首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short-term synaptic depression and facilitation often are elicited by different temporal patterns of activity. Short-term plasticity may contribute, therefore, to temporal filtering by impeding synaptic transmission for some temporal patterns of activity and facilitating transmission for other patterns. We examined this hypothesis by investigating whether short-term plasticity contributes to the temporal filtering properties of midbrain electrosensory neurons. Postsynaptic potentials were recorded in response to sensory stimuli and to direct stimulation of afferents, in vivo. Stimulating afferents with pairs of pulses at a rate of 20 pairs/sec ["tetanus (20 Hz)"] induced PSP depression. This PSP depression was similar to that observed for electrosensory stimuli of the same temporal frequency. Analysis of PSPs elicited by a pair of pulses that preceded versus followed the tetanus revealed that PSP depression was caused by synaptic depression, not by a loss of facilitation. Behavioral studies indicate that fish can detect slow changes in signal amplitude (slow AM) in backgrounds of fast fluctuations. Correspondingly, midbrain neurons respond well to slow AM even in the presence of fast AM. In many neurons, facilitation enhanced responses to trains (8-10 pulses; 100 Hz) that represented activity patterns elicited by slow AM, despite induction of synaptic depression by a tetanus (20 Hz). The interplay between synaptic depression and facilitation, therefore, can act as a filter of temporal information. Some neurons that showed little facilitation nonetheless responded to low temporal-frequency information after induction of depression by fast information; this likely results from the convergence of inputs with different temporal filtering properties.  相似文献   

2.
The extrinsic innervation of the pancreas converges on a plexus of intrinsic pancreatic ganglia whose cholinergic neurons innervate acini, ducts, islets and blood vessels. Therefore, understanding ganglionic transmission is essential for understanding neural control of pancreatic secretion. Intracellular recordings of nicotinic fast excitatory postsynaptic potentials (fEPSPs) and action potentials (APs) were used to characterize and compare transmission in ganglia from the head/neck and body regions of the rabbit pancreas. Paired-pulse facilitation (PPF) or depression (PPD) of fEPSPs was observed in ganglia from both regions with PPF peaking and disappearing at shorter inter-stimulus intervals than PPD. PPF was most frequent in the head/neck (60%) and PPD (50%) in the body. Repetitive stimulation (10 Hz/5 s) evoked multiple forms of mid- and post-train plasticity. Facilitation during the first 1-2 s of train stimulation was reduced or reversed with continued stimulation due to development of synaptic depression and mid-train depression was of greater magnitude in the head/neck region. A brief (approximately 10 s) post-train augmentation was followed by a 1-2 min post-train depression that appeared to result from inhibition of ACh release. Regional differences in the frequency, magnitude, or duration of all forms of synaptic plasticity suggested regional differences in the extrinsic innervation patterns and possibly the function of pancreatic ganglia. In conclusion, rabbit pancreatic ganglia exhibit multiple forms of short-term synaptic plasticity that markedly alter the probability of postsynaptic firing, consistent with these ganglia being critical sites of synaptic integration and autonomic regulation of pancreatic secretion.  相似文献   

3.
Synaptic efficacy can increase (synaptic facilitation) or decrease (synaptic depression) markedly within milliseconds after the onset of specific temporal patterns of activity. Recent evidence suggests that short-term synaptic depression contributes to low-pass temporal filtering, and can account for a well-known paradox - many low-pass neurons respond vigorously to transients and the onsets of high temporal-frequency stimuli. The use of depression for low-pass filtering, however, is itself a paradox; depression induced by ongoing high-temporal frequency stimuli could preclude desired responses to low-temporal frequency information. This problem can be circumvented, however, by activation of short-term synaptic facilitation that maintains responses to low-temporal frequency information. Such short-term plasticity might also contribute to spatio-temporal processing.  相似文献   

4.
Several neurodegenerative disorders are associated with impaired cholesterol homeostasis in the nervous system where cholesterol is known to play a role in modulating synaptic activity and stabilizing membrane microdomains. In the present report, we investigated the effects of methyl-β-cyclodextrin-induced cholesterol depletion on synaptic transmission and on the expression of 1) paired-pulse facilitation (PPF); 2) paired-pulse inhibition (PPI) and 3) long-term potentiation (LTP) in the CA1 hippocampal region. Results demonstrated that cyclodextrin strongly reduced synaptic transmission and blocked the expression of LTP, but did not affect PPF and PPI. The role of glutamatergic and GABAergic receptors in these cholesterol depletion-mediated effects was evaluated pharmacologically. Data indicate that, in cholesterol depleted neurons, modulation of synaptic transmission and synaptic plasticity phenomena are sustained by AMPA-, kainate-and NMDA-receptors but not by GABA-receptors. The involvement of AMPA-and kainate-receptors was confirmed by fluorimetric analysis of intracellular calcium concentrations in hippocampal cell cultures. These data suggest that modulation of receptor activity by manipulation of membrane lipids is a possible therapeutic strategy in neurodegenerative disease.  相似文献   

5.
Neurotrophins and hippocampal synaptic transmission and plasticity.   总被引:17,自引:0,他引:17  
Neurotrophins are traditionally thought to be secretory proteins that regulate long-term survival and differentiation of neurons. Recent studies have revealed a previously unexpected role for neurotrophins in synaptic development and plasticity in diverse neuronal populations. In this review, we focus on the synaptic function of brain-derived neurotrophic factor (BDNF) in the hippocampus. Although a variety of in vitro experiments have shown the ability of BDNF to acutely modulate synaptic transmission, whether BDNF truly potentiates basal synaptic transmission in hippocampal neurons remains controversial. More consistent evidence has been obtained for the role of BDNF in long-term potentiation (LTP), a cellular model for learning and memory. BDNF also potentiates high frequency transmission by modulating the number of docked vesicles and the levels of the vesicle protein synaptobrevin and synaptophysin at the CA1 synapses. Both pre- and postsynaptic effects of BDNF have been demonstrated. Recent studies have begun to address the role of BDNF in late-phase LTP and in the development of hippocampal circuit. BDNF and other neurotrophins may represent a new class of neuromodulators that regulate neuronal connectivity and synaptic efficacy. J. Neurosci. Res. 58:76-87, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

6.
<正>Sleep is a widely expressed behavior across the animal kingdom. In addition to the numerous health benefits that are associated with sleep, it is believed that sleep plays a pivotal role in mental processes such as learning and memory. Indeed, it has been demonstrated that learning and memory benefit from sleep, whereas sleep loss causes cognitive impairment(Rasch and Born, 2013). Changing the strength of synapses,  相似文献   

7.
Antibodies against ganglionic acetylcholine receptors (AChR) are implicated as the cause of autoimmune autonomic ganglionopathy (AAG). To characterize ganglionic neurotransmission in an animal model of AAG, evoked and spontaneous excitatory post-synaptic potentials (EPSP) were recorded from neurons in isolated mouse superior cervical ganglia (SCG). In vitro exposure of ganglia to IgG from AAG patients progressively inhibited synaptic transmission. After passive transfer of antibody to mice, evoked EPSP amplitude decreased, and some neurons showed no synaptic responses. EPSP amplitude recovered by day 7 despite persistence of ganglionic AChR antibody in the mouse serum. There was a more persistent (at least 14-day) reduction in miniature EPSP amplitude consistent with antibody-mediated reduction in post-synaptic AChR. Although the quantal size was reduced, a progressive increase in the frequency of spontaneous synaptic events occurred, suggesting a compensatory increase in presynaptic efficacy. The quantal size returned to baseline by 21 days while the frequency remained increased for at least four weeks. Ganglionic AChR antibodies cause an impairment of autonomic ganglionic synaptic transmission. Homeostatic plasticity in autonomic neurotransmission could help explain the spontaneous clinical recovery seen in some AAG patients and may also play an important role in regulating normal autonomic reflexes.  相似文献   

8.
A central assumption in neurobiology holds that changes in the strength of individual synapses underlie changes in behavior. This concept is widely accepted in the case of learning and memory where LTP and LTD are the most compelling cellular models. It is therefore of great interest to understand, on a molecular level, how the brain regulates the strength of neuronal connections. We review a large body of evidence in support of the very straightforward regulation of synaptic strength by changing the number of postsynaptic receptors, and discuss the molecular machinery required for insertion and removal of AMPA receptors.  相似文献   

9.
Lesions of the fimbria-fornix (FF) tract cause profound impairments of cognitive ability in animals. Our previous study showed that spatial performance correlates with long-term potentiation (LTP) of the dentate gyrus (DG), but not of the CA1 region, in rats with bilateral FF lesions, suggesting that FF lesions selectively inhibited LTP in the DG. The cortical input to the DG is anatomically and physiologically divided into two types of afferents, i.e., the medial perforant path (MPP) and the lateral perforant path (LPP), which show distinct synaptic properties. To elucidate the difference in the FF modulation of these two inputs, field responses were recorded from MPP- or LPP-DG synapses in anesthetized rats. MPP-DG synapses of rats with FF lesions displayed neither LTP in response to theta-burst stimulation nor long-term depression (LTD) in response to low-frequency burst stimulation. In contrast to the MPP, LPP-DG synapses showed normal LTP in rats with FF lesions. The low-frequency burst stimulation could not induce LTD at LPP-DG synapses in either intact or FF-lesioned rats. These results suggest that the FF pathway selectively supports the mechanisms of bidirectional synaptic plasticity at MPP-DG synapses. This study provides new insights into external control of information processing in the hippocampus.  相似文献   

10.
Volado, the gene encoding the Drosophila alphaPS3-integrin, is required for normal short-term memory formation (Grotewiel et al., 1998), supporting a role for integrins in synaptic modulation mechanisms. We show that the Volado protein (VOL) is localized to central and peripheral larval Drosophila synapses. VOL is strongly concentrated in a subpopulation of synaptic boutons in the CNS neuropil and to a variable subset of synaptic boutons at neuromuscular junctions (NMJs). Mutant morphological and functional synaptic phenotypes were analyzed at the NMJ. Volado mutant synaptic arbors are structurally enlarged, suggesting VOL negatively regulates developmental synaptic sprouting and growth. Mutant NMJs exhibit abnormally large evoked synaptic currents and reduced Ca(2+) dependence of transmission. Strikingly, multiple forms of Ca(2+)- and activity-dependent synaptic plasticity are reduced or absent. Conditional Volado expression in mutant larvae largely rescues normal transmission and plasticity. Pharmacologicially disrupting integrin function at normal NMJs phenocopies features of mutant transmission and plasticity within 30-60 min, demonstrating that integrins acutely regulate functional transmission. Our results provide direct evidence that Volado regulates functional synaptic plasticity processes and support recent findings implicating integrins in rapid changes in synaptic efficacy and in memory formation.  相似文献   

11.
Dynamic regulation of synaptic efficacy is thought to play a crucial role in formation of neuronal connections and in experience-dependent modification of neural circuitry. The molecular and cellular mechanisms by which synaptic changes are triggered and expressed are the focus of intense interest. This articles reviews recent evidence that NMDA receptors undergo dynamically regulated targeting and trafficking, and that the physical transport of NMDA receptors in and out of the synaptic membrane contributes to several forms of long-lasting synaptic plasticity. The identification of targeting and internalization sequences in NMDA-receptor subunits has begun the unraveling of some mechanisms that underlie activity-dependent redistribution of NMDA receptors. Given that NMDA receptors are widely expressed throughout the CNS, regulation of NMDA-receptor trafficking provides a potentially important way to modulate efficacy of synaptic transmission.  相似文献   

12.
Changes occur during the postnatal development of the rat glutamatergic mossy fibre to granule cell synapse: to the morphology of synapses, glutamate transporter expression, AMPA receptor expression and the kinetics of AMPA receptor-mediated synaptic transmission. For example, both the rise and decay times of AMPA receptor-mediated excitatory postsynaptic currents significantly shorten. To further define the development of mossy fibre to granule cell synaptic transmission, the properties and mechanisms of short-term plasticity have been described. The characterization of short-term plasticity will aid our understanding of the mechanisms that define the parameters of synaptic transmission during development and furthermore short-term plasticity may play an important role in determining information transfer between mossy fibres and granule cells. In response to pairs of stimuli (2-100-ms interval), depression (second excitatory postsynaptic current amplitude smaller than the first) was observed at both mature (older than 40 postnatal days) and immature (between 8 and 12 postnatal days) synapses. The degree of depression was similar at both stages of development, although recovery from depression was slower at mature synapses (tau 22 vs 12.5 ms). Several experimental approaches (coefficient of variation, low-affinity antagonists and cyclothiazide) suggest that depression at immature synapses results from multiple mechanisms. At mature synapses, postsynaptic receptor desensitization appears to be the major cause of depression.  相似文献   

13.
In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9α10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier.  相似文献   

14.
Recent in vivo electrophysiological studies in our laboratory demonstrated medial thalamus (MT) induced short-term facilitation in the middle layers of the anterior cingulate cortex (ACC). The aim of the present study was to investigate different forms of short-term plasticity (STP) in layer II/III of the ACC in an in vitro slice preparation. Extracellular field potentials in layer II/III consisting of an early component (fAP) and a late component (fPSP) were activated by electrical stimulation of the deep layers. The fPSP and intracellularly recorded excitatory post-synaptic potential (EPSP) could be facilitated by paired-pulse stimulation at a low frequency (0.033Hz, pulse interval 20-400ms). An initial facilitation and subsequent depression were obtained when high frequency (12.5, 25 and 50Hz) tetanus stimulations were applied to the ACC slice. A post-tetanic augmentation 30s in duration was also observed. The effects of tetanic stimulation were altered in the presence of an increased or a decreased calcium concentration. Application of omega-conotoxin GVIA (CTX) in normal calcium concentration conditions decreased overall responses during tetanic stimulation similar to reducing calcium exposure. However CTX application did not increase paired-pulse facilitation (PPF) as is seen under low calcium conditions. These results indicate that calcium is involved in the formation of certain features of STP in layer II/III of the ACC and that N-type calcium channels contribute to some, but not all, components of these plastic changes. Two-site electrical stimulation testing showed that two separate presynaptic inputs can produce short-term facilitation. Our findings implicate a post-synaptic mechanism in STP in layer II/III of the ACC.  相似文献   

15.
At most synapses, information about the processes underlying transmitter release evoked by a presynaptic action potential has been gathered indirectly, based on characterization of the postsynaptic response. Traditionally, the two electrophysiological parameters used for this indirect investigation are the amplitude and latency of the response. The amplitude measures amount of transmitter released; the latency (synaptic delay) reflects the kinetics of a sequence of events that culminates in release. The latency distribution of quantal events, or the time course of composite evoked responses, can be used to infer the time course of the elevated release probability following a stimulus. Recent studies have demonstrated that synaptic delay is not invariant, but is modifiable during several forms of short-term synaptic plasticity. This suggests that the step of transmitter secretion can be modulated directly. Several models for short-term synaptic plasticity are evaluated in the context of the observed changes in synaptic delay.  相似文献   

16.
"Dale's Principle" states that each neuron releases one and only one synaptic transmitter. Mental disorders and behavioral drug effects are attributed to activation or blockade of one or more of these specific transmitters. A series of biochemical, electrophysiological, and behavioral studies suggests the alternative view that at each monoaminergic synapse the action of the transmitter is modulated by several metabolically related substances: amine analogs (2-phenylethylamine [PEA], p-tyramine, etc.), deaminated products (aldehydes, acids, and alcohols), and possibly also amino acid precursors. In support of this view, the authors present evidence for the presence, synthesis, metabolism, and biological activity (at the cellular level, using microelectrode techniques) of amino acid, amines, and deaminated compounds metabolically related to catecholamines and sorotonin. That neuroamino acids exert direct effects (not mediated via their amine metabolites) is illustrated by the rapid effects of microiontophoretic dopa upon cortical unit activity, and by the observation that neither the lethargic effect of 5-hydroxytryptophan (considered to support Jouvet's serotonergic theory of sleep) nor the behavioral stimulant effects of dopa (considered to support the catecholamine theory of affective behavior) are significantly prevented by L-aromatic amino acid decarboxylase inhibitors. The biological activity of the deaminated metabolites of catecholamines and serotonin is illustrated by the effects of their microiontophoretic administration upon cortical units. Further, probenecid (an inhibitor of acid transport across the blood-brain barrier) is shown to qualitatively alter the effects of intraventricularly administered PEA and of its metabolite phenylacetic acid upon visual evoked potentials. Rabbit brain is shown to synthesize a series of pharmacologically active noncatecholic phenylethylamines as by-products of catecholamine metabolism. Amine modulators such as PEA differ from typical transmitters by their ability to cross biological barriers; inhibition of decarboxylase in peripheral tissues only (using alpha-methyldopa hydrazine) markedly depletes brain PEA (but not catecholamines). Because of the homeostatic control of the rate of transmitter synthesis and disposition, physiological, pharmacological, and pathological changes may be expected to affect more the tissue levels of related modulators. This modulator theory of drug action is illustrated by the effect of several psychotropic drugs upon the brain levels of PEA and of norepinephrine. For instance, amphetamine initially decreases and then increases brain PEA levels, without altering brain norepinephrine levels. The authors propose an expanded "Dale's Principle": each neuron is specific in that it releases at all its endings the same pool of chemical messengers, composed of one transmitter and metabolically related modulators, the relative proportion of which is determined by the physiological state of the cell (biochemical plasticity)...  相似文献   

17.
Humans with an autosomal dominant missense mutation in fibroblast growth factor 14 (FGF14) have impaired cognitive abilities and slowly progressive spinocerebellar ataxia. To explore the mechanisms that may account for this phenotype, we show that synaptic transmission at hippocampal Schaffer collateral-CA1 synapses and short- and long-term potentiation are impaired in Fgf14-/- mice, indicating abnormalities in synaptic plasticity. Examination of CA1 synapses in Fgf14-/- mice show a significant reduction in the number of synaptic vesicles docked at presynaptic active zones and a significant synaptic fatigue/depression during high/low-frequency stimulation. In addition, mEPSC frequency, but not amplitude, is decreased in hippocampal neurons derived from Fgf14-/- mice. Furthermore, expression of selective synaptic proteins in Fgf14-/- mice was decreased. These findings suggest a novel role for FGF14 in regulating synaptic plasticity via presynaptic mechanisms by affecting the mobilization, trafficking, or docking of synaptic vesicles to presynaptic active zones.  相似文献   

18.
Estrogens influence morphology of the brain not only in structures linked to reproductive cycle and reproductive behavior but also structure engaged in memory and cognitive functions. Estrogens stimulate synaptogenesis in pyramidal neurons of CA1 field of hippocampus. Increase in the number of spines on apical dendrites in rats occurs in the prostures phase of the cycle as well as exogenous estradiol application in ovariectomized females. The new synapses are enriched in NMDA receptor and it was found that their generation involves activation of NMDA receptors, PKA and CREB. Estradiol-induced synaptogenesis is accompanied by facilitation of LTP induction. Estradiol affects pyramidal cells of CA1 probably by inhibiting GABA-ergic interneurons. It also modulates unspecific activatory systems, which contribute significantly to neuroplasticity.  相似文献   

19.
Lithium, a small cation, has been used in the treatment of bipolar disorders since its introduction in the 1950s by John Cade. Extensive research on the mechanism of action of lithium has revealed several possible targets. For some time, the most widely accepted action of lithium was its inhibitory effect on the synthesis of inositol, resulting in depletion of inositol with profound effects on neuronal signal transduction pathways. However, several studies show that some effects of lithium are not mediated through inositol depletion. Recent findings demonstrate that lithium directly inhibits, in a non-competitive fashion, the activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase highly expressed in the central nervous system. Interestingly, inhibition of GSK-3β has been shown to regulate neuronal plasticity by inducing axonal remodelling and increasing the levels of synaptic proteins. These findings raise the possibility for developing new therapeutic approaches for the treatment of bipolar disorders.  相似文献   

20.
In recent years, piperine has attracted much attention due to its various biological effects as a neuroprotective agent. Therefore, clarification of the possible side effects of piperine is important to identify its potential pharmacological action. Thus, the effects of piperine on the long-term plasticity of perforant pathway to dentate gyrus synapses were studied in hippocampus of an animal model of Alzheimer's disease (AD).Adult male rats were injected with intracerebroventricular (ICV) streptozotocin (STZ) bilaterally, on days 1 and 3 (3 mg/kg). The STZ-injected rats were treated with different doses of piperine for 4 weeks before being used in behavioral, electrophysiological and histopathological experiments. The passive-avoidance test was conducted on all animals in order to determine the cognitive performance. Rats were placed in a stereotaxic frame to implant a recording electrode in the hippocampal dentate gyrus and a stimulating electrode in the perforant path. Additionally, we assessed the density of survived neurons stained by cresyl violet.In this study, chronic administration of piperine low dose improved the ICV-STZ induced learning and long-term potentiation (LTP) impairments with no significant effect on baseline synaptic activity. In contrast, remarkable learning and long-term plasticity impairments were observed in rats treated by high dose of piperine in comparison to the other groups. Interestingly, this impaired hippocampal LTP was accompanied by an obvious alteration in baseline activity and significantly decreased neuronal numbers within the hippocampus. Therefore, our data provides a new understanding of the piperine supplementation effects on hippocampal electrophysiological profile although the consequences may be either beneficial or detrimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号