首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study showed that the latency of rats moving on a vertical grid was significantly prolonged,and the number of rats sliding down from the declined plane was increased remarkably,in rotenone-induced Parkinson’s disease model rats compared with control rats.The moving latency recovered to normal levels,but the number of slides was significantly increased at 28 days after model establishment.The slope test is a meaningful approach to evaluate the symptoms of Parkinson’s disease model rats treated with rotenone.In addition,loss of substantia nigral dopaminergic neurons in model rats was observed at 1 day after the model was established,and continued gradually at 14 and 28 days.The expression of tyrosine hydroxylase-positive cells was significantly increased in gastrodin-treated rats at 14 days.Significant numbers of activated microglia cells were observed in model rats at 14 and 28 days;treatment of rats with Madopar at 28 days suppressed microglial activation.Treatment of rats with gastrodin or Madopar at 28 days significantly reduced interleukin-1β expression.The loss of substantia nigral dopaminergic neurons paralleled the microglial activation in Parkinson’s disease model rats treated with rotenone.The inflammatory factors tumor necrosis factor-α and interleukin-1β are involved in the substantia nigral damage.Gastrodin could protect dopaminergic neurons via inhibition of interleukin-1β expression and neuroinflammation in the substantia nigra.  相似文献   

2.
3.
4.
Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson’s disease. Verbascoside, an extract from Radix Rehmanniae Praeparata has been shown to be clinically effective in treating Parkinson’s disease. However, the underlying mechanisms remain unclear. It is hypothesized that the effects of verbascoside on Parkinson’s disease are related to tyrosine hydroxylase expression change in the nigrostriatal system. Rat models of Parkinson’s disease were established and verbascoside (60 mg/kg) was administered intraperitoneally once a day. After 6 weeks of verbascoside treatment, rat rotational behavior was alleviated; tyrosine hydroxylase mRNA and protein expression and the number of tyrosine hydroxylase-immunoreactive neurons in the rat right substantia nigra were signiifcantly higher than the Parkinson’s model group. These ifndings suggest that the mechanism by which verbascoside treats Parkinson’s disease is related to the regeneration of tyrosine hy-droxylase-immunoreactive neurons in the substantia nigra.  相似文献   

5.
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014.  相似文献   

6.
In this study,microstructural brain damage in Parkinson’s disease patients was examined using diffusion tensor imaging and tract-based spatial statistics.The analyses revealed the presence of neuronal damage in the substantia nigra and putamen in the Parkinson’s disease patients.Moreover,disease symptoms worsened with increasing damage to the substantia nigra,confirming that the substantia nigra and basal ganglia are the main structures affected in Parkinson’s disease.We also found that microstructural damage to the putamen,caudate nucleus and frontal lobe positively correlated with depression.Based on the tract-based spatial statistics,various white matter tracts appeared to have microstructural damage,and this correlated with cognitive disorder and depression.Taken together,our results suggest that diffusion tensor imaging and tract-based spatial statistics can be used to effectively study brain function and microstructural changes in patients with Parkinson’s disease.Our novel findings should contribute to our understanding of the histopathological basis of cognitive dysfunction and depression in Parkinson’s disease.  相似文献   

7.
Previous studies found that iron accumulates in the substantia nigra of Parkinson’s disease patients. However, it is still unclear whether other brain regions have iron accumulation as well. In this experiment, rats with rotenone-induced Parkinson’s disease were treated by gastric perfusion of baicalin or intraperitoneal injection of deferoxamine. Immunohistochemical staining demonstrated that iron accumulated not only in the substantia nigra pars compacta, but also significantly in the striatum globus pallidus, the dentate gyrus granular layer of the hippocampus, the dentate-interpositus and the facial nucleus of the cerebellum. Both baicalin and deferoxamine, which are iron chelating agents, significantly inhibited iron deposition in these brain areas, and substantially reduced the loss of tyrosine hydroxylase-positive cells. These chelators also reduced iron content in the substantia nigra. In addition to the substantia nigra, iron deposition was observed in other brain regions as well. Both baicalin and deferoxamine significantly inhibited iron accumulation in different brain regions, and had a protective effect on dopaminergic neurons.  相似文献   

8.
BACKGROUND:Inflammatory injury induced by microglial activation plays an important role in the occurrence and development of Parkinson’s disease (PD). However, few studies have examined the relationship between microglia and substantia nigra damage or dopaminergic neuron loss in animals with rotenone-induced PD. OBJECTIVE: To explore the relationship between activated microglia and loss of the substantia nigra, and the changes in concentration and dose of rotenone in the brain of rats with rotenone-induced ...  相似文献   

9.
10.
《中国神经再生研究》2016,(10):1625-1632
Levodopa is the gold-standard treatment for Parkinson’s disease. However, although it alleviates the clinical symptoms, it cannot delay the progressive apoptosis of dopaminergic neurons or prevent motor complications in the long term. In the present study, we investigated the effect ofShudipingchan granule on neuronal apoptosis in a rat model of Parkinson’s disease, established by injecting 6-hydroxydopamine into the substantia nigra pars compacta and ventral tegmental area. We then administered levodopa (20 mg/kg intraperitoneally, twice daily) with or withoutShudipingchan granule (7.5 mL/kg intragastrically, twice daily), for 4 weeks. hTe long-term use of levodopa accel-erated apoptosis of nigral cells and worsened behavioral symptoms by activating the extracellular signal-regulated kinase pathway and downstream apoptotic factors. However, administration ofShudipingchan granule with levodopa reduced expression of phosphorylated extracellular signal-regulated kinase 1/2 and Bax, increased tyrosine hydroxylase and Bcl-2, reduced apoptosis in the substantia nigra, and markedly improved dyskinesia. hTese ifndings suggest thatShudipingchan granule suppresses neuronal apoptosis by inhibiting the hyper-phosphorylation of extracellular signal-regulated kinase and downregulating expression of anti-apoptotic genes.Shudipingchan granule, used in combination with levodopa, can effectively reduce the symptoms of Parkinson’s disease.  相似文献   

11.
The Chinese herbs Herba Epimedii, Fructus Ligustri Lucidi and Rhizoma Polygonati were injected into Parkinson’s disease mice established via intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride. The selective monoamine oxidase B inhibitor selegiline was used as a positive control drug. After successive administration for 4 weeks, Herba Epimedii could downregulate the expression of caspase-3 and increase the brain-derived neurotrophic factor level, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson’s disease mouse models. Rhizoma Polygonati could downregulate the expression of caspase-3 and FasL, and increase neural growth factor and brain-derived neurotrophic factor levels. Fructus Ligustri Lucidi could downregulate caspase-3 expression. Rhizoma Polygonati and Fructus Ligustri Lucidi did not produce obvious effects on tyrosine hydroxylase activity. Herba Epimedii and Fructus Ligustri Lucidi yielded similar effects on apoptosis-promoting factors to those elicited by selegiline. Herba Epimedii and Rhizoma Polygonati significantly increased the levels of neurotrophic factors compared with selegiline. Herba Epimedii significantly increased tyrosine hydroxylase activity compared with selegiline. It is indicated that the kidney-tonifying Chinese herbal preparation can downregulate the expression of apoptosis-promoting factors, increase neurotrophic factors levels in the substantia nigra and striatum, as well as increase tyrosine hydroxylase activity in the substantia nigra of Parkinson’s disease mouse models, thereby exerting a stronger or similar neuroprotective effects compared with selegiline.  相似文献   

12.
The present study observed the action of 1H-indole-2, 3-dione (isatin) on Bax protein expression in the substantia nigra of a Parkinson’s disease animal model. Parkinson’s disease-like behaviors were induced in C57BL/6J mice treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Bax protein expression was significantly reduced in isatin (100, 200 mg/kg)-pretreated mice. Results demonstrate that isatin plays a neuroprotective role in mice treated with MPTP by down-regulating Bax protein express...  相似文献   

13.
Psychosis is a common non-motor symptom of Parkinson’s disease whose pathogenesis remains poorly understood.Parkinson’s disease in conjunction with psychosis has been shown to induce injury to extracorticospinal tracts as well as within some cortical areas.In this study,Parkinson’s disease patients with psychosis who did not receive antipsychotic treatment and those without psychosis underwent diffusion tensor imaging.Results revealed that in Parkinson’s disease patients with psychosis,damage to the left frontal lobe,bilateral occipital lobe,left cingulated gyrus,and left hippocampal white-matter fibers were greater than damage to the substantia nigra or the globus pallidus.Damage to white-matter fibers in the right frontal lobe and right cingulate gyrus were also more severe than in the globus pallidus,but not the substantia nigra.Damage to frontal lobe and cingulate gyrus white-matter fibers was more apparent than that to occipital or hippocampal fiber damage.Compared with Parkinson’s disease patients without psychosis,those with psychosis had significantly lower fractional anisotropy ratios of left frontal lobe,bilateral occipital lobe,left cingulated gyrus,and left hippocampus to ipsilateral substantia nigra or globus pallidus,indicating more severe damage to white-matter fibers.These results suggest that psychosis associated with Parkinson’s disease is probably associated with an imbalance in the ratio of white-matter fibers between brain regions associated with psychiatric symptoms(frontal lobe,occipital lobe,cingulate gyrus,and hippocampus) and those associated with the motor symptoms of Parkinson’s disease(the substantia nigra and globus pallidus).The relatively greater damage to white-matter fibers in psychiatric symptom-related brain regions than in extracorticospinal tracts might explain why psychosis often occurs in Parkinson’s disease patients.  相似文献   

14.
X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson’s disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson’s disease in rats.  相似文献   

15.
BACKGROUND: Subthalamic nucleus-high frequency stimulation (STN-HFS) plays an important role in the treatment of Parkinson's disease, but the mechanisms underlying STN-HFS remain unclear. Some studies have demonstrated that STN stimulation inhibits the firing activity of substantia nigra pars reticulata neurons. OBJECTIVE: To investigate the effects of different-frequency STN stimulation and microiontophoresis of gamma-aminobutyric acid (GABA) and its antagonist, bicuculline, on spontaneous firing activity in a rat model of Parkinson's disease, and to analyze the action pathway of high frequency stimulation in firing activity inhibition of substantia nigra pars reticulata neurons. DESIGN, TIME AND SETTING: This neuroelectrophysiological, animal experiment was performed at the Electrophysiology Laboratory of Liaoning Medical University, China from March to August 2008. MATERIALS: 6-hydroxydopamine (6-OHDA) (Sigma, USA), A320R isolated stimulus and DAM80 preamplifier (World Precision Instruments, USA), 6400A microiontophoresis apparatus (Dagan, USA), and Spike 2 biological signal acquisition system (CED, UK) were used in this study. METHODS: A total of 20 Sprague Dawley rats were used to establish a Parkinson's disease model via injection of 6-OHDA into the right striatum. Electrical stimulation (0.06-ms width, 0.4-mA intensity 20-200-Hz frequency, 5-second train duration) was delivered to the subthalamic nucleus. Peripheral channels were separately filled with GABA (pH 3.5, 0.2 mol/L), bicuculline (pH 4.0, 0.01 mol/L), and NaCI (pH 7.0, 3 mol/L). The electrode was positioned with a WK-2 microelectrode propulsion device, and was slowly inserted into the substantia nigra pars reticulata to record spontaneous firing activity of substantia nigra pars reticulata neurons. MAIN OUTCOME MEASURES: The number and firing rate of substantia nigra pars reticulata neurons which were either inhibited or excited were measured. RESULTS: Substantia nigra pars reticulata neurons were inhibited by STN stimulation. The proportion of inhibited substantia nigra pars reticulata neurons increased with increasing stimulation frequency. GABA had a tonic inhibitory effect on substantia nigra pars reticulata neurons. Microiontophoresis of bicuculline suppressed the inhibitory effect of STN-HFS on 67% (4/6) of substantia nigra pars reticulata neurons. CONCLUSION: STN-HFS ameliorated abnormal activity in substantia nigra pars reticulata neurons via the inhibitory effect of GABA treatment in a rat model of Parkinson's disease.  相似文献   

16.
BACKGROUND: To date, a complete protein expression profile of the midbrain substantia nigra in a mouse model of chronic Parkinson's disease, induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), does not exist. In addition, there are no reports of analysis of differential protein expression. OBJECTIVE: To separate and evaluate MPTP-induced differential protein expression through the use of proteomics in the substantia nigra of a mouse model of chronic Parkinson's disease. DESIGN: Randomized controlled animal study. SETTING: Department of Neurology, the First Affiliated Hospital, Chongqing Medical University. MATERIALS: Sixteen 8-10-week old, healthy, male, C57BL mice, weighing 20-25 g, and of clean grade, were provided by the Experimental Animal Center of Chongqing Medical University. The experimental animals were disposed according to ethical criteria. MPTP was provided by Sigma Company, USA; Pdquest 2D image analysis software and gelatum/irradiance image analysis system (ChemiDoc XRS) by Bio-Rad, USA; and Voyager DE-PROMALD1-TOF-MS mass spectroscopy analyzer by AB1 Company, USA. METHODS: This study was performed in Chongqing Neurological Laboratory between November 2006 and July 2007. Mice were randomly divided into model and control groups, with 8 mice in each group. Mice in the model group were received a subcutaneous injection of MPTP (25 mg&g), twice a week, for five successive weeks, to establish a chronic Parkinson's disease model. Mice in the control group received the same volume of a subcutaneous saline injection at the same time points. Mice were sacrificed by anesthesia to rapidly obtain the midbrain for protein separation of the substantia nigra. MAIN OUTCOME MEASURES: (1) 2-ED handbook (Bio-Rad Company) was referenced for two-dimensional electrophoresis, (2) PDQUEST8,0 analytical electrophoresis pattern was adopted to evaluate differential protein expression. (3) Peptide mass finger print map and data were retrieved on http://www.pros  相似文献   

17.
18.
In this study,6-hydroxydopamine was stereotaxically injected into the right substantia nigra compact and ventral tegmental area of rats to establish Parkinson’s disease models.The rats then received a transplantation of bone marrow stromal cells that were previously isolated,cultured and labeled with 5-bromo-2’-deoxyuridine in vitro.Transplantation of the bone marrow stromal cells significantly de-creased apomorphine-induced rotation time and the escape latency in the Morris water maze test as compared with rats with untreated Parkinson’s disease.Immunohistochemical staining showed that,5-bromo-2’-deoxyuridine-immunoreactive cells were present in the lateral ventricular wall and the choroid plexus 1 day after transplantation.These immunoreactive cells migrated to the surrounding areas of the lateral cerebral ventricle along the corpus callosum.The results indicated that bone marrow stromal cells could migrate to tissues surround the cerebral ventricle via the cerebrospinal fluid circulation and fuse with cells in the brain,thus altering the phenotype of cells or forming neuron-like cells or astrocytes capable of expressing neuron-specific proteins.Taken together,the present findings indicate that bone marrow stromal cells transplanted intracerebroventricularly could survive,migrate and significantly improve the rotational behavior and cognitive function of rats with experimentally induced Parkinson’s disease.  相似文献   

19.
Defects in autophagy-mediated clearance of α-synuclein may be one of the key factors leading to progressive loss of dopaminergic neurons in the substantia nigra. Moxibustion therapy for Parkinson's disease has been shown to have a positive effect, but the underlying mechanism remains unknown. Based on this, we explored whether moxibustion could protect dopaminergic neurons by promoting autophagy mediated by mammalian target of rapamycin(m TOR), with subsequent elimination of α-syn. A Parkinson's disease model was induced in rats by subcutaneous injection of rotenone at the back of their necks, and they received moxibustion at Zusanli(ST36), Guanyuan(CV4) and Fengfu(GV16), for 10 minutes at every point, once per day, for 14 consecutive days. Model rats without any treatment were used as a sham control. Compared with the Parkinson's disease group, the moxibustion group showed significantly greater tyrosine hydroxylase immunoreactivity and expression of light chain 3-Ⅱ protein in the substantia nigra, and their behavioral score, α-synuclein immunoreactivity, the expression of phosphorylated m TOR and phosphorylated ribosomal protein S6 kinase(p-p70S6K) in the substantia nigra were significantly lower. These results suggest that moxibustion can promote the autophagic clearance of α-syn and improve behavioral performance in Parkinson's disease model rats. The protective mechanism may be associated with suppression of the m TOR/p70S6K pathway.  相似文献   

20.
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease, which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice. Howeve...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号