showed a single‐component decay with a mean T2*BW of 0.29 ± 0.05 ms, suggesting selective imaging of bound water. Similar results were achieved with the 2D UTE and IR‐UTE sequences. Bi‐component fitting of 3D UTE images of the tibial midshafts of healthy volunteers showed a mean T2*BW of 0.32 ± 0.08 ms and T2*PW of 5.78 ± 1.24 ms, with fractions of 34.2 ± 7.4% and 65.8 ± 7.4%, respectively. Single‐component fitting of 3D IR‐UTE images showed a mean T2*BW of 0.35 ± 0.09 ms. The 3D UTE and 3D IR‐UTE techniques allow fast volumetric mapping of bound and pore water in cortical bone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's 1H MR spectroscopy (1H‐MRS) signal, reducing sensitivity to changes. While single‐voxel 1H‐MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1‐mm3 resolution MRI into GM, WM and CSF masks that were co‐registered with the MRSI grid to yield their partial volumes in approximately every 1 cm3 spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i‐ metabolite's GM and WM concentrations CiGM, CiWM. With the voxels' GM and WM volumes as independent coefficients, the over‐determined system of equations was solved for the global averaged CiGM and CiWM. Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N‐acetylaspartate, creatine, choline and myo‐inositol CiGM concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6mM, respectively, and CiWM concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5–10% (more for ratios), which can often double the sample size required to establish statistical significance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.  相似文献   

7.
White matter (WM) perfusion has great potential as a physiological biomarker in many neurological diseases. Although it has been demonstrated previously that arterial spin labeling magnetic resonance imaging (ASL‐MRI) enables the detection of the perfusion‐weighted signal in most voxels in WM, studies of cerebral blood flow (CBF) in WM by ASL‐MRI are relatively scarce because of its particular challenges, such as significantly lower perfusion and longer arterial transit times relative to gray matter (GM). Recently, ASL with a spectroscopic readout has been proposed to enhance the sensitivity for the measurement of WM perfusion. However, this approach suffers from long acquisition times, especially when acquiring multi‐phase ASL datasets to improve CBF quantification. Furthermore, the potential increase in the signal‐to‐noise ratio (SNR) by spectroscopic readout compared with echo planar imaging (EPI) readout has not been proven experimentally. In this study, we propose the use of time‐encoded pseudo‐continuous ASL (te‐pCASL) with single‐voxel point‐resolved spectroscopy (PRESS) readout to quantify WM cerebral perfusion in a more time‐efficient manner. Results are compared with te‐pCASL with a conventional EPI readout for both WM and GM perfusion measurements. Perfusion measurements by te‐pCASL PRESS and conventional EPI showed no significant difference for quantitative WM CBF values (Student's t‐test, p = 0.19) or temporal SNR (p = 0.33 and p = 0.81 for GM and WM, respectively), whereas GM CBF values (p = 0.016) were higher using PRESS than EPI readout. WM CBF values were found to be 18.2 ± 7.6 mL/100 g/min (PRESS) and 12.5 ± 5.5 mL/100 g/min (EPI), whereas GM CBF values were found to be 77.1 ± 11.2 mL/100 g/min (PRESS) and 53.6 ± 9.6 mL/100 g/min (EPI). This study demonstrates the feasibility of te‐pCASL PRESS for the quantification of WM perfusion changes in a highly time‐efficient manner, but it does not result in improved temporal SNR, as does traditional te‐pCASL EPI, which remains the preferred option because of its flexibility in use.  相似文献   

8.
The transverse relaxation times (T2) and concentrations of Ascorbate (Asc) and glutathione (GSH) were measured from a single dataset of double‐edited spectra that were acquired at several TEs at 4 T in the human brain. Six TEs between 102 and 152 ms were utilized to calculate T2 for the group of 12 subjects scanned five times each. Spectra measured at all six TEs were summed to quantify the concentration in each individual scan. LCModel fitting was optimized for the quantification of the Asc and GSH double‐edited spectra. When the fitted baseline was constrained to be flat, T2 was found to be 67 ms (95% confidence interval, 50–83 ms) for GSH and ≤115 ms for Asc using the sum of spectra measured over 60 scans. The Asc and GSH concentrations quantified in each of the 60 scans were 0.62 ± 0.08 and 0.81 ± 0.11 µmol/g [mean ± standard deviation (SD), n = 60], respectively, using 10 µmol/g N‐acetylaspartate as an internal reference and assuming a constant influence of N‐acetylaspartate and antioxidant T2 relaxation in the reference solution and in vivo. The T2 value of GSH was measured for the first time in the human brain. The data are consistent with short T2 for both antioxidants. These T2 values are essential for the absolute quantification of Asc and GSH concentrations measured at long TE, and provide a critical step towards addressing assumptions about T2, and therefore towards the quantification of concentrations without the possibility of systematic bias. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Inversion recovery ultrashort echo time (IR‐UTE) imaging holds the potential to directly characterize MR signals from ultrashort T2 tissue components (STCs), such as collagen in cartilage and myelin in brain. The application of IR‐UTE for myelin imaging has been challenging because of the high water content in brain and the possibility that the ultrashort T2* signals are contaminated by water protons, including those associated with myelin sheaths. This study investigated such a possibility in an ovine brain D2O exchange model and explored the potential of IR‐UTE imaging for the quantification of ultrashort T2* signals in both white and gray matter at 3 T. Six specimens were examined before and after sequential immersion in 99.9% D2O. Long T2 MR signals were measured using a clinical proton density‐weighted fast spin echo (PD‐FSE) sequence. IR‐UTE images were first acquired with different inversion times to determine the optimal inversion time to null the long T2 signals (TInull). Then, at this TInull, images with echo times (TEs) of 0.01–4 ms were acquired to measure the T2* values of STCs. The PD‐FSE signal dropped to near zero after 24 h of immersion in D2O. A wide range of TInull values were used at different time points (240–330 ms for white matter and 320–350 ms for gray matter at TR = 1000 ms) because the T1 values of the long T2 tissue components changed significantly. The T2* values of STCs were 200–300 μs in both white and gray matter (comparable with the values obtained from myelin powder and its mixture with D2O or H2O), and showed minimal changes after sequential immersion. The ultrashort T2* signals seen on IR‐UTE images are unlikely to be from water protons as they are exchangeable with deuterons in D2O. The source is more likely to be myelin itself in white matter, and might also be associated with other membranous structures in gray matter.  相似文献   

10.
We report a novel three‐dimensional (3D) ultrashort echo time (UTE) sequence employing Cones trajectory and T preparation (UTE‐Cones‐T) for quantitative T assessment of short T2 tissues in the musculoskeletal system. A basic 3D UTE‐Cones sequence was combined with a spin‐locking preparation pulse for T contrast. A relatively short TR was used to decrease the scan time, which required T1 measurement and compensation using 3D UTE‐Cones data acquisitions with variable TRs. Another strategy to reduce the total scan time was to acquire multiple Cones spokes (Nsp) after each T preparation and fat saturation. Four spin‐locking times (TSL = 0–20 ms) were acquired over 12 min, plus another 7 min for T1 measurement. The 3D UTE‐Cones‐T sequence was compared with a two‐dimensional (2D) spiral‐T sequence for the imaging of a spherical CuSO4 phantom and ex vivo meniscus and tendon specimens, as well as the knee and ankle joints of healthy volunteers, using a clinical 3‐T scanner. The CuSO4 phantom showed a T value of 76.5 ± 1.6 ms with the 2D spiral‐T sequence, as well as 85.7 ± 3.6 and 89.2 ± 1.4 ms for the 3D UTE‐Cones‐T sequences with Nsp of 1 and 5, respectively. The 3D UTE‐Cones‐T sequence provided shorter T values for the bovine meniscus sample relative to the 2D spiral‐T sequence (10–12 ms versus 16 ms, respectively). The cadaveric human Achilles tendon sample could only be imaged with the 3D UTE‐Cones‐T sequence (T = 4.0 ± 0.9 ms), with the 2D spiral‐T sequence demonstrating near‐zero signal intensity. Human studies yielded T values of 36.1 ± 2.9, 18.3 ± 3.9 and 3.1 ± 0.4 ms for articular cartilage, meniscus and the Achilles tendon, respectively. The 3D UTE‐Cones‐T sequence allows volumetric T measurement of short T2 tissues in vivo.  相似文献   

11.
Water is present in cortical bone in different binding states. In this study we aimed to investigate the effects of inversion time (TI) on the signal from bound and pore water in cortical bone using an adiabatic inversion recovery prepared ultrashort echo time (IR‐UTE) sequence on a clinical 3 T scanner. In total ten bovine midshaft samples and four human tibial midshaft samples were harvested for this study. Each cortical sample was imaged with the UTE and IR‐UTE sequences with a TR of 300 ms and a series of TI values ranging from 10 to 240 ms. Five healthy volunteers were also imaged with the same sequence. Single‐ and bi‐component models were utilized to calculate the T2* and relative fractions of short and long T2* components. Bi‐component behavior of the signal from cortical bone was seen with the IR‐UTE sequence, except with a TI of around 80 ms, where the short T2* component alone were seen and a mono‐exponential decay pattern was observed. In vivo imaging with the IR‐UTE sequence provided high contrast‐to‐noise images with direct visualization of bound water and reduced signal from long T2 muscle and fat. Our preliminary results demonstrate that selective nulling of the pore water component can be achieved with the IR‐UTE sequence with an appropriate TI, allowing selective imaging of the bound water component in cortical bone in vivo using clinical MR scanners. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This study aimed to develop and test a simultaneous acquisition and analysis pipeline for voxel‐based magnetic susceptibility and morphometry (VBMSM) on a single dataset using young volunteers, elderly healthy volunteers, and an Alzheimer's disease (AD) group. 3D T1‐weighted and multi‐echo phase images for VBM and quantitative susceptibility mapping (QSM) were simultaneously acquired using a magnetization‐prepared spoiled turbo multiple gradient echo sequence with inversion pulse for QSM (MP‐QSM). The magnitude image was split into gray matter (GM) and white matter (WM) and was spatially normalized. The susceptibility map was reconstructed from the phase images. The segmented image and susceptibility map were compared with those obtained from conventional multiple spoiled gradient echo (mGRE) and MP‐spoiled gradient echo (MP‐GRE) in healthy volunteers to validate the availability of MP‐QSM by numerical measurements. To assess the feasibility of the VBMSM analysis pipeline, voxel‐based comparisons of susceptibility and morphometry in MP‐QSM were conducted in volunteers with a bimodal age distribution, and in elderly volunteers and the AD group, using spatially normalized GM and WM volume images and a susceptibility map. GM/WM contrasts in MP‐QSM, MP‐GRE, and mGRE were 0.14 ± 0.011, 0.17 ± 0.015, and 0.045 ± 0.010, respectively. Segmented GM and WM volumes in the MP‐QSM closely coincided with those in the MP‐GRE. Region of interest analyses indicated that the mean susceptibility values in MP‐QSM were completely in agreement with those in mGRE. In an evaluation of the aging effect, a significant increase and decrease in susceptibility and volume were found by VBMSM in deep GM and WM, respectively. Between the elderly volunteers and the AD group, the characteristic susceptibility and volume changes in GM and WM were observed. The proposed MP‐QSM sequence makes it possible to acquire acceptable‐quality images for simultaneous analysis and determine brain atrophy and susceptibility distribution without image registration by using voxel‐based analyses.  相似文献   

13.
Entheses are regions where tendons and ligaments attach to bone, and are the primary target in seronegative and other diseases of the musculoskeletal (MSK) system. MRI has been widely used for visualizing features of inflammatory and degenerative MSK disease; however, normal tendons and entheses have short transverse relaxation times (T2), and show little or no signal with conventional clinical MRI pulse sequences, making it difficult to investigate their MR properties. In this study we examined the normal MR morphology of the cadaveric Achilles tendon and enthesis at 3 T using novel three‐dimensional ultrashort echo time (3D UTE) Cones sequences, and at 11.7 T using conventional MRI sequences. We also studied the MR properties of the Achilles tendon and enthesis including T2*, T1, and magnetization transfer ratio (MTR). In addition, MT modeling of macromolecular proton fractions was investigated using 3D UTE Cones sequences at 3 T. Indentation testing was performed to investigate the mechanical properties of the tendons and entheses, and this was followed by histological examination. In total five specimens (<50 years) were investigated. On average, tendons and entheses respectively had T2* values of 0.93 ± 0.48 ms and 2.77 ± 0.79 ms, T1 values of 644 ± 22 ms and 780 ± 55 ms, MTRs of 0.373 ± 0.03 and 0.244 ± 0.009 with an MT power of 1000° and frequency offset of 2 kHz, and macromolecular proton fractions of 18.0 ± 2.2% and 13.9 ± 1.9%. Compared with the tendon, the enthesis generally had a longer T2*, a longer T1, a lower MTR, and a lower macromolecular proton fraction as well as both a higher Young's modulus and stiffness. Results from this study are likely to provide a useful baseline for identifying deviations from the normal in seronegative arthritis and other disease of the entheses.  相似文献   

14.
A pulsed inhomogeneous magnetization transfer (ihMT)‐prepared fast imaging sequence was implemented at 11.75 T for preclinical studies on mouse central nervous system. A strategy based on filtering the ihMT signal originating from short dipolar relaxation time (T1D) components is proposed. It involves increasing the repetition time of consecutive radiofrequency (RF) pulses of the dual saturation and allows improved signal specificity for long T1D myelinated structures. Furthermore, frequency offset, power and timing saturation parameters were adjusted to optimize the ihMT sensitivity. The optimization of the ihMT sensitivity, whilst preserving the strong specificity for the long T1D component of myelinated tissues, allowed measurements of ihMT ratios on the order of 4–5% in white matter (WM), 2.5% in gray matter (GM) and 1–1.3% in muscle. This led to high relative ihMT contrasts between myelinated tissues and others (~3–4 between WM and muscle, and ≥2 between GM and muscle). Conversely, higher ihMT ratios (~6–7% in WM) could be obtained using minimal T1D filtering achieved with short saturation pulse repetition time or cosine‐modulated pulses for the dual‐frequency saturation. This study represents a first stage in the process of validating ihMT as a myelin biomarker by providing optimized ihMT preclinical sequences, directly transposable and applicable to other preclinical magnetic fields and scanners. Finally, ihMT ratios measured in various central nervous system areas are provided for future reference.  相似文献   

15.
The aim of this study was to characterize multiexponential T2 (MET2) relaxation in a rat C6 glioblastoma tumor model. To do this, rats (n = 11) were inoculated with the C6 cells via stereotaxic injection into the brain. Ten days later, MET2 measurements were performed in vivo using a single‐slice, multi‐echo spin‐echo sequence at 7.0 T. Tumor signal was biexponential in eight animals with a short‐lived T2 component (T2 = 20.7 ± 5.4 ms across samples) representing 6.8 ± 6.2% of the total signal and a long‐lived T2 component (T2 = 76.4 ± 9.3 ms) representing the remaining signal fraction. In contrast, signal from contralateral grey matter was consistently monoexponential (T2 = 48.8 ± 2.3 ms). Additional ex vivo studies (n = 3) and Monte Carlo simulations showed that the in vivo results were not significantly corrupted by partial volume averaging or noise. The underlying physiological origin of the observed MET2 components is unknown; however, MET2 analysis may hold promise as a non‐invasive tool for characterizing tumor microenvironment in vivo on a sub‐voxel scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
B1 inhomogeneity and chemical shift displacement error (CSDE) increase with the main magnetic field strength and are therefore deleterious for magnetic resonance spectroscopy (MRS) at ultrahigh field. A solution is to use adiabatic pulses which operate over a broad range of B1 and thus are insensitive to B1 inhomogeneity. Moreover, adiabatic pulses usually have a relatively higher bandwidth, which makes CSDE low to negligible. The use of exclusively adiabatic pulses for single‐voxel spectroscopy (SVS) typically brings the disadvantage of a long echo time (TE), but the advantage of a low and matched CSDE. Herein, we took advantage of short‐duration, low‐power, matched‐phase adiabatic spin echo (MASE) pulses to implement a matched CSDE semi‐localized by adiabatic selective refocusing (sLASER) sequence capable of attaining short TEs, while CSDE is matched and still comparatively low. We also demonstrate here the feasibility of the direct measurement of the γ‐aminobutyric acid (GABA) resonance at 2.28 ppm well separated from the neighboring glutamate resonance at 7 T using the implemented MASE‐sLASER sequence at TEs of 68 and 136 ms. The shorter duration of MASE pulses also made it possible to implement a Mescher–Garwood‐semi‐localized by adiabatic selective refocusing (MEGA‐sLASER) (with MASE) sequence with TE = 68 ms for editing GABA at 7 T, the results for which are also shown.  相似文献   

17.
Therapeutic hypothermia is standard care for infants with moderate to severe encephalopathy. 1H MRS thermometry (MRSt) measures regional brain absolute temperature using the temperature‐dependent water chemical shift. This study evaluates the clinical feasibility of MRSt in human neonates, and correlates white matter (WM) and thalamus (Thal) MRSt with conventional rectal temperature (Trectal) measurement. Fifty‐six infants born at term underwent perinatal MRSt for suspected hypoxic–ischaemic brain injury and 33 infants born preterm had MRSt at a term‐equivalent age; 56 of the 89 had Trectal measured after MRSt of either a Thal or posterior WM voxel, or both. MRSt used point‐resolved spectroscopy (no water suppression; TR = 1370 ms; TE = 288 ms; 1.5 × 1.5 × 1.5 cm3 Thal and 1.1 × 1.3 × 1.4 cm3 WM voxels). Time domain data were phase and frequency corrected before summation and motion‐corrupted data were excluded from further analysis using simple criteria [preprocessing + quality assurance (QA)]. Two published water temperature‐dependence calibrations [both using cerebral creatine (Cr), choline (Cho) and N‐acetylaspartate (Naa) as independent reference peaks] were compared. The temperature measurements derived from Cr, Cho and Naa were combined to give a single amplitude‐weighted combination temperature (TAWC). WM and Thal TAWC correlated linearly with Trectal (Thal slope, 0.82 ± 0.04, R2 = 0.85, p < 0.05; WM slope, 0.95 ± 0.04, R2 = 0.78, p < 0.05). Preprocessing + QA improved the correlation between WM TAWC and Trectal (R2 increased from 0.27 to 0.78, p < 0.001). Both calibration datasets showed specific inconsistencies between the temperatures calculated using Cr, Cho and Naa reference peaks when applied to this neonatal dataset. Neonatal MRSt is clinically feasible. Preprocessing + QA improved MRSt reliability in WM. The consideration of MRSt calibration internal biases is necessary before combining MRSt temperatures from multiple reference peaks to obtain TAWC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This study investigates T2* quantification in carotid plaques before and after the administration of ultrasmall superparamagnetic iron oxide particles (USPIOs) in a cohort of patients receiving statin therapy. Phantom studies were performed using gels with varying concentrations of USPIOs. In the phantom study, 12 gels were prepared with a range of freely distributed concentrations of USPIO nanoparticles (0–0.05 mg/mL). Relative signal intensity measurements were obtained from a T2*‐weighted sequence as well as quantitative T2* (qT2*) measurements. In the patient study, 40 patients with >40% carotid stenosis were randomised to low‐ and high‐dose statin therapy (10 and 80 mg of atorvastatin). Pre‐ and post‐ (36 h) USPIO‐enhanced MRI were performed at baseline, and at 6 and 12 weeks. A linear mixed‐effects model was applied to account for the inherent correlation of multiple‐plaque measurements from the same patient and to assess dose–response differences to statin therapy. In the phantom study, the T2*‐weighted sequence demonstrated an initial increase (T1 effect), followed by a decrease (T2* effect), in relative signal intensity with increasing concentrations of USPIO. The qT2* values decreased exponentially with increasing concentrations of USPIO. In the patient study, there was a highly significant difference in post‐USPIO T2* measurements in plaques between the low‐ and high‐dose statin groups. This was observed for both the difference in qT2* measurements (post‐USPIO minus pre‐USPIO) (p < 0.001) and for qT2* post‐USPIO only (p < 0.001). The post‐USPIO qT2* values were as follows: baseline: low dose, 13.6 ± 5.5 ms; high dose, 12.9 ± 6.2 ms; 6 weeks: low dose, 13.3 ± 6.7 ms; high dose, 14.3 ± 7.7 ms; 12 weeks: low dose, 14.0 ± 7.6 ms; high dose, 18.3 ± 11.2 ms. It can be concluded that qT2* measurements provide an alternative method of quantifying USPIO uptake. These results also demonstrate that changes in USPIO uptake can be measured using post‐USPIO imaging only. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
An adiabatic multi‐echo spectroscopic imaging (AMESING) sequence, used for 31P MRSI, with spherical k‐space sampling and compensated phase‐encoding gradients, was implemented on a whole‐body 7‐T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2* and high T2, this can theoretically lead to a potential maximum signal‐to‐noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst‐angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst‐angle excitation should be feasible. The multi‐echo sequence enables the determination of localized T2 values, and was validated with 31P three‐dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ‐ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2* values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Although current cardiovascular MR (CMR) techniques for the detection of myocardial fibrosis have shown promise, they nevertheless depend on gadolinium‐based contrast agents and are not specific to collagen. In particular, the diagnosis of diffuse myocardial fibrosis, a precursor of heart failure, would benefit from a non‐invasive imaging technique that can detect collagen directly. Such a method could potentially replace the need for endomyocardial biopsy, the gold standard for the diagnosis of the disease. The objective of this study was to measure the MR properties of collagen using ultrashort TE (UTE), a technique that can detect short T2* species. Experiments were performed in collagen solutions. Via a model of bi‐exponential T2* with oscillation, a linear relationship (slope = 0.40 ± 0.01, R2 = 0.99696) was determined between the UTE collagen signal fraction associated with these properties and the measured collagen concentration in solution. The UTE signal of protons in the collagen molecule was characterized as having a mean T2* of 0.75 ± 0.05 ms and a mean chemical shift of ?3.56 ± 0.01 ppm relative to water at 7 T. The results indicated that collagen can be detected and quantified using UTE. A knowledge of the collagen signal properties could potentially be beneficial for the endogenous detection of myocardial fibrosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号