首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study is performed of Na+/H+ exchange and Ca2− mobilization in erythrocytes and platelets of patients with stage I–II chronic heart failure caused by dilative cardiomyopathy and ischemic heart disease. A significant rise in the Na+/H+ exchange rate is found in the cells of chronic heart failure patients, which correlates with an elevated erythrocyte and platelet concentration of Ca2+ and an increased “calcium” response of platelets to inductors. The findings testify to a certain functional relationship between various cation-transporting cellular systems whose change in properties upon chronic heart failure can play an important pathogenic role. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 12, pp. 572–575, December, 1994  相似文献   

2.
The effect of unilateral nephrectomy on Na+–H+ exchange in rat renal cortical brush-border membrane vesicles (BBMV) was studied by the method of acridine orange fluorescence quenching. The exchanger activity in BBMV from remnant kidney increased rapidly by 70–75% within first 30 min following uninephrectomy. Only a slight further increase was found in later stages of renal growth, i.e. 30 min to 7 days following uninephrectomy. The changes in antiporter activity were restricted toV max, whereas theK m for Na+ was similar in control and compensatory growing kidney. The increase of Na+–H+ exchange at 15 min was not affected by actinomycin D in vivo, whereas the increase at 48 h was completely abolished indicating that protein synthesis could be involved in the late, but not in the initial stimulation of renal Na+–H+ exchange. The late, but not the initial stimulations of Na+–H+ exchange were associated with elevated activities of cortical (Na++K+)-ATPase indicating that changes in antiporter activity precede those in the (Na++K+)-pump. The early stimulation of Na+–H+ exchange in BBMV in one kidney was induced also by the occlusion of blood flow through the contralateral kidney for 15 min, without removing it. Thirty min after the occlusion was removed and the reflow established, the Na+–H+ exchange in BBMV from the intact kidney decreased to the control values. The observed modulations in renal Na+–H+ exchanger may be regulated by phosphorylation-dephosphorylation events. In support, the concentration of a well known protein kinase C activator, 1,2-diacylglycerol, in the cortical tissue of the remnant kidney increased up to 100% within 5 min following unilateral nephrectomy and preceded the increase in Na+–H+ exchange. The early stimulation of Na+–H+ exchange may be a trigger in initiating the kidney growth.  相似文献   

3.
To explore further the mechanisms that regulate the Na+/H+ antiport in human platelets, we examined the effect of Na+ pump inhibition by ouabain and K+ removal from the extracellular medium on parameters of this transport system. Treatment with ouabain resulted in increased cytosolic free Ca2+ and Na+, coupled with an alkaline shift in the cytosolic pH set point for the Na+/ H+ antiport. Inhibition of the Na+ pump by the removal of K+ from the medium increased the cytosolic Na+ but not the cytosolic Ca2+; yet this treatment also produced a substantial alkaline shift in the cytosolic pH set point for the Na+/H+ antiport. This effect appeared to relate to a decline in cellular volume and it was attenuated by the Na+-K+-2Cl cotransport inhibitor, bumetanide. These findings indicate: (a) a link between the Na+ pump and the Na+/H+ antiport, mediated by the Na+/Ca2+ exchange and the cytosolic free Ca2+, and (b) a link between the Na+/H+ antiport and the Na+-K+-2Cl cotransport through cellular volume.This work was supported by grants from the National Heart, Lung, and Blood Institute (HL34807, HL42856) and the American Diabetes Association. M. Kimura is a postdoctoral research fellow of the American Heart Association, New Jersey Affiliate  相似文献   

4.
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo. GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship.  相似文献   

5.
Summary We measured the ouabain- and bumetanide-resistant Na+ efflux in Mg2+-sucrose medium (passive Na+ leak) in erythrocytes from 30 normotensive controls and 72 essential hypertensive patients. The mean values (±SEM) of the rate constant of Na+ leak (kpNa) were not significantly different between normotensives and hypertensives. Nevertheless, using the 95% confidence limits of the kpNa (in 10–3.h–1) in the normotensive group as a cut-off point, 7 (9.7%) essential hypertensives exhibited increased values (58.96±10.12) when compared with the other 65 patients (23.86±0.74). revealing increased passive Na+ permeability in the former (leak + hypertensives). Na+ fluxes depending on the Na+-K+ pump, outward Na+-K+ cotransport, and Na+-Li+ countertransport were also measured in fresh erythrocytes from the same 72 patients. Three of them (4.2%) exhibited decreased values of ouabain-sensitive Na+ efflux and 6 (8.3%) of bumetanide-sensitive Na+ efflux, while 8 patients (11.1%) showed increased values of Li+-stimulated Na+ efflux and, finally, 48 patients (59.7%) did not present any evident abnormality in these Na+ transport systems. No differences were observed between leak + hypertensives and the remaining 65 patients when both basal erythrocyte Na+ content and clinical parameters of hypertension were compared. However, Na+ efflux depending on the outward Na+-K+ cotransport was significantly higher in the leak + hypertensive subset (299.43±43.18 vs 181.52±10.76 µmol.(l cells.h)–1;P=0.0078), suggesting a compensatory phenomenon. Enhancement of Na+ permeability detected in 3% to 16% of essential hypertensives may be implicated in the pathogenesis of primary hypertension.Abbreviations ATPase adenosine triphosphatase - Dcat difference between the external Na+ concentration after incubation at 37° C and at zero time - kpNa rate constant of passive Na+ leak - Leak + hypertensive essential hypertensive patient with abnormally high erythrocyte Na+ leak - MOPS 4-morpholinopropanesulfonic acid - OBR ouabain- and bumetanide-resistant - PRA plasma renin activity - sPRA plasma renin activity stimulated after furosemide infusion - SEM standard error of the mean Supported in part by Grant 87/1078 of the Fondo de Investigaciones Sanitarias de la Seguridad Social and Grant PA85/0168 of the Comisión Asesora de Investigación Científica y Técnica  相似文献   

6.
Copper (Cu2+) intoxication has been shown to induce pathological changes in various tissues. The mechanism underlying Cu2+ toxicity is still unclear. It has been suggested that the Na+/K+-ATPase and/or a change of the membrane permeability may be involved. In this study we examined the effects of Cu2+ on the Na+ and Ca2+ homeostasis of cultured human skeletal muscle cells using the ion-selective fluorescent probes Na+-binding benzofuran isophtalate (SBFI) and Fura-2, respectively. In addition, we measured the effect of Cu2+ on the Na+/K+-ATPase activity. Cu2+ and ouabain increase the cytoplasmic free Na+ concentration ([Na+]i). Subsequent addition of Cu2+ after ouabain does not affect the rate of [Na+]i increase. Cu2+ inhibits the Na+/K+-ATPase activity with an IC50 of 51 M. The cytoplasmic free Ca2+ concentration ([Ca2+]i) remains unaffected for more than 10 min after the administration of Cu2+. Thereafter, [Ca2+]i increases as a result of the Na+/Ca2+-exchanger operating in the reversed mode. The effects of Cu2+ on the Na+ homeostasis are reversed by the reducing and chelating agent dithiothreitol and the heavy metal chelator N,N,N,N,-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). In conclusion, SBFI is a good tool to examine Na+ homeostasis in cultured human skeletal muscle cells. Under the experimental conditions used, Cu2+ does not modify the general membrane permeability, but inhibits the Na+/K+-pump leading to an increase of [Na+]i. As a consequence the operation mode of the Na+/Ca2+-exchanger reverses and [Ca2+]i rises.The authors thank staff and coworkers of the Department of Neurology of the University Hospital Nijmegen, Nijmegen for their kind cooperation in obtaining muscle biopsies. Mr. Arie Oosterhof is gratefully acknowledged for culturing of the human muscle cells. The Prinses Beatrix Fonds and the Dutch-Chinese scientific exchange program contributed financial support for this study.  相似文献   

7.
To examine the functional significance of epidermal growth factor (EGF) binding sites present on the human erythrocyte membrane [Engelmann et al. (1992) Am J Hematol 39:239–241], the effect of EGF on 45Ca2+ uptake and on 22Na+ efflux from these cells has been studied. In all cases media contained 1.25 mM Ca2+, whereas Na+ and K+ were varied. In 140 mM Na+/5 mM K+ medium EGF (250 ng/ml) stimulated 45Ca2+ uptake by 50%–90% in quin-2-loaded cells, and by up to threefold in untreated cells. Increasing extracellular K+ up to 75 mM at the expense of extracellular Na2+ stimulated the EGF-induced 45Ca2+ uptake by about twofold compared to 145 mM Na+ medium both in quin-2-loaded and in untreated cells. In 145 mM K+ medium, however, no EGF-induced 45Ca2+ uptake was detectable in quin-2-loaded cells, while in untreated cells Ca2+ entry was stimulated twofold by EGF. After increasing intracellular Na+ from 6 mmol/l cells to 18 mmol/l cells in untreated cells suspended in 145 mM K+ medium, 45Ca2+ uptake induced by EGF gradually increased. In contrast, in 140 mM Na+/5 mM K+ as well as in 70 mM Na+/75 mM K+ medium, 45Ca2+ uptake accelerated by EGF was largely unaffected by a modified red cell Na+ content. When 22Na-loaded untreated red cells were suspended in 145 mM K+ medium EGF stimulated red cell 22Na+ efflux by more than threefold. In 140 mM Na+/5 mM K+ as well as in 70 mM Na+/75 mM K+ medium, no 22Na+ efflux induced by the growth factor was evident. The results are consistent with the idea that EGF stimulates (at least) two components of 45Ca2+ uptake in human erythrocytes. One of the two is unmasked in 145 mM K+ medium, inhibited by quin-2 loading, accelerated by intracellular Na+ and appears to involve reversed Na+/Ca2+ exchange.  相似文献   

8.
Summary The influence of serum from patients with essential hypertension on the sodium efflux rate constants of human lymphocytes and on the activity of isolated (Na++K+)-ATPase was investigated. The ouabain-sensitive sodium efflux rate constant was significantly decreased (p<0.001) in the sera of 19 hypertensives (1.92±0.11 h–1) compared with the sera of 30 normotensives (2.44±0.07 h–1). The ouabain-insensitive sodium efflux was unaffected. These results corresponded with a significant difference (p<0.005) of (Na++K+)-ATPase activity (1.03±0.04 mU/ml and 0.079±0.06 mU/ml), when an isolated (Na++K+)-ATPase was incubated with the sera of 22 normotensives or 18 hypertensives. Both the rate constant of ouabain-sensitive sodium efflux and the (Na++K+)-ATPase activity correlated significantly with the diastolic and systolic blood pressure (p<0.001). These data, therefore, demonstrated the close relationship between essential hypertension and the concentration of a circulating inhibitor of the sodium pump.Abbreviations ATP Adenosine triphosphate - EGTA Ethyleneglycol bis(2-aminoethyl)-N,N,N,N-tetraacetic acid This paper contains an essential part of the thesis of K.M. presented to the Fachbereich Veterinärmedizin, GiessenThis work was supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Scho 139/16-2) and by the Fonds der Chemischen Industrie, Frankfurt/Main  相似文献   

9.
We have examined the rapid effect of 1,25-dihydroxyvitamin-D3 [1,25(OH)2D3] on apical Na+/H+ exchange activity in opossum kidney (OK) cells and in MCT cells (a culture of simian-virus-40-immortalized mouse cortical tubule cells) grown on filter support. Addition of 1,25(OH)2D3 (10 nM) for 1 min increased apical Na+/H+ exchange activity [recovery from an acid load; measured by 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein] in OK cells (by 56%) and in MCT cells (by 36%). The cellular mechanisms involved in 1,25(OH)2D3-dependent stimulation of Na+/H+ exchange were analysed in OK cells; stimulation of Na+/ H+ exchange by 1,25(OH)2D3 was not prevented by actinomycin D. Applying parathyroid hormone (PTH) reduced Na+/H+ exchange activity in OK cells (by 34% at 10 nM, 5 min); 1,25(OH)2D3 reversed PTH-induced inhibition, either when PTH was added prior to 1,25(OH)2D3 or when the two agonists were applied together. 1,25(OH)2D3 had no effect on basal OK cell cAMP content or on [Ca2+]i (fura-2). 1,25(OH)2D3 attenuated PTH-induced cAMP accumulation and had no effect on the PTH-dependent increase in [Ca2+]i. These data suggest a regulatory control (stimulation) of proximal tubular brush-border Na+/H+ exchange by 1,25(OH)2D3. This effect is non-genomic and might in part be explained by a release from cAMP-dependent control of transport activity.  相似文献   

10.
Combined blockade of Na+/Ca2+ exchange, Ca2+ uptake by mitochondria and endoplasmic reticulum usually does not prevent recovery of the basal level of intracellular Ca2+ after 1-min action of glutamate (100 M) or K+ (50 mM). However, replacement of Ca2+ with Ba2+, which cannot be transported by Ca2+-ATPase, considerably delayed the decrease in intracellular Ba2+ after its rise caused by glutamate or potassium application in all examined cells, which attest to an important role of Ca2+-ATPase in Ca2+ extrusion after the action of glutamate or K+.  相似文献   

11.
Summary The chronic effect of training on intraerythrocyte cationic concentrations and on red cell Na+,K+-ATPase pump activity was studied by comparing well-trained athletes with sedentary subjects at rest. Also the acute effect of a 50-min cross-country run on these erythrocyte measurements was studied in the athletes. At rest the intraerythrocyte potassium concentration was increased (P<0.01) in the athletes compared to that of the control subjects. The intraerythrocyte concentrations of sodium and magnesium and red cell Na+, K+-ATPase pump activity were, however, similar in the trained and the untrained subjects.As compared with the resting condition, the intraerythrocyte potassium concentration was decreased (P<0.05) after exercise in the athletes, and this was accompanied by a minor increase in the intraerythrocyte sodium concentration. Red cell Na+,K+-ATPase pump activity was slightly increased (P<0.05) after exercise.  相似文献   

12.
Numerous studies have demonstrated heightened Na+/Li+ countertransport (NLCT) activity in erythrocytes of patients with essential hypertension or diabetic nephropathy. The same carrier also contributes to the therapeutic action of lithium salt, widely used in the treatment of psychiatric disorders. However, the molecular origin of NLCT remains unknown. This study examined the role of major ion transporters in NLCT by comparative analysis of its activity and that of ion transporters providing inwardly directed 86Rb, 22Na and 32P fluxes. NLCT was below the detection limit in rat erythrocytes and ∼50-fold higher in rabbits compared to humans. Unlike NLCT, the activities of Na+,K+-ATPase, Na+,K+,2Cl cotransporter and anion exchanger were somewhat similar in the erythrocytes of these species, whereas Na+,Pi cotransport was in 1:2:6 proportion in rats, humans and rabbits, respectively. Loading of erythrocytes with Li+ for NLCT measurement did not affect the activity of Na+,Pi cotransporter. Keeping in mind that NLCT is much higher in rabbits vs humans and rats, we compared the set of membrane proteins in these species using 2-dimensional gel electrophoresis. This approach revealed 174 common spots, whereas 132 proteins were detected only in human and rabbit erythrocyte membranes. Among these proteins, we found 17 spots whose expression was higher by more than 5-fold in rabbit compared to human erythrocytes. Thus, our results argue against the involvement of major ion transporters in NLCT. They also show that comparative proteomics is a potent tool to identify the molecular origin of this carrier.  相似文献   

13.
Cells from connecting tubule and cortical collecting duct of rabbit kidney were isolated by immunodissection with mAb R2G9 and cultured on permeable filters. Confluent monolayers developed an amiloride-sensitive transepithelial potential difference of –50±1 mV (lumen negative) and a transepithelial resistance of 507±18 cm2. Transepithelial Ca2+ transport increased dose-dependently with apical [Ca2+] and, in solutions containing 1 mM Ca2+, the active transcellular Ca2+ transport rate was 92±2 nmol h–1 cm–2. Transcellular Ca2+ transport was dependent on basolateral Na+ (Na b + ). Isoosmotic substitution of Na b + for N-methylglucamine resulted in a concentration-dependent decrease in Ca2+ absorption, with maximal inhibition of 67±5%. A Hill plot of the Na+-dependence yielded a coefficient of 1.9±0.4, indicating more than one Na+ site on a Na+-dependent Ca2+ transport system. In addition, the absence of Ca b 2+ resulted in a significant increase in Ca2+ transport both in the presence and absence of Na b + . Added basolaterally, ouabain (0.1 mM) inhibited Ca2+ transport to the same extent as did Na+-free solutions, while bepridil (0.1 mM), an inhibitor of Na+/Ca2+ exchange, reduced Ca2+ transport by 32±6%. Methoxyverapamil, felodipine, flunarizine and diltiazem (10 M) were without effect. Depolarisation of the basolateral membrane, by raising [K+]b to 60 mM, significantly decreased transcellular Ca2+ transport, which is indicative of electrogenic Na+/Ca2+ exchange. In conclusion, active Ca2+ transport in the collecting system of rabbit kidney is largely driven by basolateral Na+/Ca2+ exchange. However, a residual Ca2+ absorption of about 30% was always observed, suggesting that other Ca2+ transport mechanisms, presumably a Ca2+-ATPase, participate as well.  相似文献   

14.
Parathyroid hormone (PTH) controls two proximal tubular brush border membrane transport systems, Na+/phosphate co-transport and Na+/H+ exchange. In OK cells, a cell line with proximal tubular transport characteristics, PTH acts via kinase C and kinase A activation to inhibit Na+/phosphate co-transport [6, 8, 9, 19, 22]. In the present study, we show that PTH inhibits Na+/H+ exchange and that this effect can be mimicked by pharmacological activation of kinase A and kinase C. Ionomycin-dependent increases in cytoplasmic Ca2+ concentration do not induce inhibition of Na+/H+ exchange; PTH-dependent inhibition of Na+/H+ exchange is not prevented by ionomycin or by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (Ca2+ clamping). Detailed dose-response curves for the different agonists, given either alone or in combination, suggest that the two regulatory cascades (kinase A and kinase C) are operating independent of each other and reach a common final target, resulting in 40–50% inhibition of Na+/H+ exchange. An analysis of intracellular pH sensitivity of Na+/H+ exchange suggests that inhibition is not related to a shift in set point, but is rather explained by a reduced V max of Na+/H+ exchange and/or reduced affinity for protons at the internal membrane surface. It is suggested that kinase A as well as kinase C can mediate PTH inhibition of renal proximal tubular Na+/H+ exchange and that the relative importance of a particular regulatory cascade is determined by the PTH-concentration-dependent rates in the liberation of diacylglycerol (phospholipase C/kinase C) and cAMP (adenylate cyclase/kinase A).Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulphonic acid - EDTA ethylenediaminetetraacetic acid - FCS fetal calf serum - PTH parathyroid hormone - Tris 2-amino-2-hydroxyme-thylpropane-1,3-diol - BCECF 2,7-bis(2-carboxyethyl)-5,6-carboxyfluorescein - Pi inorganic phosphate - pHi intracellular pH - Cai cytosolic free Ca2+ - BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - EGTA ethylene glycol-bis(-amino-ethylether)-N,N,N,N-tetraacetic acid - IP3 inositol 1,4,5-trisphos-phate - DAG 1,2-diacylglycerol  相似文献   

15.
Summary The most common haemodynamic abnormality in human essential hypertension is an increase in systemic vascular resistance. Morphologic substrate for increased flow resistance is a narrowing of the lumen of arteriolar resistance vessels. During the course of essential hypertension, this is associated with an increase in wall (mainly media) thickness due to hypertrophy and hyperplasia of vascular smooth muscle cells. In contrast to concepts interpreting media thickening strictly as structural adaptation to increased perfusion pressure, various lines of evidence also point to pressure independent factors. In this context, extracellular factors such as growth factors as well as alterations in the activity of intracellular messenger systems must be considered. Recent studies suggest that substances generally known to act as vasoconstrictors such as angiotensin II, noradrenaline and arginine-vasopressin may also stimulate vascular smooth muscle cell growth and proliferation. Intracellular messenger systems with possible significance in the response to trophins and/or mitogens of vascular smooth muscle cells are phospholipase C, protein kinase C and the Na+/H+-antiport. These systems have been demonstrated to be altered in hypertension supporting the concept that one endogenous factor in human essential hypertension with pathophysiological significance, at least in a subgroup of patients, may be an enhanced reactivity of vascular smooth muscle cells to trophic and mitogenic stimuli. In this context, intracellular messenger systems such as phospholipase C, protein kinase C and/or the Na+/H+-antiport may play an important pathophysiological role.

Abkürzungsverzeichnis G-Protein Guanin-Nukleotid-bindendes Protein - PLC Phospholipase C - PIP2 Phosphatidylinosit-4,5-Diphosphat - PI Phosphatidylinosit - IP3 Inosit-1,4,5-Triphosphat - DG Diacylglycerin - Kinase C Proteinkinase C - Na+ Natrium - K+ Kalium - H+ Wasserstoff - Ca++ Calcium - Mg++ Magnesium - Li+ Lithium  相似文献   

16.
Na+, K+-ATPase and Mg2+-ATPase activities were studied in neurons and glial cells of the olfactory cortex of the rat by quantitative cytophotometry in conditions of long-term potentiation (LTP), and significant changes in direction and extent were found. Na+, K+-ATPase activity decreased in neurons in the first 15 min after LTP, with subsequent elevation by 30 min. Mg2+-ATPase activity remained unchanged in these conditions. Glial cells showed significant increases in Na+, K+-ATPase activity in the initial period after LTP, with return to control by 30 min. Again, there were no significant changes in Mg2+-ATPase activity. The formation and persistence of LTP in neurons and glial cells was accompanied by significant changes in Na+, K+-ATPase activity, which were reciprocal in nature. Functional Neurochemistry Laboratory (Director N. A. Emel'yanov), I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg. Translated from Fiziologicheskii Zhurnal im. I. M. Sechenova, Vol. 81, No. 3, pp. 16–20, March, 1995.  相似文献   

17.
In recent studies, there has been a re-evaluation of the polarity of Na+/H+ exchange in Madin-Darby canine kidney (MDCK) cells. This study was designed to examine aldosterone actions on basolaterally located Na+/H+ exchange of MDCK cell monolayers grown on permeant filter supports; pHi was analysed in the absence of bicarbonate by using the pH-sensitive fluorescent probe 2,7-bis(carboxyethyl)-5,6-carboxyfluorescein. Pre-exposure of MDCK cells to aldosterone led within 10–20 min to an alkalization of pHi ( 0.3 pH unit); this effect is prevented by an addition of dimethylamiloride to the basolateral superfusate. Addition of aldosterone led to stimulation of the basolaterally located Na+/H+ exchange activity (Na+-dependent recovery from an acid load); this effect required preincubation (more then 3 min) and was observed at 0.1 nM aldosterone. Preexposure (15 min) of MDCK monolayers to phorbol 12-myristate 13-acetate also led to an activation of Na+/H+ exchange; pre-exposure to 8-bromo-cAMP led to inhibition of Na+/H+ exchange activity. An inhibitory effect of aldosterone was observed if Na+/H+ exchange activity was analysed in the presence of aldosterone; the highest inhibitory effects (20%–30%) occurred at concentrations of 5 nM and higher. Aldosterone-dependent inhibition does not require preincubation and is fully reversible; it was only observed at low (20 mM) but not at high Na+ concentrations (130 mM). The data suggest that aldosterone has an instantaneous inhibitory effect on basolaterally located Na+/H+ exchange activity under conditions of low Na+, but stimulates the rate of transport activity upon preincubation under conditions of physiological Na+ concentrations.  相似文献   

18.
Ion channels formed by canonical transient receptor potential (TRPC) proteins are considered to be key players in cellular Ca2+ homeostasis. As permeation of Ca2+ through TRPC homo- and/or heteromeric channels has been repeatedly demonstrated, analysis of the physiological role of TRPC proteins was so far based on the concept that these proteins form regulated Ca2+ entry channels. The well-recognized lack of cation selectivity of TRPC channels and the ability to generate substantial monovalent conductances that govern membrane potential and cation gradients were barely appreciated as a physiologically relevant issue. Nonetheless, recent studies suggest monovalent, specifically Na+ permeation through TRPC cation channels as an important event in TRPC signaling. TRPC-mediated Na+ entry may be converted into a distinct pattern of cellular Ca2+ signals by interaction with Na+/Ca2+ exchanger proteins. This review discusses current concepts regarding the link between Na+ entry through TRPC channels and cellular Ca2+ signaling.  相似文献   

19.
The specific inhibitor of the -aminobutyric acid (GABA) carrier, NNC-711, {1-[(2-diphenylmethylene) amino]oxyethyl}-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride, blocks the Ca2+-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca2+-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 M verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

20.
In two blood cell types, peritoneal murine macrophages and Jurkat cells (a human T cell line), we have examined whether a Na+/Ca2+ exchange was present and what could be its functional importance. In nonstimulated macrophages, the intracellular Ca2+ concentration, [Ca2+]i, was unchanged when Li+ was substituted for external Na+. However, after stimulation by platelet-activating factor (PAF), the Ca2+ response was larger when the extracellular solution contained Li+ rather than Na+ ions. In stimulated macrophages, the rate of Ca2+ extrusion was smaller in a Li+-than in a Na+-containing medium. The net electrochemical gradient for ionic movements through the Na+/Ca2+ exchanger, during the course of the response of macrophages to PAF, was determined by combining the measurements of membrane potential (in patch-clamp), of [Ca2+]i (with fura-2), and of the intracellular Na+ concentration (with sodium-binding benzofuran isophthalate). These results show that macrophages possess a Na+/Ca2+ exchange that only functions as a Ca2+ extruder, and this only when [Ca2+]i has been increased, for instance following PAF stimulation. In T lymphocytes, before or after stimulation by an anti-CD3 antibody, no Na+/Ca2+ activity could be detected by measuring either [Ca2+]i, or the rate of Ca2+ extrusion. Even if a Na+/ Ca2+ exchanger was present in these cells, its equilibrium potential would be such that it would not allow Ca2+ influx but only Ca2+ extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号