首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
OBJECTIVE: To assess the use of trans, trans-muconic acid as a biomarker of occupational exposure to benzene. METHODS: Trans, trans-muconic acid in urine samples of exposed (exposed group, n=36) and non-exposed (non-exposed group, n=116) workers to benzene. Urinary levels of trans, trans-muconic acid were quantified by high-performance liquid chromatography. The study sample consisted of subjects exposed to benzene in an oil refinery in Belo Horizonte, Brazil. Non-parametric statistical analysis was carried out using Kruskall-Wallis test, Mann-Whitney test and Spearman correlation at p<0.05. RESULTS: Workers were exposed on average to benzene levels of 0.15 +/- 0.05 mg/m3 (0.05 ppm) and they showed a urinary trans, trans-muconic acid mean value of 0.19 +/- 0.04 mg/g of creatinine. The reference value range of trans, trans-muconic acid in non-exposed subjects was 0.03 to 0.26 mg/g of creatinine (mean 0.10 +/- 0.08 mg/g of creatinine). There was seen a statistical difference between trans, trans-muconic acid levels in urine samples from exposed and non-exposed groups. There was no correlation between urinary trans, trans-muconic acid and air benzene levels. There was no correlation between urinary trans, trans-muconic acid levels in the exposed group and smoking. Alcohol consumption up to 48 hours before sampling procedure showed no effect on trans, trans-muconic acid levels in both exposed and non-exposed groups. There was however a correlation between age (range 18 to 25 years) and urinary metabolite levels in the latter group. CONCLUSIONS: The results show that it is important to evaluate the effect of age and smoking habits on urinary trans, trans-muconic acid levels.  相似文献   

2.
OBJECTIVES--Comparison of the suitability of two minor urinary metabolites of benzene, trans,trans-muconic acid (tt-MA) and S-phenylmercapturic acid (S-PMA), as biomarkers for low levels of benzene exposure. METHODS--The sensitivity of analytical methods of measuring tt-MA and S-PMA were improved and applied to 434 urine samples collected from 188 workers in 12 studies in different petrochemical industries and from 52 control workers with no occupational exposure to benzene. In nine studies airborne benzene concentrations were assessed by personal air monitoring. RESULTS--Strong correlations were found between tt-MA and S-PMA concentrations in samples from the end of the shift and between either of these variables and airborne benzene concentrations. It was calculated that exposure to 1 ppm (8 hour time weighted average (TWA)) benzene leads to an average concentration of 1.7 mg tt-MA and 47 micrograms S-PMA/g creatinine in samples from the end of the shift. It was estimated that, on average, 3.9% (range 1.9%-7.3%) of an inhaled dose of benzene was excreted as tt-MA with an apparent elimination half life of 5.0 (SD 2.3) hours and 0.11% (range 0.05%-0.26%) as S-PMA with a half life of 9.1 (SD 3.7) hours. The mean urinary S-PMA in 14 moderate smokers and 38 non-smokers was 3.61 and 1.99 micrograms/g creatinine, respectively and the mean urinary tt-MA was 0.058 and 0.037 mg/g creatinine, respectively. S-PMA proved to be more specific and more sensitive (P = 0.030, Fisher's exact test) than tt-MA. S-PMA, but not tt-MA, was always detectable in the urine of smokers who were not occupationally exposed. S-PMA was also detectable in 20 of the 38 non-smokers from the control group whereas tt-MA was detectable in only nine of these samples. The inferior specificity of tt-MA is due to relatively high background values (up to 0.71 mg/g creatinine in this study) that may be found in non-occupationally exposed people. CONCLUSIONS--Although both tt-MA and S-PMA are sensitive biomarkers, only S-PMA allows reliable determination of benzene exposures down to 0.3 ppm (8 h TWA) due to its superior specificity. Because it has a longer elimination half life S-PMA is also a more reliable biomarker than tt-MA for benzene exposures during 12 hour shifts. For biological monitoring of exposure to benzene concentrations higher than 1 ppm (8 h TWA) tt-MA is also suitable and may even be preferred due to its greater ease of measurement.  相似文献   

3.
Benzene is a widespread pollutant of which the main source in the outside environment is automotive traffic. Benzene is also present in cigarette smoke, and small quantities exist in drinking water and food; all of these sources contribute to pollution of indoor environments. Benzene exposure may be studied with biologic indicators. In the present study, the authors evaluated whether differences in urinary concentrations of trans,transmuconic acid (t,t-MA) were detectable in a sample of 150 children and if the chemical was correlated with environmental exposures to low levels of benzene. The children attended primary schools that had significantly different-but low-environmental benzene levels. Analysis of urinary t,t-MA was achieved with high-performance liquid chromatography (photodiode array detector), and analysis of passive air samplers for benzene was performed with gas chromatography-mass spectrometry. Statistical analysis (Kruskal-Wallis test) indicated that differences in urinary levels of t,t-MA in children from urban and rural areas were not statistically significant (p = .07), nor were there significant differences between children with and without relatives who smoked (p = .69). As has been shown in other studies of children and adults, results of our study evidenced (1) the difficulty of correlating concentrations of urinary biomarkers with environmental exposure to benzene at a parts-per-billion level (i.e., traffic and environmental tobacco smoke) and, consequently, (2) the lack of specificity of t,t-MA as a biological indicator for the study of a population's exposure.  相似文献   

4.
Motor vehicle traffic is the main emission source of benzene. We undertook this study in order to compare benzene exposure and urinary levels of trans,trans-muconic acid (t,t-MA) in taxi drivers and petrol station workers. Air benzene levels were analyzed with gas chromatography using a Flame Ionization Detector. t,t-MA was extracted from urine and analyzed using high performance liquid chromatography. Significant differences in levels of urinary t,t-MA were found in drivers and petrol station workers when compared to a control group (p<0.05). Correlation coefficients between benzene in air and t,t-MA for petrol station workers and drivers were 0.65 and 0.30, respectively. The concentration of benzene in the breathing zone of petrol station workers was 2-3 times higher than drivers, and also 3 times greater than a threshold level (0.5 ppm) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The lowest benzene concentration at which urinary t,t-MA increased to a measurable level was approximately 0.17 ppm. In conclusion our results suggested that high benzene levels are emitted in petrol stations in west Iran. t,t-MA analysis was able to separate those exposed from the non-exposed benzene group when benzene in the breathing zone of subjects was greater than 0.17 ppm.  相似文献   

5.
罗巧  朱长才  宋世震 《卫生研究》2008,37(1):106-108
尿中苯巯基尿酸(SPMA)与苯接触存在良好相关性,是低浓度苯接触特异和敏感的生物标志物。SPMA可用高效液相色谱法(HPLC)、液质联谱(LC/MS)、气质联谱(GC/MS)和酶联免疫吸附试验(ELISA)等方法检测。本文详细介绍了国外检测尿SPMA的方法,评价了尿SPMA作为职业苯接触生物标志物的有效性和应用。  相似文献   

6.
目的观察苯动态染毒大鼠模型尿中反-反式黏糠酸(t,t-MA)的变化情况,探讨尿t,t-MA作为苯职业暴露水平生物标志物的可行性。方法48只成年Wistar大鼠,随机分为对照组、低浓度组、中浓度组和高浓度组,每组数量相同,雌雄各半;纯苯动态染毒28d(分4个时段,每时段染毒5d后停2d)。监测苯浓度,每个时段染毒后立即取5h尿,反相高效液相色谱-紫外检测法检测大鼠尿中t,t-MA浓度,并用尿肌酐校正。结果在不同染毒时段内,对照组、低、中、高浓度组间尿t,t-MA含量差异有统计学意义(P<0.05),鼠尿中t,t-MA浓度随着环境中苯浓度增高而升高,且没有随染毒时间延长而变化(P>0.05)。结论动物模型研究说明尿中t,t-MA是反映苯接触水平比较敏感的生物标志物。  相似文献   

7.
目的研究职业性苯暴露反.反式粘糠酸(t,t—MA)生物接触限值。方法实验室建立生产环境空气中苯浓度的气相色谱检测方法及作业工人尿中t,t—MA含量的高效液相色谱检测方法,并通过检测苯暴露现场工人8h苯暴露水平及班前、班后尿中t,t.MA含量,研究其相关性。结果苯暴露者班前、班后尿中t,t—MA含量与其苯暴露水平有明显的相关关系。班前y(mg/gCr)=0.924+0.108X(me/m^3),r=0.62,P〈0.01;班后y(mg/gCr)=2.103+0.177X(mg/m^3),r=0.791,P〈0.01。结论根据我国作业场所空气中苯的国家卫生标准,按回归方程推导出职业接触苯生物接触限值,推荐职业暴露苯的生物接触限值为工作班班后尿t,t.MA含量为3.0mg/gCr,下一班班前尿t,t.MA含量为1.5mg/gGr。  相似文献   

8.
Summary Urinary trans, trans-muconic acid (t,t-MA), a minor metabolite of benzene, is a potential candidate for biological monitoring of benzene. A clean-up procedure using SPE extraction cartridges was applied to urinary samples in order to improve the reliability of t,t-MA determinations by HPLC-UV greatly and to carry out convenient analyses on a routine scale, particularly at low levels of t,t-MA concentrations. The detection limit of the method is low enough to measure urinary t,t-MA at a concentration of 00.05–0.1 mgg/l.The recovery rates and relative standard deviations from spiked urines (1 mg/l to 20 mg/l) were about 90% and 5%, respectively. t,t-MA was found to be rapidly excreted by rats and humans. In rats the background range never exceeded 0.5 mg/l with a mean concentration around 0.3 mg/l. In 49 human blank urines, t,t-MA average and median-value were respectively around 0.2 and < 0.1 mg/l with a range of < 0.1 to 0.5 mg/l. Experimental exposure of rats for 1 h to 10.2 ppm of benzene induced urinary excretion of 13 mg/l of t,t-MA during a 6-h post-exposure period while occupational exposures to 2.6 ppm (mean exposure level during 5d–8 h) and 7 ppm (4 h) of benzene resulted in urinary excretion of 2.1 (mean excretion level) and 6.5 mg/l respectively at the end of the exposure. In humans, t,t-MA has a similar half-time as phenol. Analysis of urinary t,t-MA seems to be a better indicator than phenol for the assessment of exposure to low levels of benzene. Ingestion of 200 mg of sorbic acid, the only other known precursor of t,t-MA, interfered minimally with the background excretion of t,t-MA.  相似文献   

9.
目的 研制我国职业接触苯工人尿中苯巯基尿酸(SPMA)的生物限值.方法 在苯作业车间选择空气中苯浓度在32.5 mg/m~3以下接苯工人55人,应用个体采样器采集空气样品,用气相色谱法检测作业者个体苯接触水平,同时采集当日工人班后尿,应用高压液相色谱/质谱法(HPLC/MS)测定尿中SPMA含量以评价苯接触者的内暴露水平,内外暴露水平的比较用相对内暴露指数(RIE)加以评定.结果 接苯工人工作环境空气苯浓度范围为0.71~32.17 mg/m~3,几何平均浓度为6.98 mg/m~3,中位数为7.50 mg/m~3,尿中SPMA与个体苯暴露量存在良好的线性关系Y(μg/g Cr)=-8.625+18.367 X(mg/m~3),r=0.8035(P<0.01);将我国职业苯接触限值时间加权平均容许浓度(PC-TWA=6 mg/m~3)代入回归方程,推算工作班后尿中SPMA含量为101.58μg/g Cr.计算的RIE指数显示,接触1 mg/m~3苯可平均代谢转化为尿中SPMA 18.23 μg/g Cr,并且随接苯水平的上升其代谢转化效率呈下降趋势.结论 参考国外SPMA生物限值标准,建议我国职业接触苯生物限值班后尿中SPMA为100μg/gCr(47μmol/mol Cr).  相似文献   

10.
11.
A pilot study was performed to evaluate the feasibility of using trans,trans-muconic acid (MA) as a biomarker of environmental benzene exposure. A secondary aim was to provide data on the extent of exposure to selected toxicants in a unique population consisting of inner-city children who were already overexposed to one urban hazard, lead. Potential sources of benzene were assessed by a questionnaire. Exposure biomarkers included urinary MA and cotinine and blood lead. Mean MA was 176.6 +/- 341.7 ng/mg creatinine in the 79 children who participated. A wide range of values was found with as many as 10.1%, depending on the comparison study, above the highest levels reported in adults not exposed by occupation. Mean MA was increased in children evaluated in the afternoon compared to morning, those at or above the median for time spent playing near the street, and those studied in the first half of the investigation. MA levels were not associated with blood lead or, consistently, with either questionnaire environmental tobacco smoke (ETS) data or cotinine. As expected, the mean blood lead level was elevated (23.6 micrograms/dl). Mean cotinine was also increased at 79.2 ng/mg creatinine. We conclude that the use of MA as a biomarker for environmental benzene exposure is feasible since it was detectable in 72% of subjects with a wide range of values present. In future studies, correlation of MA with personal air sampling in environmental exposure will be essential to fully interpret the significance of these findings. In addition, these inner-city children comprise a high risk group for exposure to environmental toxicants including ETS, lead, and probably benzene, based on questionnaire sources and its presence in ETS.  相似文献   

12.
Recently, the determination of S-phenylmercapturic acid (S-PMA) in urine has been proposed as a suitable biomarker for the monitoring of low level exposures to benzene. In the study reported here, the test has been validated in 12 separate studies in chemical manufacturing plants, oil refineries, and natural gas production plants. Parameters studied were the urinary excretion characteristics of S-PMA, the specificity and the sensitivity of the assay, and the relations between exposures to airborne benzene and urinary S-PMA concentrations and between urinary phenol and S-PMA concentrations. The range of exposures to benzene was highest in workers in chemical manufacturing plants and in workers cleaning tanks or installations containing benzene as a component of natural gas condensate. Urinary S-PMA concentrations were measured up to 543 micrograms/g creatinine. Workers' exposures to benzene were lowest in oil refineries and S-PMA concentrations were comparable with those in smoking or nonsmoking control persons (most below the detection limit of 1 to 5 micrograms/g creatinine). In most workers S-PMA was excreted in a single phase and the highest S-PMA concentrations were at the end of an eight hour shift. The average half life of elimination was 9.0 (SD 4.5) hours (31 workers). Tentatively, in five workers a second phase of elimination was found with an average half life of 45 (SD 4) hours. A strong correlation was found between eight hour exposure to airborne benzene of 1 mg/m3 (0.3 ppm) and higher and urinary S-PMA concentrations in end of shift samples. It was calculated that an eight hour benzene exposure of 3.25 mg/m3 (1 ppm) corresponds to an average S-PMA concentration of 46 micrograms/g creatinine (95% confidence interval 41-50 micrograms/g creatinine). A strong correlation was also found between urinary phenol and S-PMA concentrations. At a urinary phenol concentration of 50 mg/g creatinine, corresponding to an eight hour benzene exposure of 32.5 mg/m3 (10 ppm), the average urinary S-PMA concentration was 383 micrograms/g creatinine. In conclusion, with the current sensitivity of the test, eight hour time weighted average benzene exposures of 1 mg/m3 (0.3 ppm) and higher can be measured.  相似文献   

13.
 Excretion of trans,trans-muconic acid (2,4-hexadienedioic acid; t,t-MA), a potential biomarker of low-level exposure to benzene, was determined in 32 smokers and 82 nonsmokers. In smokers the median background excretion of t,t-MA was 0.13 (0.06–0.39) mg/g creatinine and was significantly higher (P<0.05) than the value of 0.065 (0.02–0.59) mg/g creatinine in nonsmokers. For nonsmokers, the correlation between t,t-MA excretion and environmental exposure to benzene in ambient air, which was determined during the 8-day study period by personal diffusion samplers, was not significant (r=0.164, P=0.18). Nonsmokers living in the city tended to have higher t,t-MA excretion rates than nonsmokers living in the suburbs. However, the difference was only significant for nonsmokers from nonsmoking homes. For the same location (suburb or city), smoking at home leads to a marginal increase in t,t-MA excretion of the nonsmoking members of the household. In a further study with eight nonsmokers we found that dietary supplementation with 500 mg sorbic acid significantly increased (P<0.001) the mean urinary t,t-MA excretion from 0.08 (0.04–0.12) to 0.88 (0.57–1.48) mg/24 h. Under study conditions 0.12% of the sorbic acid dose was excreted in urine as t,t-MA, thereby indicating that a typical dietary intake of 6–30 mg/day sorbic acid accounts for 10–50% of the background t,t-MA excretion in nonsmokers, and for 5–25% in smokers. As a consequence, sorbic acid in the diet is a significant confounding factor in assessing low-level benzene exposure if t,t-MA excretion in urine is used as a biomarker. Received: 10 October 1995 / Accepted: 26 February 1996  相似文献   

14.
No method has yet been established to evaluate the exposure to tobacco smoke in passive smoking (PS). We therefore conducted a study on the possibility that the levels of urinary trans, trans-muconic acid (MA) and the exhaled carbon monoxide (CO) could be indices of the passive exposure to tobacco smoke. The moderate correlation was observed between urinary MA levels and the number of consumed cigarettes per day in smokers. The mean urinary MA level of the PS (+) group was significantly higher than that with the PS (-) group. Among the PS (+) group, the mean MA level in the urine obtained in the afternoon was higher than that obtained in the morning. A high correlation was observed between the exhaled CO levels and the number of consumed cigarettes per day in smokers. Like the urinary MA level, the mean exhaled CO level in the PS (+) group, too, gave a significantly higher level than in the PS (-) group. Because the biological half life of MA (7.5 +/- 0.85 h) was longer than that of CO (3.0 +/- 0.36 h), the measurement of urinary MA level is recommended for evaluating the exposure of passive smoking. The measurement of exhaled CO levels is useful only for chain smokers and nonsmokers with PS just before measurement.  相似文献   

15.

Background and objectives

Data on human exposure to chemicals in Africa are scarce. A biomonitoring study was conducted in a representative sample of the population in Kinshasa (Democratic Republic of Congo) to document exposure to benzene.

Methods

S-phenylmercapturic acid (S-PMA) was measured by LC–MS/MS in spot urine samples from 220 individuals (50.5% women), aged 6–70 years living in the urban area and from 50 additional subjects from the sub-rural area of Kinshasa. Data were compiled as arithmetic means, geometric means, percentile 95th and range expressed in μg/L.

Results

Overall, living in urban Kinshasa was associated with increased levels of S-PMA in urine as compared to a population living in the sub-rural area. Increased levels were also found by comparison with some date from literature.

Conclusions

This study reveals the high benzene exposure of the Kinshasa population requiring the determination of benzene concentrations in ambient air of Kinshasa and limit values for the protection of human health.  相似文献   

16.
BACKGROUND: Parabens appear frequently as antimicrobial preservatives in cosmetic products, in pharmaceuticals, and in food and beverage processing. In vivo and in vitro studies have revealed weak estrogenic activity of some parabens. Widespread use has raised concerns about the potential human health risks associated with paraben exposure. OBJECTIVES: Assessing human exposure to parabens usually involves measuring in urine the conjugated or free species of parabens or their metabolites. In animals, parabens are mostly hydrolyzed to p-hydroxybenzoic acid and excreted in the urine as conjugates. Still, monitoring urinary concentrations of p-hydroxybenzoic acid is not necessarily the best way to assess exposure to parabens. p-hydroxybenzoic acid is a nonspecific biomarker, and the varying estrogenic bioactivities of parabens require specific biomarkers. Therefore, we evaluated the use of free and conjugated parent parabens as new biomarkers for human exposure to these compounds. RESULTS: We measured the urinary concentrations of methyl, ethyl, n-propyl, butyl (n- and iso-), and benzyl parabens in a demographically diverse group of 100 anonymous adults. We detected methyl and n-propyl parabens at the highest median concentrations (43.9 ng/mL and 9.05 ng/mL, respectively) in nearly all (> 96%) of the samples. We also detected other parabens in more than half of the samples (ethyl, 58%; butyl, 69%). Most important, however, we found that parabens in urine appear predominantly in their conjugated forms. CONCLUSIONS: The results, demonstrating the presence of urinary conjugates of parabens in humans, suggest that such conjugated parabens could be used as exposure biomarkers. Additionally, the fact that conjugates appear to be the main urinary products of parabens may be important for risk assessment.  相似文献   

17.
Purpose   trans,trans-Muconic acid (t,t-MA) is generally considered as a useful biomarker of exposure to benzene. However, because of its lack of specificity, concerns about its value at low level of exposure have recently been raised. The aim of this study was (a) to compare t,t-MA, S-phenylmercapturic acid (SPMA) and benzene (B-U) as urinary biomarkers of exposure to low levels of benzene in petrochemical workers and, (b) to evaluate the influence of sorbic acid (SA) and genetic polymorphisms of biotransformation enzymes on the excretion of these biomarkers. Method  A total of 110 workers (including 24 smokers; 2–10 cigarettes/day) accepted to take part in the study. To assess external exposure to benzene, air samples were collected during the whole working period by a passive sampling device attached close to the breathing zone of 98 workers. Benzene was measured in blood (B-B) samples taken at the end of the shift, and was considered as the reference marker of internal dose. Urine was collected at the end of the shift for the determination of B-U, SPMA, t,t-MA, SA and creatinine (cr). B-U and B-B were determined by head-space/GC–MS, SPMA and SA by LC-MS, t,t-MA by HPLC-UV. Results  Most (89%) personal measurements of airborne benzene were below the limit of detection (0.1 ppm); B-B ranged from <0.10 to 13.58 μg/l (median 0.405 μg/l). The median (range) concentrations of the urinary biomarkers were as follows: B-U 0.27 μg/l (<0.10–5.35), t,t-MA 0.060 mg/l (<0.02–0.92), SPMA 1.40 μg/l (0.20–14.70). Urinary SA concentrations ranged between <3 and 2,211 μg/l (median 28.00). Benzene concentration in blood and in urine as well as SPMA, but not t,t-MA, were significantly higher in smokers than in non-smokers. The best correlation between B-B and urinary biomarkers of exposure were obtained with benzene in urine (μg/l r = 0.514, P < 0.001; μg/g cr r = 0.478, < 0.001) and SPMA (μg/l r = 0.495, P < 0.001; μg/g cr r = 0.426, P < 0.001) followed by t,t-MA (mg/l r = 0.363, P < 0.001; mg/g cr r = 0.300, P = 0.002). SA and t,t-MA were highly correlated (r = 0.618, P < 0.001; corrected for cr r = 0.637). Multiple linear regression showed that the variation of t,t-MA was mostly explained by SA concentration in urine (30% of the explained variance) and by B-B (12%). Variations of SPMA and B-U were explained for 18 and 29%, respectively, by B-B. About 30% of the variance of B-U and SPMA were explained by B-B and smoking status. Genetic polymorphisms for biotransformation enzymes (CYP2E1, EPHX1, GSTM1, GSTT1, GSTP1) did not significantly influence the urinary concentration of any of the three urinary biomarkers at this low level of exposure. Conclusion  At low levels of benzene exposure (<0.1 ppm), (1) t,t-MA is definitely not a reliable biomarker of benzene exposure because of the clear influence of SA originating from food, (2) SPMA and B-U reflect the internal dose with almost similar accuracies, (3) genetically based inter-individual variability in urinary excretion of biomarkers seems negligible. It remains to assess which biomarker is the best predictor of health effects.  相似文献   

18.
Summary Different parameters of biological monitoring were applied to 26 benzene-exposed car mechanics. Twenty car mechanics worked in a work environment with probably high benzene exposures (exposed workers); six car mechanics primarily involved in work organization were classified as non-exposed. The maximum air benzene concentration at the work places of exposed mechanics was 13 mg/m3 (mean 2.6 mg/m3). Elevated benzene exposure was associated with job tasks involving work on fuel injections, petrol tanks, cylinder blocks, gasoline pipes, fuel filters, fuel pumps and valves. The mean blood benzene level in the exposed workers was 3.3 g/l (range 0.7–13.6 g/1). Phenol proved to be an inadequate monitoring parameter within the exposure ranges investigated. The muconic and S-phenylmercapturic acid concentrations in urine showed a marked increase during the work shift. Both also showed significant correlations with benzene concentrations in air or in blood. The best correlations between the benzene air level and the mercapturic and muconic acid concentrations in urine were found at the end of the work shift (phenylmercapturic acid concentration: r = 0.81, P < 0.0001; muconic acid concentration: r = 0.54, P < 0.05). In conclusion, the concentrations of benzene in blood and mercapturic and muconic acid in urine proved to be good parameters for monitoring benzene exposure at the workplace even at benzene air levels below the current exposure limits. Today working as a car mechanic seems to be one of the occupations typically associated with benzene exposure.  相似文献   

19.
20.
The characteristics of urinary o-cresol (o-C) and urinary toluene (TOL-U) as biomarkers of occupational exposure to toluene were comparatively evaluated. One hundred healthy male rotogravure printing workers and 161 male and female control subjects were studied. Personal exposure to airborne toluene (TOL-A) during the shift was determined as a time-weighted average. Simple analytical procedures based on solid phase microextraction followed by gas chromatography/mass spectometry analysis were applied to the determination of end-shift o-C and TOL-U. Median TOL-A was 48 (6.0-162.0) mg/m3 in printers and 0.021 (<0.003-0.137) mg/m3 in controls. o-C was 0.185 (0.032-0.948) mg/g creatinine in printers and 0.027 (<0.006-0.330) mg/g creatinine in the controls. TOL-U was 7.6 (1.8-23.9) microg/L in printers and 0.140 (0.094-0.593) microg/L in the controls. According to all indices, exposure to toluene was higher in printers than in the controls. Nevertheless, the distribution of o-C in the two groups partially overlapped, whereas such behavior was not found in TOL-U. Both o-C and TOL-U in printers were correlated with TOL-A (Pearson's on log10-transformed variables r = 0.704 and 0.844, respectively) and with each other (r = 0.683). Smoking habits significantly increased the excretion of o-C but not of TOL-U. From the point of view of sampling conditions and analytical requirements, TOL-U and o-C showed similar properties, but comparison of their intrinsic characteristics showed that TOL-U had higher specificity and sensitivity, lower background values, was better correlated with airborne exposure, and was not influenced by cigarette smoking. Therefore TOL-U may be considered superior to o-C as a biomarker of occupational exposure to toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号