首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is evidence that BDNF influences the birth of granule cells in the dentate gyrus, which is one of the few areas of the brain that demonstrates neurogenesis throughout life. However, studies to date have not examined this issue directly. To do so, we compared the effects of BDNF, phosphate-buffered saline (PBS), or bovine serum albumin (BSA) on neurogenesis after infusion into the hippocampus of the normal adult rat, using osmotic pumps that were implanted unilaterally in the dorsal hilus. BDNF, PBS, and BSA were infused for 2 weeks. The mitotic marker bromodeoxyuridine (BrdU) was administered twice daily during the 2-week infusion period. At least 1 month after infusion ended, brains were processed immunocytochemically using antibodies to BrdU, a neuronal nuclear protein (NeuN), or calbindin D28K (CaBP), which labels mature granule cells. Stereology was used to quantify BrdU-labeled cells in the dorsal hippocampus that were double-labeled with NeuN or CaBP. There was a statistically significant increase in BrdU(+)/NeuN(+) double-labeled cells in the granule cell layer after BDNF infusion relative to controls. The values for BrdU(+)/NeuN(+) cells were similar to BrdU(+)/CaBP(+) cells, indicating that most new neurons were likely to be granule cells. In addition, BrdU(+)/NeuN(+)-labeled cells developed in the hilar region after BDNF infusion, which have previously only been identified after severe continuous seizures (status epilepticus) and associated pathological changes. Remarkably, neurogenesis was also increased contralaterally, but BDNF did not appear to spread to the opposite hemisphere. Thus, infusion of BDNF to a local area can have widespread effects on hippocampal neurogenesis. The results demonstrate that BDNF administration to the dentate gyrus leads to increased neurogenesis of granule cells. They also show that ectopic granule cells develop after BDNF infusion, which suggests that ectopic migration is not necessarily confined to pathological conditions. These results are discussed in light of the evidence that BDNF increases neuronal activity in hippocampus. Thus, the mechanisms underlying neurogenesis following BDNF infusion could be due to altered activity as well as direct effects of BDNF itself, and this is relevant to studies of other growth factors because many of them have effects on neuronal excitability that are often not considered.  相似文献   

2.
We reported previously that 96 h of sleep deprivation (SD) reduced cell proliferation in the dentate gyrus (DG) of the hippocampus in adult rats. We now report that SD reduces the number of new cells expressing a mature neuronal marker, neuronal nuclear antigen (NeuN). Rats were sleep-deprived for 96 h, using an intermittent treadmill system. Total sleep time was reduced to 6.9% by this method in SD animals, but total treadmill movement was equated in SD and treadmill control (CT) groups. Rats were allowed to survive for 3 weeks after 5-bromo-2-deoxyuridine (BrdU) injection. The phenotype of BrdU-positive cells in the DG was assessed by immunofluorescence and confocal microscopy. After 3 weeks the number of BrdU-positive cells was reduced by 39.6% in the SD group compared with the CT. The percentage of cells that co-localized BrdU and NeuN was also lower in the SD group (SD: 46.6 +/- 1.8% vs. CT: 71.9 +/- 2.1, P < 0.001). The percentages of BrdU-labeled cells co-expressing markers of immature neuronal (DCX) or glial (S100-beta) cells were not different in SD and CT groups. Thus, SD reduces neurogenesis in the DG by affecting both total proliferation and the percentage of cells expressing a mature neuronal phenotype. We hypothesize that sleep provides anabolic or signaling support for proliferation and cell fate determination.  相似文献   

3.
Neurogenesis continues throughout life in the hippocampus. To study postnatal neurogenesis in vitro, hippocampal slices from rats on postnatal day 5 (P5) were cultured on a porous membrane for 14 or 21 days. In the initial experiments, precursor cells were labeled with bromodeoxyuridine (BrdU) after 7 days in culture because hippocampal slices are generally used in experiments after 1-2 weeks in culture. Fourteen days after labeling, however, only about 10% of BrdU-labeled cells expressed neuronal markers, although in living rats, about 80% of cells labeled with BrdU on P5 had become neurons by P19. Next, rats were injected with BrdU 30 min before culture, after which hippocampal slices were cultured for 14 days to examine the capacity of in vivo-labeled neural precursors to differentiate into neurons in vitro. In this case, more than two-thirds of BrdU-labeled cells expressed neuronal markers, such as Hu, NeuN, and PSA-NCAM. Furthermore, precursor cells underwent early in vitro labeling by incubation with BrdU or a modified retrovirus vector carrying EGFP for 30 min from the beginning of the culture. This procedure resulted in a similar high rate of neuronal differentiation and normal development into granule cells. In addition, time-lapse imaging with retrovirus-EGFP revealed migration of neural precursors from the hilus to the granule cell layer. These results indicate that in vivo- and early in vitro-labeled cultures are readily available ex vivo models for studying postnatal neurogenesis and suggest that the capacity of neural precursors to differentiate into neurons is reduced during the culture period.  相似文献   

4.
Neurogenesis has been demonstrated in the adult mammalian hippocampus by the immunohistochemical identification of cells co-labeled with the neuronal marker NeuN and bromodeoxyuridine (BrdU), a marker for DNA synthesis. Whether these newly born neurons exhibit a genetic signature similar to that of existing hippocampal cells remains unknown. Recent advances in single cell RNA amplification techniques provide a unique method for profiling the mRNA complement of cells developed during adult neurogenesis. Standard protocols for identifying BrdU-positive cells requires an acid denaturation step that may preclude the amplification of cellular RNA for expression analysis. We first tested whether the BrdU reaction product was visible in monkey hippocampal tissue following treatment with dilutions of HCl (2-0.2 M) or citric acid (1.0-0.1 M). BrdU-labeled cells were visible only in tissue sections treated with 2 M HCl. RNA amplification was not compromised in cells dual-labeled for BrdU and NeuN using the 2 M HCl acid denaturation step. These cells express mRNAs encoding a wide variety of functional protein subclasses including glutamate receptors. The present study demonstrates for the first time that BrdU immunohistochemisty is compatable with gene array technology in the primate hippocampus to evaluate subclasses of genes in newborn neurons.  相似文献   

5.
Recent studies indicate the existence of progenitor cells and their potential for neurogenesis in the subventricular zone (SVZ) and the hippocampus dentate gyrus (DG) of normal adult mammalian brain. Increased neurogenesis has been shown following cerebral ischemia and traumatic brain injury; however, the involvement of neurogenesis in subarachnoid hemorrhage (SAH) has not been examined. Adult male CD-1 mice were subjected to SAH by endovascular perforation of the left anterior cerebral artery. Mice received intraperitoneal injections of the cell proliferation-specific marker 5'-bromodeoxyuridine (BrdU) after SAH induction. BrdU incorporation was examined from 1 to 30 days after SAH by immunohistochemistry. The BrdU-positive cells were detected in SVZ and DG of normal control brain, and were significantly decreased in both areas three days after SAH. The number of these cells had recovered to its control level seven days after SAH. Double staining with BrdU and NeuN indicated that the majority of the BrdU-positive cells migrating into the granular cell layer of the DG became NeuN-positive 30 days after SAH. In conclusion, temporal changes of the neurogenesis as shown in the present study suggest that neurogenesis in the hippocampus may affect functional outcome after SAH. The induction of the neurogenesis can provide therapeutic value against SAH.  相似文献   

6.
The hippocampal dentate gyrus in adult animals is known to contain neural progenitors that proliferate and differentiate into neurons in response to brain injury. Little has been observed, however, on regeneration of the granule cell layer of the dentate gyrus that has been directly injured. Using trimethyltin (TMT)-treated mice as an in vivo model, we evaluated the ability of this layer to regenerate after injury. The administration of TMT induced neuronal death in the dentate gyrus selectively 2 days later, with recovery of granule neurons on day 14 and thereafter. At an early stage (days 2-5) after the damage by TMT treatment, 5-bromo-2'-deoxyuridine (BrdU) incorporation into at least two different types of cells was facilitated in the dentate gyrus: BrdU-positive/neuronal nuclear antigen (NeuN)-negative cells were found predominantly in the subgranular zone and granule cell layer, whereas BrdU-positive/NeuN-positive cells were numerous in the dentate molecular layer and hilus. In addition, expression of proliferating cell nuclear antigen, nestin, NeuroD3, and doublecortin, which are markers for proliferating cells and neural progenitors/neuronal precursors, was extremely enhanced in the dentate gyrus at the early stage after treatment. Double staining revealed that BrdU was colocalized with nestin and doublecortin in the subgranular zone. Behavioral analysis revealed that TMT-induced cognition impairment was ameliorated by day 14 after the treatment. Taken together, our data indicate that the hippocampal dentate gyrus itself is capable of regenerating the neuronal cell layer through rapid enhancement of neurogenesis after injury.  相似文献   

7.
《Neurological research》2013,35(8):839-845
Abstract

Recent studies indicate the existence of progenitor cells and their potential for neurogenesis in the subventricular zone (SVZ) and the hippocampus dentate gyrus (DG) of normal adult mammalian brain. Increased neurogenesis has been shown following cerebral ischemia and traumatic brain injury; however, the involvement of neurogenesis in subarachnoid hemorrhage (SAH) has not been examined. Adult male CD-1 mice were subjected to SAH by endovascular perforation of the left anterior cerebral artery. Mice received intraperitoneal injections of the cell proliferation-specific marker 5 ′ -bromodeoxyuridine (BrdU) after SAH induction. BrdU incorporation was examined from 1 to 30 days after SAH by immunohistochemistry. The BrdU-positive cells were detected in SVZ and DG of normal control brain, and were significantly decreased in both areas three days after SAH. The number of these cells had recovered to its control level seven days after SAH. Double staining with BrdU and NeuN indicated that the majority of the BrdU-positive cells migrating into the granular cell layer of the DG became NeuN-positive 30 days after SAH. In conclusion, temporal changes of the neurogenesis as shown in the present study suggest that neurogenesis in the hippocampus may affect functional outcome after SAH. The induction of the neurogenesis can provide therapeutic value against SAH.  相似文献   

8.
Previous studies have shown changes in the cyclic AMP response element-binding protein (CREB) signaling pathway in CA1 and CA3 regions of the rostral hippocampus with 10 μg estrogen treatment for 14 days. It appears that estrogen's action on CREB phosphorylation in brain structures depends on other estrogen doses and lengths of treatment. We therefore examined the effects of moderate regimens [2.5 μg estradiol benzoate (EB) for 4 or 14 days] on mean numbers of neuron-specific neuronal protein (NeuN)-positive cells and phosphorylated CREB (pCREB)-positive cells and subregion volume defined by NeuN and pCREB immunolabeling and compared those results with results from the high regimen (10 μg EB for 14 days) in CA1, CA2, and CA3 regions and dorsal (DDG) and ventral (VDG) dentate gyrus and hilus of the hippocampus of ovariectomized rats by stereology. For whole hippocampus, all regimens increased mean neuronal (NeuN) numbers and pCREB-positive cell and volume compared with sesame oil (SO) in CA1, CA2, and CA3 regions, DDG and VDG, and hilus. In rostral hippocampus, however, some hippocampal subregions were not responsive to the high regimen, and the moderate regimens appear to be more effective for increasing mean number of NeuN-positive neurons and pCREB-positive cells and subregion volume. Heterogeneity in responsiveness to estrogen was mainly seen within rostral, but not whole, hippocampal subregions. Our results indicate that responsiveness of cells expressing NeuN and pCREB to different EB regimens may vary depending on the specific region of the hippocampus.  相似文献   

9.
In the adult hippocampus, neurogenesis proceeds in the subgranular zone (SGZ) of the dentate gyrus (DG), but not in the cornu Ammonis (CA). Recently, we demonstrated in monkeys that transient brain ischemia induces an increase of the neuronal progenitor cells in the SGZ, but not in CA1, in the second week after the insult. To identify the origin of primary neuronal progenitors in vivo, we compared the postischemic monkey DG and CA1, using light and electron microscopy, focusing on specific phenotype markers, as well as the expression of neurotrophic factors. Laser confocal microscopy showed that 1-3% of 5-bromo-2'-deoxyuridine (BrdU)-positive cells in the SGZ after 2-96 h labeling were also positive for neuronal markers such as TUC4, betaIII tubulin, and NeuN on days 9 and 15. In contrast, despite the presence of numerous BrdU-positive cells, CA1 showed no neurogenesis at any time points, and all the progenitors were positive for glial markers: Iba1 or S-100beta on days 4, 9, and 15. Highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive cells were abundant in the SGZ, but were absent in CA1. On day 9, most of the immature neurons positive for betaIII-tubulin in SGZ showed an increase in PSA-NCAM immunoreactivity. The immunoreactivity of brain-derived neurotrophic factor (BDNF) was abundant at the vascular adventitia of the SGZ, but was absent at the adventitia of CA1. BrdU-positive progenitor cells were frequently seen in the vicinity of proliferating blood vessels. Ultrastructural analysis indicated that most of the neuronal progenitor cells and microglia originated from the pericytes of capillaries and/or adventitial cells of arterioles (called vascular adventitia). The detaching adventitial cells showed mitotic figures in the perivascular space, and the resultant neuronal progenitor cells made contact with dendritic spines associated with synaptic vesicles or boutons. These data implicate the vascular adventitia as a novel potential source of neuronal progenitor cells in the postischemic primate SGZ.  相似文献   

10.
Endothelial monocyte-activating polypeptide-II (EMAP-II), a novel cytokine with proinflammatory and antiangiogenic properties, has previously been shown to be expressed by activated monocytes/microglial cells in the rat brain and was therefore considered a useful marker to stage microglial activation in inflammatory lesions. The aim of the present immunohistochemical study was to investigate expression of EMAP-II in the rat hippocampus after intoxication with the organotin compound trimethyltin (TMT). Administration of this neurotoxicant is known to produce brain damage mainly affecting the hippocampal formation, with severe neuronal cell loss being observed predominantly in regions CA-1 and CA-3. The maximum severity of TMT-induced brain damage is observed 21 days after a single ip administration. In this well-characterized model of neurodegeneration, activated microglial cells have been described to occur mainly in the early stages of TMT-induced neurotoxicity. Following TMT intoxication, we observed a significant increase in EMAP-II(+) monocytes/microglial cells in the CA-1 and the CA-3 regions. The CA-2 region, however, was largely spared. While appearance of single EMAP-II(+) microglial cells was observed already after 5 days, EMAP-II immunoreactivity reached its maximum after 21 days and persisted in some of the rats up to 35 days. These findings show a close correlation to the temporal and spatial pattern of neuronal damage described in the rat hippocampus after TMT administration previously. Thus, upregulation of EMAP-II by activated monocytes/microglial cells may serve as a sensitive marker of neurotoxic lesions in the rat brain.  相似文献   

11.
We investigated the effect of trimethyltin (TMT), a well-known neurotoxicant, on murine hippocampal neurons and glial cells. Three days following intraperitoneal (i.p.) injection of TMT into 1-month-old Balb/c mice at a dose of 2.5 mg/kg body weight we detected damage of the dentate gyrus granular neurons. The dying cells displayed chromatin condensation and internucleosomal DNA fragmentation, which are the most characteristic features of apoptosis. To study, if prolyl oligopeptidase is engaged in neuronal apoptosis following TMT administration, we pretreated mice with the specific inhibitor--Fmoc-Pro-ProCN in doses of 5 and 10 mg/kg body weight (i.p. injection). Three days following injection we did not observe any attenuation of neurotoxic damage, regardless of inhibitor dose, indicating the lack of prolyl oligopeptidase contribution to neuronal injury caused by TMT. The neurodegeneration was associated with reactive astrogliosis in whole hippocampus, but particularly in injured dentate gyrus. The reactive astrocytes showed an increased nerve growth factor (NGF) expression in ventral as well as dorsal hippocampal parts. NGF immunoreactivity was also augmented in neurons of CA3/CA4 areas, which were almost totally spared after TMT intoxication. It suggested a role for this neurotrophin in protection of pyramidal cells from loss of connection between CA3/CA4 and dentate gyrus fields. The granule neurons' death was accompanied by increased histochemical staining with isolectin B4, a marker of microglia, in the region of neurodegeneration. The microglial cells displayed ramified and ameboid morphology, characteristic of their reactive forms. Activated microglia were the main source of interleukin 1beta (IL-1beta). It is possible that this cytokine may participate in neurodegeneration of granule cells. Alternatively, IL-1beta elaborated by microglia could play a role in increasing NGF expression, both in astroglia and in CA3/CA4 neurons.  相似文献   

12.
Trimethyltin (TMT) chloride induces limbic system neurodegeneration, resulting in behavioral alterations including cognitive deficits. Different factors related to Alzheimer's disease (AD) were studied after TMT lesion in Sprague-Dawley rats. The expression of amyloid precursor protein (APP) containing 695 amino acids (APP695), APP containing the Kuniz protease inhibitor domain (APP- KPI), presenilin 1 (PS1), c- fos and IL- 1Beta was investigated at different timepoints after a single TMT injection (7 mg/kg i.p.) using in situ hybridization and immunohistochemistry. After the TMT treatment, extensive degeneration of pyramidal neurons was observed in the CA3 region of the hippocampus, concomitant with neurodegeneration in the outer layer of the CA1 region and layer II of entorhinal and piriform cortex. The affected regions showed abundant condensed eosinophilic and TUNEL-positive neuronal cells, that were apparent at day 4 after TMT, increasing to day 7 and subsequently disappearing. In the affected regions the levels of APP695 mRNA gradually declined with time after the TMT injection. While there was no apparent alteration in the overall expression of APP- KPI or PS1 mRNA, detailed analysis of the CA3c region showed that the mRNA expression shifted from neurons to glial cells. Three days after TMT, neurons in the piriform cortex, the CA3 region and DG expressed high levels of c-fos mRNA that slowly declined to become normalized when analyzed at day 28. At day 7 after TMT a few distinct IL- 1Beta mRNA expressing glial cells were observed in the CA3c region. Thus, TMT exposure leads to alterations in the expresson of APP, APP- KPI, PS1, c-fos and IL- 1Beta in the limbic system. These findings suggest that TMT lesions, not only share certain key features of AD symptomatology and regional neurodegeneration, but also induce effects on important factors related to the pathophysiology of AD.  相似文献   

13.
Major depression is often associated with elevated glucocorticoid levels. High levels of glucocorticoids reduce neurogenesis in the adult rat hippocampus. Electroconvulsive seizures (ECS) can enhance neurogenesis, and we investigated the effects of ECS in rats where glucocorticoid levels were elevated in order to mimic conditions seen in depression. Rats given injections of corticosterone or vehicle for 21 days were at the end of this period treated with either a single or five daily ECSs. Proliferating cells were labelled with bromodeoxyuridine (BrdU). After 3 weeks, BrdU-positive cells in the dentate gyrus were quantified and analyzed for co-labelling with the neuronal marker neuron-specific nuclear protein (NeuN). In corticosterone-treated rats, neurogenesis was decreased by 75%. This was counteracted by a single ECS. Multiple ECS further increased neurogenesis and no significant differences in BrdU/NeuN positive cells were detected between corticosterone- and vehicle-treated rats given five ECS. Approximately 80% of the cells within the granule cell layer and 10% of the hilar cells were double-labelled with BrdU and NeuN. We therefore conclude that electroconvulsive seizures can increase hippocampal neurogenesis even in the presence of elevated levels of glucocorticoids. This further supports the hypothesis that induction of neurogenesis is an important event in the action of antidepressant treatment.  相似文献   

14.
Delayed hypothermia salvages CA1 neurons from global ischemic injury. However, the effects of this potent neuroprotectant on endogenous repair mechanisms, such as neurogenesis, have not been clearly examined. In this study, we quantified and phenotyped newly generated cells within the hippocampus following untreated and hypothermia-treated ischemia. We first show that CA1 pyramidal neurons did not spontaneously regenerate after ischemia. We then compared the level of neuroprotection when hypothermia was initiated either during or after ischemia. Treatment efficacy decreased with longer delays, but hypothermia delayed for up to 12 hours was neuroprotective. Although bromodeoxyuridine (BrdU) incorporation was elevated in ischemic groups, CA1 neurogenesis did not occur as the BrdU label did not colocalize with neuronal nuclei (NeuN) in any of the groups. Instead, the majority of BrdU-labeled cells were Iba-positive microglia, and neuroprotective hypothermia decreased the delayed generation of microglia during the third postischemic week. Conversely, hypothermia delayed for 12 hours significantly increased the survival of newly generated dentate granule cells at 4 weeks after ischemia. Thus, our findings show that CA1 neurogenesis does not contribute to hypothermic neuroprotection. Importantly, we also show that prolonged hypothermia positively interacts with postischemic repair processes, such as neurogenesis, resulting in improved functional outcome.  相似文献   

15.
The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate detailed relations between these three steps after ischemia, the authors evaluated the three steps in the adult gerbil dentate gyrus (DG) after 5 minutes of transient global ischemia using bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), and neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) as markers for proliferation, migration, and differentiation, respectively. Bromodeoxyuridine-labeled cells increased approximately sevenfold, and PSA-NCAM-positive cells increased approximately threefold in the subgranular zone (SGZ) with a peak 10 days after ischemia. Bromodeoxyuridine-labeled cells with PSA-NCAM expression were first detected both in the SGZ and the granule cell layer (GCL) 20 days after ischemia and gradually decreased after that, whereas BrdU-labeled cells with NeuN gradually increased in the GCL until 60 days after ischemia. A few BrdU-labeled cells with GFAP expression were detected in DG after ischemia; no PSA-NCAM-positive cells with GFAP expression were detected, but the radial processes of glial cells were partly in contact with PSA-NCAM-positive cell bodies and dendrites. These results suggest that neural stem cell proliferation begins at the SGZ, and that the cells then migrate into the GCL and differentiate mainly into neuronal cells. The majority of these three steps finished in 2 months after transient global ischemia.  相似文献   

16.
Adult female prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) voles were compared to examine neural cell proliferation and the effects of estrogen manipulation on cell proliferation in the amygdala, ventromedial hypothalamus (VMH), and dentate gyrus of the hippocampus (DG). Unlike prior studies, our study focused on the amygdala and VMH, because they are involved in social behaviors and may underlie behavioral differences between the species. Meadow voles had a higher density of cells labeled with the cell proliferation marker 5-bromo-2'-deoxyuridine (BrdU) in the amygdala and DG than did prairie voles. Treatment with estradiol benzoate (EB) for 3 days increased the density of BrdU-labeled cells in the amygdala, particularly in the posterior cortical (pCorA) and medial (pMeA) nuclei, in meadow, but not prairie, voles. Furthermore, the majority of the BrdU-labeled cells in the pCorA and pMeA displayed either a neuronal or a glial progenitor phenotype, but no species or treatment differences were found in the percentage of neuronal or glial progenitor cells. To understand better estrogen's effects on adult neurogenesis, we also examined estrogen receptor-alpha (ERalpha) distribution. Meadow voles had more ERalpha-labeled cells in the pCorA and VMH, but not in the pMeA or DG, than did prairie voles. In addition, more than one-half of the BrdU-labeled cells in the amygdala of both species coexpressed ERalpha labeling. Together, these data indicate that estrogen alters cell proliferation in a species- and region-specific manner, and some of these effects may lie in the specific localization of estrogen receptors in the adult vole brain.  相似文献   

17.
D-galactose injured neurogenesis in the hippocampus of adult mice   总被引:6,自引:0,他引:6  
Zhang Q  Li X  Cui X  Zuo P 《Neurological research》2005,27(5):552-556
OBJECTIVES: We studied the effects of the reactive oxygen species (ROS) on neural progenitor cell proliferation and survival in the dentate gyrus (DG). METHODS: The adult mice were treated with D-galactose for 7 weeks to mimic natural aging in mice. The level of malondialdehyde (MDA) and the activities of antioxidant enzymes in the serum were detected. Neurodegeneration and neurogenesis in the hippocampus were explored using terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling (TUNEL) to detect the dying cells and bromodeoxyuridine (BrdU) was used to label the newly born cells. RESULTS: After the treatment of D-galactose, the level of MDA increased and the activities of the antioxidant enzyme decreased in the serum. TUNEL-positive cells significantly increased in the DG, CA1 and CA3 subfields. The BrdU-labeled proliferating cells and surviving cells in the DG decreased significantly in number after D-galactose treatment. DISCUSSION: D-Galactose induced the impairment of neurogenesis in the DG, which is similar to natural aging in mice. ROS accumulation as a result of D-galactose may be related to the decrease of neurogenesis in the DG.  相似文献   

18.
PURPOSE: Febrile seizures (FS) are early-life seizures thought to play a role in epileptogenesis. By labeling cells that were dividing immediately following experimental FS, we previously demonstrated that significantly more of these newborn cells in the dentate gyrus (DG) survived 8 weeks later, relative to animals that did not experience FS. The purpose of the present study was to determine the long-term fate of these newborn cells. METHODS: On postnatal day (PN) 10, hyperthermia-induced seizures (HT, +/-42 degrees C core temperature) were evoked in Sprague-Dawley rats and littermates were used as normothermia controls (NT, +/-35 degrees C core temperature). From PN11 to PN16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. At PN66, we evaluated the number of BrdU-labeled cells in the DG that colocalized with the neuronal marker NeuN, glial marker glial fibrillary acidic protein (GFAP), neuronal excitatory amino acid transporter 3 (EAAT3), GABAergic neuronal marker glutamic acid decarboxylase 67 (GAD67) or microglia marker tomato lectin (TL). RESULTS: In all rats, almost all BrdU-labeled cells in the DG, that showed double-labeling, colocalized with NeuN, and rarely with GFAP, GAD67, or TL. In NT controls and HT rats that did not experience seizures ("HT-no seizures"), approximately 23% of BrdU-labeled cells colocalized with EAAT3, which was significantly different from 14% in HT rats that did experience seizures (HT + FS). DISCUSSION: Early-life seizures decrease the population of newborn cells that survive and mature into EAAT3-positive neurons and do not affect the GABAergic cell population. This may affect hippocampal physiology in young adulthood.  相似文献   

19.
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle‐aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle‐aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1‐CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4–15 using 5′‐bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (~three fold increase) in the deafferented young and middle‐aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU‐DCX dual immunofluorescence demonstrated no changes in neuronal fate‐choice decision of newly born cells after deafferentation, in comparison to the age‐matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
During aging the hippocampus experiences structural, molecular, and functional alterations. Protection from age-related disorders is provided by several factors, including estrogens. Since aging defects start at middle age, we studied if 17 beta-estradiol (E(2)) protected the hippocampus at this age period. Middle age (10-12 month old) male C57Bl/6 mice were implanted sc with E(2) (15 microg) or cholesterol pellets. Ten days afterwards they received bromodeoxyuridine (BrdU) 4 and 2h before killing to study cell proliferation in the dentate gyrus (DG). A pronounced depletion of BrdU+cells in the DG was found in cholesterol-treated middle age mice, accompanied by astrocytosis, and by neuronal loss in the hilus. Middle age mice receiving E(2) showed increased number of BrdU+cells while the other parameters were remarkably attenuated. When steroid treatment was prolonged for 2 months to study migration of cells in the granular layer of the DG, cell migration was unaffected by E(2). However, E(2)-treated middle age mice presented higher cell density and increased staining for doublecortin, a marker for differentiating neurons. Thus, from the three basic steps of adult neurogenesis (proliferation, migration, and differentiation), E(2) stimulated progenitor proliferation - even after long exposure to E(2) studied by Ki67 immunocytochemistry - and differentiation towards a neuronal lineage. This result, in conjunction with recovery from other aging indicators as increased deposits of the aging pigment lipofuscin in DG cells, loss of hilar neurons and astrocytosis supports a wide range protection of hippocampal function of middle age mice by estrogenic hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号