首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical stimuli are responsible for bone remodeling during orthodontic tooth movement. The role of mechanical stimulation in the regulation of the fate of bone mesenchymal stem cells (BMSCs) is of interest in bone regeneration and tissue engineering applications. However, the signaling pathway involved in strain-induced biochemical events in BMSCs is not well established and can be controversial. This study investigated strain-induced proliferation and differentiation of BMSCs, as well as the mechanism of mechanotransduction. BMSCs were exposed to continuous mechanical strain (CMS) of 10% at 1 Hz. The results showed that CMS reduced the proliferation of BMSCs and stimulated osteogenic differentiation by activating Runx2, followed by increased alkaline phosphatase (ALP) activity and mRNA expression of osteogenesis-related genes (ALP, collagen type I and osteocalcin). Furthermore, the phosphorylation level of extracellular regulated protein kinase (ERK)1/2 increased significantly at the onset of strain. However, the presence of U0126, a selective inhibitor of ERK1/2, blocked the induction of Runx2 and subsequent osteogenic events. These findings demonstrate that CMS regulated Runx2 activation and favored osteoblast differentiation through activation of the ERK1/2 signaling pathway. These results will contribute to a better understanding of strain-induced bone remodeling and will form the basis for the correct choice of applied force in orthodontic treatment.  相似文献   

2.
Human adult mesenchymal stem cells (hMSCs) differentiate into an osteogenic lineage if the appropriate differentiative cues, such as dexamethasone or bone morphogenetic protein 2 (BMP-2), are present. This study was undertaken to determine the role of insulin-like growth factor I (IGFI) in the regulation of early osteoblast differentiation in hMSC. Previous studies have shown that IGF-I, regulates bone formation and remodeling by participating in the differentiation of mature cells of osteoblast lineage. We hypothesized that IGF-I exerted its effects early, but the effects were too subtle to be detected. Therefore, engineered hMSCs to produce IGF-I via adenoviral transfection and used quantitative real-time PCR (qPCR) to assess marker gene expression. Here we show that IGF-I up-regulates Type I collagen, Runx2, and alkaline phosphatase (Alp) gene expression in hMSCs, genes indicative of early osteogenic differentiation. We also observed mineral deposition in the absence of dexamethasone (Dex) in hMSC cultures treated with recombinant human BMP-2 after transduction with Ad-IGF-I. In conclusion Igf-I transduction up-regulated markers of osteoblastic differentiation and in conjunction with recombinant BMP-2-induced matrix mineralization independently of Dex (see Salasznyk et al., Stem Cells Dev 14(6):608-620, 2005, this issue).  相似文献   

3.
Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) may potentially be used in cell-based bone tissue-engineering applications to enhance the bone-forming potential of these cells. Osteogenic differentiation and adipogenic differentiation are thought to be mutually exclusive, and although several signaling pathways and cues that induce osteogenic or adipogenic differentiation, respectively, have been identified, there is no general consensus on how to optimally differentiate hMSCs into the osteogenic lineage. Some pathways have also been reported to be involved in both adipogenic and osteogenic differentiation, as for example, the protein kinase A (PKA) pathway, and the aim of this study was to investigate the role of cAMP/PKA signaling in differentiation of hMSCs in more detail. We show that activation of this pathway with dibutyryl-cAMP results in enhanced alkaline phosphatase expression, whereas another cAMP analog induces adipogenesis in long-term mineralization cultures. Adipogenic differentiation, induced by 8-bromo-cAMP, was accompanied by stronger PKA activity and higher expression of cAMP-responsive genes, suggesting that stronger activation correlates with adipogenic differentiation. In addition, a whole-genome expression analysis showed an increase in expression of adipogenic genes in 8-br-cAMP-treated cells. Furthermore, by means of quantitative polymerase chain reaction, we show differences in peroxisome proliferator-activated receptor-γ activation, either alone or in combination with dexamethasone, thus demonstrating differential effects of the PKA pathway, most likely depending on its mode of activation.  相似文献   

4.
Bone sialoprotein (BSP) is an abundant protein in the extracellular matrix of bone that has been suggested to have several different physiological functions, including the nucleation of hydroxyapatite (HA), promotion of cell attachment and binding of collagen. Studies in our lab have demonstrated that increased expression of BSP in osteoblast cells can increase expression of the osteoblast-related genes Runx2 and Osx as well as alkaline phosphatase and osteocalcin and increase matrix mineralization. To determine the molecular mechanisms responsible for the BSP-mediated increase in osteoblastic differentiation, several functional domain mutants of BSP were expressed in primary rat bone osteoblastic cells, including the contiguous glutamic acid sequences (polyGlu) and the arginine-glycine-aspartic acid (RGD) motif. Markers of osteoblast differentiation, including matrix mineralization and alkaline phosphatase staining, were increased in cells expressing BSP mutants of the polyGlu sequences but not in cells expressing RGD-mutated BSP. We also determined the dependence on integrin-associated pathways in promoting BSP-mediated differentiation responses in osteoblasts by demonstrating the activation of focal adhesion kinase, MAP kinase-associated proteins ERK1/2, ribosomal s6 kinase 2 and the AP-1 protein cFos. Thus, the mechanism regulating osteoblast differentiation by BSP was determined to be dependent on integrin-mediated intracellular signaling pathways.  相似文献   

5.
背景:ERK1/2信号通路和核因子κB信号通路是否参与了牵张应力作用下MC3T3-E1细胞成骨分化及相关基因表达的调控,尚不清楚。 目的:观察机械牵张应力对作用下ERK1/2和核因子κB通路对成骨细胞碱性磷酸酶、Ⅰ型胶原、骨钙蛋白、白细胞介素6表达的影响,探讨ERK1/2与核因子κB信号通路对成骨细胞分化的调控作用。 方法:体外培养的MC3T3-E1细胞,以ERK1/2通路特异性抑制剂PD098059及核因子κB通路抑制剂PDTC分别处理30 min后加载12%的拉伸应变率24 h,以正常细胞及单纯加载12%牵张应力24 h为对照。采用ELISA及Real-time PCR方法检测细胞加载前后碱性磷酸酶活性、Ⅰ型胶原、骨钙蛋白及白细胞介素6 mRNA的表达。 结果与结论:在12%牵张应力作用下,MC3T3-E1细胞碱性磷酸酶、Ⅰ型胶原、白细胞介素6的表达受ERK1/2信号通路的调控,而骨钙蛋白基因表达的变化不受ERK1/2通路的影响。核因子κB信号通路抑制剂PDTC可显著抑制机械牵应张力作用下MC3T3-E1细胞碱性磷酸酶活性的降低,同时抑制白细胞介素6基因的表达,而Ⅰ型胶原、骨钙蛋白基因表达的变化不受核因子κB信号通路的影响。结果表明牵张应力可以通过ERK1/2和核因子κB通路影响MC3T3-E1细胞的成骨分化及相关基因表达。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接:  相似文献   

6.
Adult mesenchymal stem cells have the proclivity to differentiate along multiple lineages giving rise to new bone, cartilage, muscle, or fat. Collagen, a normal constituent of bone, provides strength and structural stability and is therefore a potential candidate for use as a substrate on which to engineer bone and cartilage from their respective mesenchymal-derived precursors. In this study, a collagen- glycosaminoglycan scaffold was used to provide a suitable three-dimensional (3-D) environment on which to culture adult rat mesenchymal stem cells and induce differentiation along the osteogenic and chondrogenic lineages. The results demonstrate that adult rat mesenchymal stem cells can undergo osteogenesis when grown on the collagen-glycosaminoglycan scaffold and stimulated with osteogenic factors (dexamethasone, ascorbic acid, beta-glycerophosphate), as evaluated by the temporal induction of the bone-specific proteins, collagen I and osteocalcin, and subsequent matrix mineralization. The osteogenic factors were coupled to activation of the extracellular-regulated protein kinase (ERK), and this kinase was found to play a role in the osteogenic process. As well as supporting osteogenesis, when the cell-seeded scaffold was exposed to chondrogenic factors (dexamethasone and TGF-1beta), collagen II immunoreactivity was increased, providing evidence that the scaffold can also provide a suitable 3-D environment that supports chondrogenesis.  相似文献   

7.
Type I collagen is the most abundant extracellular matrix protein in bone and contains arginine- glycine-aspartic acid sequences that promote cell adhesion and proliferation. We have previously shown that human mesenchymal stem cells (hMSCs) seeded in three-dimensional (3D) collagen gels upregulate BMP-2 mRNA expression in response to tensile strain, indicative of osteogenesis. Therefore, collagen could be a promising scaffold material for functional bone tissue engineering using hMSCs. However, high contraction of the collagen gels by hMSCs poses a challenge to creating large, tissue-engineered bone constructs. The effects of cyclic tensile strain, medium (with and without dexamethasone), and hMSC seeding density on contraction of collagen matrices have not been investigated. hMSCs were seeded in 3D collagen gels and subjected to cyclic tensile strain of 10% or 12% for 4 h/day at a frequency of 1 Hz in osteogenic-differentiating or complete MSC growth media for up to 14 days. Viability of hMSCs was not affected by strain or media conditions. While initial seeding density affected matrix contraction alone, there was a high interdependence of strain and medium on matrix contraction. These findings suggest a correlation between hMSC proliferation and osteogenic differentiation on collagen matrix contraction that is affected by media, cell-seeding density, and cyclic tensile strain. It is vital to understand the effects of culture conditions on collagen matrix contraction by hMSCs in order to consider hMSC-seeded collagen constructs for functional bone tissue engineering in vitro.  相似文献   

8.
Tissue morphogenesis remains one of the least understood problems in cell and developmental biology. There is a disconnect between the mechanisms that apply to two-dimensional (2D) cultures and those seen in vivo. Three-dimensional (3D) culture presents a complex stimulus triggering cellular responses that are only partially understood. We compared 2D and 3D cultures of human mesenchymal stem cells in the presence of mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, to determine the role of extracellular signal-related kinase (ERK) in collagen-induced differentiation. 3D collagen I culture enhanced and accelerated the osteogenic differentiation of human mesenchymal stem cells (hMSC). Contrary to 2D results, the addition of PD98059 induced a significant amplification of osteogenic gene expression and matrix mineralization in 3D cultures. The inhibition of ERK altered cell-mediated compaction, proliferation, and resulted in the development of distinct tissue microstructure. Therefore, we suggest that the ability to reorganize collagen in 3D is an important step in ERK-mediated osteogenic differentiation. This work aims to propose a correlation between osteogenic differentiation and hMSC-directed collagen I remodeling. We present a potential mechanistic link (ERK) through which the three dimensionality of an engineered tissue acts to differentially induce and maintain cellular phenotype during tissue development.  相似文献   

9.
Human mesenchymal stem cells (hMSCs) differentiate down an osteogenic pathway with appropriate mechanical and/or chemical stimuli. This study describes the successful culture of hMSCs in 3D collagen matrices under mechanical strain. Bone marrow-derived hMSCs were seeded in linear 3D type I collagen matrices and subjected to 0%, 10%, or 12% uniaxial cyclic tensile strain at 1 Hz for 4 h/day for 7 or 14 days. Cell viability studies indicated that hMSCs remained viable throughout the culture period irrespective of the applied strain level. Real-time RT-PCR studies indicated a significant increase in BMP-2 mRNA expression levels in hMSCs strained at 10% compared to the same day unstrained controls after both 7 and 14 days. An increase in BMP-2 was also observed in hMSCs subjected to 12% strain, but the increase was significant only in the 14-day sample. This is the first report of the culture of bone marrow-derived hMSCs in 3D collagen matrices under cyclic strain, and the first demonstration that strain alone can induce osteogenic differentiation without the addition of osteogenic supplements. Induction of bone differentiation in 3D culture is a critical step in the creation of bioengineered bone constructs.  相似文献   

10.
Li WJ  Tuli R  Huang X  Laquerriere P  Tuan RS 《Biomaterials》2005,26(25):5158-5166
Functional engineering of musculoskeletal tissues generally involves the use of differentiated or progenitor cells seeded with specific growth factors in biomaterial scaffolds. Ideally, the scaffold should be a functional and structural biomimetic of the native extracellular matrix and support multiple tissue morphogenesis. We have previously shown that electrospun, three-dimensional nanofibrous scaffolds that morphologically resemble collagen fibrils are capable of promoting favorable biological responses from seeded cells, indicative of their potential application for tissue engineering. In this study, we tested a three-dimensional nanofibrous scaffold fabricated from poly(epsilon-caprolactone) (PCL) for its ability to support and maintain multilineage differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in vitro. hMSCs were seeded onto pre-fabricated nanofibrous scaffolds, and were induced to differentiate along adipogenic, chondrogenic, or osteogenic lineages by culturing in specific differentiation media. Histological and scanning electron microscopy observations, gene expression analysis, and immunohistochemical detection of lineage-specific marker molecules confirmed the formation of three-dimensional constructs containing cells differentiated into the specified cell types. These results suggest that the PCL-based nanofibrous scaffold is a promising candidate scaffold for cell-based, multiphasic tissue engineering.  相似文献   

11.
12.
The effect of visible light irradiation on the expression of pluripotent genes (Oct-4, Sox2, and Nanog) in amniotic fluid-derived stem cells (AFSCs) and on the osteogenic differentiation ability of AFSCs was investigated using light-emitting diodes (LEDs) at 0-2 mW/cm(2) in various wavelengths: [blue (470 nm), green (525 nm), yellow (600 nm), and red (630 nm)]. Pluripotent gene expression in AFSCs was up-regulated by visible light irradiation from a LED for more than 6 h. Green light irradiation of AFSCs up-regulated the expression of pluripotent genes more significantly than irradiation with other light. The osteogenic differentiation of AFSCs was facilitated by green and blue light irradiation. Facilitated differentiation into osteogenic cells by visible light irradiation was not mediated by reactive oxygen species (ROS); alkaline phosphatase activity (a marker of early osteogenic differentiation) and gene expression of osteopontin (a marker of late osteogenic differentiation) did not change significantly between AFSCs in differentiation medium with or without a ROS scavenger (vitamin C). The mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway, as well as other unknown signaling pathways, may be responsible for the activation of signaling pathways that facilitate the differentiation of AFSCs into osteogenic cells on light irradiation.  相似文献   

13.
14.
Clear cell chondrosarcoma is a rare mesenchymal neoplasm of unclear differentiation. Besides having a chondrogenic nature, an osteogenic differentiation was also proposed. In this study, expression analysis of extracellular matrix genes, which are specific for different mesenchymal cell differentiation pathways, were used to get a better understanding of origin and differentiation pattern of the clear cell chondrosarcoma tumor cells. Our in situ analysis of two cases shows that (1) chondrocytic cell differentiation as marked by the expression of cartilage collagen type II and proteoglycans is a characteristic feature within the development of the neoplasm, (2) multifocal chondrocyte hypertrophy as shown by the expression of type X collagen does occur, and (3) no significant expression cf collagen type I, the main gene product of osteoblastic cells, is found by the neoplastic cells. Thus, our study indicates that clear cell chondrosarcoma shows a chondrogenic, but not osteogenic, differentiation and represents a true chondrosarcoma. The unusual scarcity of its extracellular and the multifocal expression of type X collagen marks clear cell chondrosarcoma as a chondrosarcoma tumor entity of a particular cell differentiation pattern. The expression of cartilage type collagens represents a distinct marker from bone metastases of clear cell neoplasms of other origins.  相似文献   

15.
16.
The interactions of osteoblasts with their surrounding extracellular matrix (ECM) are essential for skeletal development, homeostasis, and maintenance of the mature osteoblastic phenotype. Integrins are the principal transducers of ECM signals that regulate this process of osteoblast commitment and differentiation. Several studies indicate that the alpha(2)beta(1) integrin interaction with type I collagen is a crucial signal for the induction of osteoblastic differentiation and matrix mineralization. Integrin alpha(2)beta(1) recognizes the Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) motif in residues 502-507 of the alpha(1)[I] chain of type I collagen. This study demonstrates that an alpha(2)beta(1) integrin-specific GFOGER peptide triggers the activation of focal adhesion kinase and alkaline phosphatase in MC3T3-E1 murine immature osteoblast-like cells, two events that have been implicated in the osteoblastic differentiation pathway. These GFOGER-peptide surfaces also support the expression of multiple osteoblast-specific genes, including osteocalcin and bone sialoprotein, and induce matrix mineralization in a manner similar to type I collagen. This triple-helical peptide represents a promising surface modification strategy for the design of collagen-mimetic bioadhesive surfaces that support osteoblastic differentiation.  相似文献   

17.
18.
The use of stem cells combined with gene therapy could be an important way to facilitate bone regeneration. In this study, the aim was to investigate the potential of growth and differentiation factor-5 (GDF5) to genetically manipulate human mesenchymal stem cells (hMSCs) for bone regeneration. Recombinant adenovirus Ad-GDF5 and Ad-GFP were constructed and identified, and the titer of both were determined. Third-passage hMSCs were infected with adenovirus, and the expression of GDF5 was confirmed by detection of GFP-positive cells, GDF5 mRNA levels, Western blotting, and enzyme-linked immunosorbent assay (ELISA). hMSCs at passage 3 were divided into four groups: (1) an experimental group infected with Ad-GDF5, (2) a positive control group cultured with osteogenic differentiation medium, (3) a control group infected with Ad-GFP cultured with standard medium, and (4) a blank control group cultured with standard medium. Evaluation of cell morphology and proliferation, analysis of the expression of genes related to osteogenic differentiation, von Kossa staining, and immunofluorescent staining of collagen I were used to investigate the osteogenesis of cells among the groups. After culturing the cells for 2 days under each corresponding condition, the cells were detached and subcutaneously injected into the backs of nude mice to evaluate bone formation. Samples were collected for histological staining, protein Western blotting, and micro-computer tomography. When infected with Ad-GDF5, hMSCs could overexpress GDF5 for a prolonged period in vitro and reach a concentration of 160 ng/ml. Cells infected with Ad-GDF5 or cultured in osteogenic medium displayed osteogenic differentiation based on their histological and cellular properties and on their gene and protein expression patterns. Furthermore, Ad-GDF5 showed a better ability to upregulate the expression of collagen I, alkaline phosphatase, and osteocalcin mRNA than the osteogenic medium. Furthermore, Ad-GDF5 expression was associated with enhanced bone formation in vivo. Our findings suggest that hMSCs infected with Ad-GDF5 can differentiate in an osteogenic direction and may be a promising cell source for bone regeneration.  相似文献   

19.
In the field of bone tissue engineering, there is a need for materials that mimic the native bone extracellular matrix (ECM). This need is met through the creation of biphasic composites intended to mimic both the organic and inorganic facets of the native bone ECM. However, few studies have created composites with organic ECM analogous components capable of directing cellular behaviors and many are not fabricated in the nanoscale. Furthermore, few attempts have been made at investigating how variations of organic and inorganic components affect the osteogenic differentiation of human mesenchymal stem cells (hMSCs). To address these issues, biphasic nanomatrix composites consisting of hydroxyapatite nanoparticles (HANPs) embedded within peptide amphiphile (PA) nanofibers tailored with the RGDS cellular adhesion motif (PA-RGDS) were created at various HANP to PA-RGDS ratios. Fabrication of these biphasic nanomatrix composites was confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The long-term cellularity and osteogenic differentiation of hMSCs in response to the different compositional ratios were then assessed by quantifying the timed expression of genes indicative of osteogenic differentiation, alkaline phosphatase activity, and DNA content over time. Decreased cellularity and the expression of genes over time correlated with increasing compositional ratios between HANP and PA-RGDS. The highest HANP to PA-RGDS ratio (66% HANP) exhibited the greatest improvement to the osteogenic differentiation of hMSCs. Overall, these results demonstrate that the compositional ratio of biphasic nanomatrix composites plays an important role in influencing the osteogenic differentiation of hMSCs. Based on the observations presented within this study, these biphasic nanomatrix composites show promise for future usage in bone tissue engineering applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号