首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate if microMOSFETs are suitable for the dosimetry and quality assurance of beta sources. The microMOSFET dosimeters have been tested for their angular dependence in a 6 MeV electron beam. The dose rate dependence was measured with an iridium-192 afterloading source. By varying the source-to-surface distance (SSD) in a 12 MeV electron beam the dose rate dependence in an electron beam was also investigated. To measure a depth dose curve the dose rate at 2, 5, 8 and 12 mm distance from the beta source train axis was determined with the OPTIDOS and the microMOSFET detector. A comparison between the two detector types shows that the microMOSFET is suitable for quality assurance of beta sources for endovascular brachytherapy (EVBT). The homogeneity of the source is checked by measurements at five points (for the 60 mm source at 10, 20, 30, 40 and 50 mm) along the source train. The microMOSFET was then used to evaluate the influence of a common stent type (single layer stainless steel) on the dose distribution in water. The stent led to a dose inhomogeneity of +/-8.5%. Additionally the percentage depth dose curves with and without a stent were compared. The depth dose curves show good agreement which means that the stent does not change the beta spectrum significantly.  相似文献   

2.
Intraoperative electron beam therapy requires accurate dose maximum/monitor unit (Dmax/MU) values for both flat and beveled ended applicators (cones). Measurement of Dmax/MU values with either solid or nontilting scanning water systems may give rise to inaccuracies due to the difficulty in locating an accurate position for dmax, since the ionization chamber usually cannot be scanned along the central axis of the beveled intraoperative applicator. A linear one-dimensional scanner (which permits ionization measurements to be made as a function of water depth) has been modified to provide scanning along a line up to 30 degrees from the perpendicular to the phantom surface. This modification has proven helpful in improving the accuracy of certain dosimetric parameters (e.g., Dmax/MU) of beveled applicators. For example, we found inaccuracies which arose when we measured Dmax/MU of beveled intraoperative radiation therapy cones in either solid or other scanning water systems were greatly reduced, especially for the lower electron beam energies (e.g., 6 and 9 MeV).  相似文献   

3.
Image-guided radiation therapy using implanted fiducial markers is a common solution for prostate localization to improve targeting accuracy. However, fiducials that are typically used for conventional photon radiotherapy cause large dose perturbations in patients who receive proton radiotherapy. A proposed solution has been to use fiducials of lower atomic number (Z) materials to minimize this effect in tissue, but the effects of these fiducials on dose distributions have not been quantified. The objective of this study was to analyze the magnitude of the dose perturbations caused by select lower-Z fiducials (a carbon-coated zirconium dioxide fiducial and a plastic-coated stainless steel fiducial) and compare them to perturbations caused by conventional gold fiducials. Sets of phantoms were used to assess select components of the effects on dose. First, the fiducials were assessed for radiographic visibility using both conventional computed tomography (CT) and an on-board kilovoltage imaging device at our proton therapy center. CT streak artifacts from the fiducials were also measured in a separate phantom. Second, dose perturbations were measured downstream of the fiducials using radiochromic film. The magnitude of dose perturbation was characterized as a function of marker material, implantation depth and orientation with respect to the beam axis. The radiographic visibility of the markers was deemed to be acceptable for clinical use. The dose measurements showed that the perpendicularly oriented zirconium dioxide and stainless steel fiducials located near the center of modulation of the proton beam perturbed the dose by less than 10%, but that the same fiducials in a parallel orientation near the end of the range of the beam could perturb the dose by as much as 38%. This suggests that carbon-coated and stainless steel fiducials could be used in proton therapy if they are located far from the end of the range of the beam and if they are oriented perpendicular to the beam axis.  相似文献   

4.
Electron-beam characteristics of a Philips SL25 linear accelerator have been studied. Central-axis percentage depth doses, cross-beam profiles and beam output factors of 6-, 10-, and 20-MeV beams, selected from the available energy range of 4 to 22 MeV, are reported in this paper. The main thrust of this work is to determine the systematic variation of beam characteristics, especially the output factor, with standard cone sizes and cerrobend beam-shaping cutouts down to a field size of 2 X 2 cm Output factors for the standard cones (open field) are energy dependent in a complex manner, increasing with the cone size for the 6-MeV beam whereas decreasing for 10- and 20-MeV beams. The output factor falls below unity at lower energies (6 and 10 MeV) for fields with at least one side smaller than 6 cm, and stays nearly constant for the 20-MeV beam. Measured output factors of small fields are least squares fitted by a second-order polynomial function. Output factors for small rectangular fields have been derived from the one-dimensional and square-root formulas, and the equivalent-square method. Only the one-dimensional formula predicts the measured output factors of highly elongated fields to within +/- 1% experimental uncertainties. Different cones with the same size electron cutout show a varied dose response, primarily due to variation in scattered electron contamination from the cones.  相似文献   

5.
The CGR Saturne 25 is an isocentrically mounted standing wave medical linear accelerator that produces dual-energy photon beams and a scanned electron beam with six selectable energies between 4 and 25 MeV. The highest energy photon beam is nominally referred to as 23 MV. For this beam the mean energy of the accelerated electron beam on the 1.3 radiation length (4 mm) tungsten x-ray target is found to be approximately 21 MeV, with the energy acceptance stated to be +/- 5%. The electron beam traverses a 270 degrees bending magnet upstream of the x-ray production target. The resulting bremsstrahlung beam passes through a combination steel and lead flattening filter, 4-cm maximum thickness. Dosimetric data for the 23-MV beam are presented with respect to rectangular field output factor, depth of maximum dose as a function of field size, surface and buildup dose, central axis percent depth dose, tissue-phantom ratios, beam profile, applicability of inverse square, and block transmission. Some data are also presented on the effect of different flattening filter designs on apparent beam energy.  相似文献   

6.
Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range-energy parameters, beam penumbra and uniformity.  相似文献   

7.
Many clinical studies have demonstrated that implanted radiopaque fiducial markers improve targeting accuracy in external-beam radiotherapy, but little is known about the dose perturbations these markers may cause in patients receiving proton radiotherapy. The objective of this study was to determine what types of implantable markers are visible in setup radiographs and, at the same time, perturb the therapeutic proton dose to the prostate by less than 10%. The radiographic visibility of the markers was assessed by visual inspection of lateral setup radiographs of a pelvic phantom using a kilovoltage x-ray imaging system. The fiducial-induced perturbations in the proton dose were estimated with Monte Carlo simulations. The influence of marker material, size, placement depth and orientation within the pelvis was examined. The radiographic tests confirmed that gold and stainless steel markers were clearly visible and that titanium markers were not. The Monte Carlo simulations revealed that titanium and stainless steel markers minimally perturbed the proton beam, but gold markers cast unacceptably large dose shadows. A 0.9 mm diameter, 3.1 mm long cylindrical stainless steel marker provides good radiographic visibility yet perturbs the proton dose distribution in the prostate by less than 8% when using a parallel opposed lateral beam arrangement.  相似文献   

8.
The relative percent dose reduction by lead (Pb) of 6-MeV electrons produced by Clinac 1800 for 6 X 6, 10 X 10, 15 X 15, 20 X 20, and 25 X 25 cm2 cones both with and without buildup is measured. The thickness of Pb required to attenuate the intensity of the primary electron beam to 95% and 98% depends upon the cone size and upon the depth in phantom at which transmission measurements are made.  相似文献   

9.
Head-and-neck tumors are often situated at an air-tissue interface what may result in an underdosage of part of the tumor in radiotherapy treatments using megavoltage photons, especially for small fields. In addition to effects of transient electronic disequilibrium, for these small fields, an increased lateral electron range in air will result in an important extra reduction of the central axis dose beyond the cavity. Therefore dose calculation algorithms need to model electron transport accurately. We simulated the trachea by a 2 cm diameter cylindrical air cavity with the rim situated 2 cm beneath the phantom surface. A 6 MV photon beam from an Elekta SLiplus linear accelerator, equipped with the standard multileaf collimator (MLC), was assessed. A 10 x 2 cm2 and a 10 x 1 cm2 field, both widthwise collimated by the MLC, were applied with their long side parallel to the cylinder axis. Central axis dose rebuild-up was studied. Radiochromic film measurements were performed in an in-house manufactured polystyrene phantom with the films oriented either along or perpendicular to the beam axis. Monte Carlo simulations were performed with BEAM and EGSnrc. Calculations were also performed using the pencil beam (PB) algorithm and the collapsed cone convolution (CCC) algorithm of Helax-TMS (MDS Nordion, Kanata, Cahada) version 6.0.2 and using the CCC algorithm of Pinnacle (ADAC Laboratories, Milpitas, CA, USA) version 4.2. A very good agreement between the film measurements and the Monte Carlo simulations was found. The CCC algorithms were not able to predict the interface dose accurately when lateral electronic disequilibrium occurs, but were shown to be a considerable improvement compared to the PB algorithm. The CCC algorithms overestimate the dose in the rebuild-up region. The interface dose was overestimated by a maximum of 31% or 54%, depending on the implementation of the CCC algorithm. At a depth of 1 mm, the maximum dose overestimation was 14% or 24%.  相似文献   

10.
A prototype x-ray needle, which emits 62.5 kVp x-rays at the tip of a 20 cm long, 4 mm diameter steel needle, has been developed by Titan Pulse Sciences Incorporated (PSI) (Albuquerque, NM) and was tested for its suitability in brachytherapy applications in comparison with a similar device by the Photoelectron Corporation. The depth dose profiles were also compared with those of two common brachytherapy sources (125I and 192Ir). The depth dose characteristics of the radiation were comparable with the two brachytherapy sources with a slightly reduced attenuation gradient. The dose rate from the x-ray needle tip was relatively isotropic at the needle tip and was continuously adjustable over the range of 0 cGy min(-1) to upwards of 62 cGy min(-1) at a reference distance of 1 cm in air. We detected a significant proportion of x-rays generated along the needle shaft, and not at the needle tip, as intended. The energy spectrum emitted from this device had a peak intensity at 21 keV and an average energy of 28 keV. The beam was attenuated in both aluminium (the first half-value layer being less than 0.1 mm) and in water (50% dose at approximately 2 mm). These studies confirm that although there is potential for a system similar to this one for clinical applications, the simplistic electron guidance used in this particular prototype device limits it to research applications. Further optimization is required in focusing and steering the electron beam to the target, improving x-ray production efficiency and using x-ray target cooling to achieve higher dose rates.  相似文献   

11.
A method is presented for verification of compensator thicknesses using a fluoroscopic electronic portal imaging device (EPID). The method is based on the measured transmission through the compensator, defined by the ratio of the portal dose with the compensator in the beam and the portal dose without the compensator in the beam. The transmission is determined with the EPID by dividing two images, acquired with and without compensator inserted, which are only corrected for the nonlinear response of the fluoroscopic system. The transmission has a primary and a scatter component. The primary component is derived from the measured transmission by subtracting the predicted scatter component. The primary component for each point is only related to the radiological thickness of the compensator along the ray line between the focus and that point. Compensator thicknesses are derived from the primary components taking into account off-axis variations in beam quality. The developed method has been tested for various compensators made of a granulate of stainless steel. The compensator thicknesses could be determined with an accuracy of 0.5 mm (1 s.d.), corresponding to a change in the transmitted dose of about 1% for a 10 MV beam. The method is fast, accurate, and insensitive to long-term output and beam profile fluctuations of the linear accelerator.  相似文献   

12.
The impact of the oblique electron beam on the lateral buildup ratio (LBR), used in the electron pencil beam model to predict the per cent depth dose (PDD) and dose per monitor unit (MU) for an irregular electron field, was examined using Monte Carlo simulation. The EGSnrc-based Monte Carlo code was used to model electron beams produced by a Varian 21 EX linear accelerator for different beam energies, angles of obliquity and field sizes. The Monte Carlo phase space model was verified by measurements using electron diode and radiographic film. For PDDs of oblique electron beams, it is found that the depth of maximum dose (d(m)) shifts towards the surface as the beam obliquity increases. Moreover, for increasing the beam angle of obliquity, the depth doses just beyond d(m) decrease with depth. The depth doses then increase eventually in a deeper depth close to the practical range. The LBRs and pencil beam radial spread function, calculated using PDDs with different field sizes, are found varying with electron beam energies, angles of obliquity and cutout diameters. It is found that LBR increases along the normalized depth when the beam angle of obliquity increases. This results in a decrease of the radial spread function with an increase of beam obliquity. When the size of the electron field increases, the variation of LBR with beam angle of obliquity decreases. It should be noted that when calculating dose per MU for an oblique electron beam with an irregular field misunderstanding and neglecting the effect of beam obliquity would lead to a significant deviation. A database of LBRs for oblique electron beams can be created using Monte Carlo simulation conveniently and is recommended when an oblique beam is used in electron radiotherapy.  相似文献   

13.
This article investigates the performance of Al2O3: C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within +/- 1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51 +/- 0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at dmax within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.  相似文献   

14.
Siemens Primus is a small footprint, klystron driven medical linear accelerator incorporating a compact solid state modulator. A double focused multileaf collimator (MLC) replaces the lower jaw. The first Primus in the world was installed at St. Jude Children's Research Hospital in early 1997 with x-ray energies of 6 and 15 MV and electron energies of 8, 10, 12, 15, 18, and 21 MeV. The 10 cm depth dose for a 100 cm SSD 10 X 10 cm2 beam is 68% and 77% for 6 and 15 MV x rays, respectively. For both x-ray energies, beam flatness is slightly better than the manufacturers specification of 3% and beam symmetry is considerably better than 1%. The double focus design of the MLC produces a sharp penumbra (5-7 mm at 6 MV and 6-8 mm at 15 MV), increasing modestly with beam size. MLC leaf leakage is less than 1.25%. The depths of the 80% depth dose for the six electron energies of 8, 10, 12, 15, 18, and 21 MeV are 2.6, 3.2, 4.0, 4.9, 6.0, and 7.4 cm, respectively. Beam flatness is typically 2%-3% for all electron energies except 21 MeV, where it reaches 4% for a 25 X 25 cm2 cone. Electron beam symmetry is better than 1% for all energies except 21 MeV, where it is equal to 1%. The results are stored electronically and may be retrieved using anonymous ftp from the American Institute of Physics, Physics Auxiliary Publication Service.  相似文献   

15.
Clinical electron beams consist of primary electrons, primary bremsstrahlung generated in the regular photon and electron collimator system determining the composite beam, and some short-range contaminant photon and electron scatter arising from the lower parts of the standard or regular electron applicator. Any beam-shaping insert placed inside the applicator causes some extra ("contaminant") bremsstrahlung and electron scatter. The new dose calculation model is based on separate treatment of these components. For the calculation of the primary electron dose we use experimentally determined electron scatter functions and differential electron scatter functions. The primary bremsstrahlung is treated as an unflattened but otherwise regular x-ray beam. The contaminant components arising from the rim area of the regular electron collimator and from beam-shaping inserts are considered separately. The behavior of the in-air ionization profiles is described using the concepts of effective electron source position and effective electron source diameter. The model has been tested for several electron energies.  相似文献   

16.
The accuracy of a CT-based dose calculation on a treatment planning system (TPS) for a radiotherapy patient with a metallic prosthesis has not previously been reported. In this study, the accuracy of the CT-based inhomogeneity correction on a pencil beam TPS (Helax TMS) was determined in a phantom containing a metallic prosthesis. A steel prosthesis phantom and a titanium prosthesis phantom were investigated. The phantoms were CT-scanned and dose plans produced on the TPS, using the CT images to provide density information for the inhomogeneity corrections. Verification measurements were performed on a linear accelerator for 6 and 15 MV x-rays. Measured dose profiles at three different depths were compared to the calculations of the TPS. For the titanium prosthesis and for 6 MV x-rays, the TPS overestimated the beam attenuation by approximately 20% at 15 and 20 cm depths in the phantom. This is due to a limitation in the density allocation of this TPS: any Hounsfield number (HN) above a certain threshold is allocated the density of steel. For the steel prosthesis, the TPS performed the correct mapping of HN to mass density. The dose calculation was within 6% for 6 MV x-rays at 15 and 20 cm depths. However. the accuracy of dose calculation varied with beam energy and depth, with large errors in the region close to the prosthesis. The TPS overestimated the dose by 11% for 6 MV and 15% for 15 MV x-rays at 11 cm depth. 2.5 cm beyond the steel prosthesis. These results highlight the limitations in the density allocation of this TPS and demonstrate shortcomings in the pencil beam dose calculation.  相似文献   

17.
The aim of this study was to determine the medical applicability of a newly developed ceramic-coated stainless steel puncture needle for performing liver biopsies. A ceramic coating was applied to a stainless steel needle using a high-density plasma coating technique. The collected specimen was dipped in 10% formalin, embedded in paraffin, sliced into 4 microm-thick sections, and stained with hematoxylin-eosin (HE). Tissue specimens were observed under a low vacuum of 664 Pa using an environmental scanning electron microscope (ESEM-2700). The surface of the tissue severed by the ceramic-coated needle was smoother than that by the stainless steel 21G ultrasonic biopsy needle according to microscopic image stained with HE, interference microscopic images, and ESEM images. In conclusion, damage to samples collected by the ceramic-coated needle is less than that by the ordinary needle.  相似文献   

18.
Accurate simulation of large electron fields may lead to improved accuracy in Monte Carlo treatment planning while simplifying the commissioning procedure. We have used measurements made with wide-open jaws and no electron applicator to adjust simulation parameters. Central axis depth dose curves and profiles of 6-21 MeV electron beams measured in this geometry were used to estimate source and geometry parameters, including those that affect beam symmetry: incident beam direction and offset of the secondary scattering foil and monitor chamber from the beam axis. Parameter estimation relied on a comprehensive analysis of the sensitivity of the measured quantities, in the large field, to source and geometry parameters. Results demonstrate that the EGS4 Monte Carlo system is capable of matching dose distributions in the largest electron field to the least restrictive of 1 cGy or 1 mm, with D(max) of 100 cGy, over the full energy range. This match results in an underestimation of the bremsstrahlung dose of 10-20% at 15-21 MeV, exceeding the combined experimental and calculational uncertainty in this quantity of 3%. The simulation of electron scattering at energies of 15-21 MeV in EGS4 may be in error. The recently released EGSnrc/BEAMnrc system may provide a better match to measurement.  相似文献   

19.
Stereotactic arc treatment of small intracranial tumors is usually performed with arcs collimated by circular cones, resulting in treatment volumes which are basically spherical. For nonspherical lesions this results in a suboptimal dose distribution. Multiple isocenters may improve the dose conformity for these lesions, at the cost of large overdosages in the target volume. To achieve improved dose conformity as well as dose homogeneity, the linac jaws (with a minimum distance of 1.0 cm to the central beam axis) can routinely be used to block part of the circular beams. The purpose of this study was to investigate the feasibility of blocking cones with diameters as small as 1.0 cm and a minimum distance between the jaw and the central beam axis of 0.3 cm. First, the reproducibility in jaw positioning and resulting dose delivery on the treatment unit were assessed. Second, the accuracy of the TPS dose calculation for these small fields was established. Finally, clinically applied treatment plans using nonblocked cones were compared with plans using the partially blocked cones for several treatment sites. The reproducibility in dose delivery on our Varian Clinac 2300 C/D machines on the central beam axis is 0.8% (1 SD). The accuracy of the treatment planning system dose calculation algorithm is critically dependent on the used fits for the penumbra and the phantom scatter. The average deviation of calculated from measured dose on the central beam axis is -1.0%+/-1.4% (1 SD), which is clinically acceptable. Partial cone blocking results in improved dose distributions for elongated tumors, such as vestibular schwannoma and uveal melanoma. Multiple isocenters may be avoided. The technique is easy to implement and requires no additional workload.  相似文献   

20.
This study describes the modeling and the experimental verification and clinical implementation of the alpha release of Pinnacle3 Monte Carlo (MC) electron beam dose calculation algorithm for patient-specific treatment planning. The MC electron beam modeling was performed for beam energies ranging from 6 to 18 MeV from a Siemens (Primus) linear accelerator using standard-shaped electron applicators and 100 cm source-to-surface distance (SSD). The agreement between MC calculations and measurements was, on average, within 2% and 2 mm for all applicator sizes. However, differences of the order of 3%-4% were noted in the off-axis dose profiles for the largest applicator modeled and for all energies. Output factors were calculated for standard electron cones and square cutouts inserted in the 10 x 10 cm2 applicator for different SSDs and were found to be within 4% of measured data. Experimental verification of the MC electron beam model was carried out using an ionization chamber and film in solid-water slab and anthropomorphic phantoms containing bone and lung materials. Agreement between calculated and measured dose distributions was within +/-3%. Clinical comparison was performed in four patient treatment plans with lesions in highly irregular anatomies, such as the ear, face, and breast, where custom-designed bolus and field shaping blocks were used in the patient treatments. For comparison purposes, treatment planning was also performed using the conventional pencil beam (PB) algorithm with the Pinnacle3 treatment planning system. Differences between MC and PB dose calculations for the patient treatment plans were significant, particularly in anatomies where the target was in close proximity to low density tissues, such as lung and air cavities. Concerning monitor unit calculations, the largest differences obtained between MC and PB algorithms were between 4.0% and 5.0% for two patients treated with oblique beams and involving highly irregular surfaces, i.e., breast and cheek. Clinical results are reported for overall uncertainty values (averaged over voxels with doses >50% dosemax) ranging from 2% to 0.3% and calculations were performed using cubic voxels with side 0.3 cm. Timing values ranged from 2 min to 24.5 h, depending on the field size, beam energy, number, and thickness of computed tomography slices used to define the patient's anatomy for the overall uncertainty values mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号