首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a conservative numerical method for the Cahn– Hilliard equation with generalized mobilities on curved surfaces in three-dimensional space. We use an unconditionally gradient stable nonlinear splitting numerical scheme and solve the resulting system of implicit discrete equations on a discrete narrow band domain by using a Jacobi-type iteration. For the domain boundary cells, we use the trilinear interpolation using the closest point method. The proposing numerical algorithm is computationally efficient because we can use the standard finite difference Laplacian scheme on three-dimensional Cartesian narrow band mesh instead of discrete Laplace–Beltrami operator on triangulated curved surfaces. In particular, we employ a mass conserving correction scheme, which enforces conservation of total mass. We perform numerical experiments on the various curved surfaces such as sphere, torus, bunny, cube, and cylinder to demonstrate the performance and effectiveness of the proposed method. We also present the dynamics of the CH equation with constant and space-dependent mobilities on the curved surfaces.  相似文献   

2.
We propose a generalized space-time domain decomposition approach for the physics-informed neural networks (PINNs) to solve nonlinear partial differential equations (PDEs) on arbitrary complex-geometry domains. The proposed framework, named eXtended PINNs ($XPINNs$), further pushes the boundaries of both PINNs as well as conservative PINNs (cPINNs), which is a recently proposed domain decomposition approach in the PINN framework tailored to conservation laws. Compared to PINN, the XPINN method has large representation and parallelization capacity due to the inherent property of deployment of multiple neural networks in the smaller subdomains. Unlike cPINN, XPINN can be extended to any type of PDEs. Moreover, the domain can be decomposed in any arbitrary way (in space and time), which is not possible in cPINN. Thus, XPINN offers both space and time parallelization, thereby reducing the training cost more effectively. In each subdomain, a separate neural network is employed with optimally selected hyperparameters, e.g., depth/width of the network, number and location of residual points, activation function, optimization method, etc. A deep network can be employed in a subdomain with complex solution, whereas a shallow neural network can be used in a subdomain with relatively simple and smooth solutions. We demonstrate the versatility of XPINN by solving both forward and inverse PDE problems, ranging from one-dimensional to three-dimensional problems, from time-dependent to time-independent problems, and from continuous to discontinuous problems, which clearly shows that the XPINN method is promising in many practical problems. The proposed XPINN method is the generalization of PINN and cPINN methods, both in terms of applicability as well as domain decomposition approach, which efficiently lends itself to parallelized computation. The XPINN code is available on $https://github.com/AmeyaJagtap/XPINNs$.  相似文献   

3.
In this paper, we are concerned with the constrained finite element method based on domain decomposition satisfying the discrete maximum principle for diffusion problems with discontinuous coefficients on distorted meshes. The basic idea of domain decomposition methods is used to deal with the discontinuous coefficients. To get the information on the interface, we generalize the traditional Neumann-Neumann method to the discontinuous diffusion tensors case. Then, the constrained finite element method is used in each subdomain. Comparing with the method of using the constrained finite element method on the global domain, the numerical experiments show that not only the convergence order is improved, but also the nonlinear iteration time is reduced remarkably in our method.  相似文献   

4.
In the paper, we develop and analyze a new mass-preserving splitting domain decomposition method over multiple sub-domains for solving parabolic equations. The domain is divided into non-overlapping multi-bock sub-domains. On the interfaces of sub-domains, the interface fluxes are computed by the semi-implicit (explicit) flux scheme. The solutions and fluxes in the interiors of sub-domains are computed by the splitting one-dimensional implicit solution-flux coupled scheme. The important feature is that the proposed scheme is mass conservative over multiple non-overlapping sub-domains. Analyzing the mass-preserving S-DDM scheme is difficult over non-overlapping multi-block sub-domains due to the combination of the splitting technique and the domain decomposition at each time step. We prove theoretically that our scheme satisfies conservation of mass over multi-block non-overlapping sub-domains and it is unconditionally stable. We further prove the convergence and obtain the error estimate in $L^2$-norm. Numerical experiments confirm theoretical results.  相似文献   

5.
We present a parallel Cartesian method to solve elliptic problems with complex immersed interfaces. This method is based on a finite-difference scheme and is second-order accurate in the whole domain. The originality of the method lies in the use of additional unknowns located on the interface, allowing to express straightforwardly the interface transmission conditions. We describe the method and the details of its parallelization performed with the PETSc library. Then we present numerical validations in two dimensions, assorted with comparisons to other related methods, and a numerical study of the parallelized method.  相似文献   

6.
This paper extends the adaptive moving mesh method developed by Tang and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations. The algorithm consists of two "independent" parts: the time evolution of the RHD equations and the (static) mesh iteration redistribution. In the first part, the RHD equations are discretized by using a high resolution finite volume scheme on the fixed but nonuniform meshes without the full characteristic decomposition of the governing equations. The second part is an iterative procedure. In each iteration, the mesh points are first redistributed, and then the cell averages of the conservative variables are remapped onto the new mesh in a conservative way. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed method.  相似文献   

7.
We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.  相似文献   

8.
The massively parallel, nonlinear, three-dimensional (3D), toroidal, electrostatic, gyrokinetic, particle-in-cell (PIC), Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in present day tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii or gyroradii per plasma minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the P2LIB library of field and particle management routines developed for UCLA's UPIC Framework of conventional PIC codes. The gyro-averaging specific to gyrokinetic codes is simplified by the use of replicated arrays for efficient charge accumulation and force deposition. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain nonlinear results within round-off. Benchmarks of UCAN2 on the Cray XC30 Edison at NERSC demonstrate ideal scaling when problem size is increased along with processor number up to the largest power of 2 available, namely 131,072 processors. These particle weak scaling benchmarks also indicate that the 1 nanosecond per particle per time step and 1 TFlops barriers are easily broken by UCAN2 with 1 billion particles or more and 2000 or more processors.  相似文献   

9.
In this paper we propose a new nonlinear cell-centered finite volume scheme on general polygonal meshes for two dimensional anisotropic diffusion problems, which preserves discrete maximum principle (DMP). The scheme is based on the so-called diamond scheme with a nonlinear treatment on its tangential flux to obtain a local maximum principle (LMP) structure. It is well-known that existing DMP preserving diffusion schemes suffer from the fact that auxiliary unknowns should be presented as a convex combination of primary unknowns. In this paper, to get rid of this constraint a nonlinearization strategy is introduced and it requires only a second-order accurate approximation for auxiliary unknowns. Numerical results show that this scheme has second-order accuracy, preserves maximum and minimum for solutions and is conservative.  相似文献   

10.
This paper develops an efficient positivity-preserving finite volume scheme for the two-dimensional nonequilibrium three-temperature radiation diffusion equations on general polygonal meshes. The scheme is formed as a predictor-corrector algorithm. The corrector phase obtains the cell-centered solutions on the primary mesh, while the predictor phase determines the cell-vertex solutions on the dual mesh independently. Moreover, the flux on the primary edge is approximated with a fixed stencil and the nonnegative cell-vertex solutions are not reconstructed. Theoretically, our scheme does not require any nonlinear iteration for the linear problems, and can call the fast nonlinear solver (e.g. Newton method) for the nonlinear problems. The positivity, existence and uniqueness of the cell-centered solutions obtained on the corrector phase are analyzed, and the scheme on quasi-uniform meshes is proved to be $L^2$- and $H^1$-stable under some assumptions. Numerical experiments demonstrate the accuracy, efficiency and positivity of the scheme on various distorted meshes.  相似文献   

11.
The Optimized Schwarz Waveform Relaxation algorithm, a domain decomposition method based on Robin transmission condition, is becoming a popular computational method for solving evolution partial differential equations in parallel. Along with well-posedness, it offers a good balance between convergence rate, efficient computational complexity and simplicity of the implementation. The fundamental question is the selection of the Robin parameter to optimize the convergence of the algorithm. In this paper, we propose an approach to explicitly estimate the Robin parameter which is based on the approximation of the transmission operators at the subdomain interfaces, for the linear/nonlinear Schrödinger equation. Some illustrating numerical experiments are proposed for the one- and two-dimensional problems.  相似文献   

12.
We propose a decoupled and positivity-preserving discrete duality finite volume (DDFV) scheme for anisotropic diffusion problems on polyhedral meshes with star-shaped cells and planar faces. Under the generalized DDFV framework, two sets of finite volume (FV) equations are respectively constructed on the dual and primary meshes, where the ones on the dual mesh are derived from the ingenious combination of a geometric relationship with the construction of the cell matrix. The resulting system on the dual mesh is symmetric and positive definite, while the one on the primary mesh possesses an M-matrix structure. To guarantee the positivity of the two categories of unknowns, a cutoff technique is introduced. As for the local conservation, it is conditionally maintained on the dual mesh while strictly preserved on the primary mesh. More interesting is that the FV equations on the dual mesh can be solved independently, so that the two sets of FV equations are decoupled. As a result, no nonlinear iteration is required for linear problems and a general nonlinear solver could be used for nonlinear problems. In addition, we analyze the well-posedness of numerical solutions for linear problems. The properties of the presented scheme are examined by numerical experiments. The efficiency of the Newton method is also demonstrated by comparison with those of the fixed-point iteration method and its Anderson acceleration.  相似文献   

13.
The high-order gas-kinetic scheme (HGKS) has achieved success in simulating compressible flows with Cartesian meshes. To study the flow problems in general geometries, such as the flow over a wing-body, the development of HGKS in general curvilinear coordinates becomes necessary. In this paper, a two-stage fourth-order gas-kinetic scheme is developed for the Euler and Navier-Stokes solutions in the curvilinear coordinates from one-dimensional to three-dimensional computations. Based on the coordinate transformation, the kinetic equation is transformed first to the computational space, and the flux function in the gas-kinetic scheme is obtained there and is transformed back to the physical domain for the update of flow variables inside each control volume. To achieve the expected order of accuracy, the dimension-by-dimension reconstruction based on the WENO scheme is adopted in the computational domain, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. In the two-stage fourth-order gas-kinetic scheme, the point values as well as the spatial derivatives of conservative variables at Gaussian quadrature points have to be used in the evaluation of the time dependent flux function. The point-wise conservative variables are obtained by ratio of the above reconstructed data, and the spatial derivatives are reconstructed through orthogonalization in physical space and chain rule. A variety of numerical examples from the accuracy tests to the solutions with strong discontinuities are presented to validate the accuracy and robustness of the current scheme for both inviscid and viscous flows. The precise satisfaction of the geometrical conservation law in non-orthogonal mesh is also demonstrated through the numerical example.  相似文献   

14.
A Newton/LU-SGS (lower-upper symmetric Gauss-Seidel) iteration implicit method was developed to solve two-dimensional Euler and Navier-Stokes equations by the DG/FV hybrid schemes on arbitrary grids. The Newton iteration was employed to solve the nonlinear system, while the linear system was solved with LU-SGS iteration. The effect of several parameters in the implicit scheme, such as the CFL number, the Newton sub-iteration steps, and the update frequency of Jacobian matrix, was investigated to evaluate the performance of convergence history. Several typical test cases were simulated, and compared with the traditional explicit Runge-Kutta (RK) scheme. Firstly the Couette flow was tested to validate the order of accuracy of the present DG/FV hybrid schemes. Then a subsonic inviscid flow over a bump in a channel was simulated and the effect of parameters was alsoinvestigated. Finally, the implicit algorithm was applied to simulate a subsonic inviscid flow over a circular cylinder and the viscous flow in a square cavity. The numerical results demonstrated that the present implicit scheme can accelerate the convergence history efficiently. Choosing proper parameters would improve the efficiency of the implicit scheme. Moreover, in the same framework, the DG/FV hybrid schemes are more efficient than the same order DG schemes.  相似文献   

15.
In order to solve the partial differential equations that arise in the Hartree-Fock theory for diatomic molecules and in molecular theories that include electron correlation, one needs efficient methods for solving partial differential equations. In this article, we present numerical results for a two-variable model problem of the kind that arises when one solves the Hartree-Fock equations for a diatomic molecule. We compare results obtained using the spline collocation and domain decomposition methods with third-order Hermite splines to results obtained using the more-established finite difference approximation and the successive over-relaxation method. The theory of domain decomposition presented earlier is extended to treat regions that are divided into an arbitrary number of subregions by families of lines parallel to the two coordinate axes. While the domain decomposition method and the finite difference approach both yield results at the micro-Hartree level, the finite difference approach with a 9-point difference formula produces the same level of accuracy with fewer points. The domain decomposition method has the strength that it can be applied to problems with a large number of grid points. The time required to solve a partial differential equation for a fine grid with a large number of points goes down as the number of partitions increases. The reason for this is that the length of time necessary for solving a set of linear equations in each subregion is very much dependent upon the number of equations. Even though a finer partition of the region has more subregions, the time for solving the set of linear equations in each subregion is very much smaller. This feature of the theory may well prove to be a decisive factor for solving the two-electron pair equation, which – for a diatomic molecule – involves solving partial differential equations with five independent variables. The domain decomposition theory also makes it possible to study complex molecules by dividing them into smaller fragments thatare calculated independently. Since the domain decomposition approach makes it possible to decompose the variable space into separate regions in which the equations are solved independently, this approach is well-suited to parallel computing.  相似文献   

16.
We describe an operator splitting technique based on physics rather than on dimension for the numerical solution of a nonlinear system of partial differential equations which models three-phase flow through heterogeneous porous media. The model for three-phase flow considered in this work takes into account capillary forces, general relations for the relative permeability functions and variable porosity and permeability fields. In our numerical procedure a high resolution, nonoscillatory, second order, conservative central difference scheme is used for the approximation of the nonlinear system of hyperbolic conservation laws modeling the convective transport of the fluid phases. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem. This numerical procedure has been used to investigate the existence and stability of nonclassical shock waves (called transitional or undercompressive shock waves) in two-dimensional heterogeneous flows, thereby extending previous results for one-dimensional flow problems. Numerical experiments indicate that the operator splitting technique discussed here leads to computational efficiency and accurate numerical results.  相似文献   

17.
The implicit 2D3V particle-in-cell (PIC) code developed to study the interaction of ultrashort pulse lasers with matter [G. M. Petrov and J. Davis, Computer Phys. Comm. 179, 868 (2008); Phys. Plasmas 18, 073102 (2011)] has been parallelized using MPI (Message Passing Interface). The parallelization strategy is optimized for a small number of computer cores, up to about 64. Details on the algorithm implementation are given with emphasis on code optimization by overlapping computations with communications. Performance evaluation for 1D domain decomposition has been made on a small Linux cluster with 64 computer cores for two typical regimes of PIC operation: "particle dominated", for which the bulk of the computation time is spent on pushing particles, and "field dominated", for which computing the fields is prevalent. For a small number of computer cores, less than 32, the MPI implementation offers a significant numerical speed-up. In the "particle dominated" regime it is close to the maximum theoretical one, while in the "field dominated" regime it is about 75-80% of the maximum speed-up. For a number of cores exceeding 32, performance degradation takes place as a result of the adopted 1D domain decomposition. The code parallelization will allow future implementation of atomic physics and extension to three dimensions.  相似文献   

18.
Weighted interior penalty discontinuous Galerkin method is developed to solve the two-dimensional non-equilibrium radiation diffusion equation on unstructured mesh. There are three weights including the arithmetic, the harmonic, and the geometric weight in the weighted discontinuous Galerkin scheme. For the time discretization, we treat the nonlinear diffusion coefficients explicitly, and apply the semi-implicit integration factor method to the nonlinear ordinary differential equations arising from discontinuous Galerkin spatial discretization. The semi-implicit integration factor method can not only avoid severe time step limits, but also take advantage of the local property of DG methods by which small sized nonlinear algebraic systems are solved element by element with the exact Newton iteration method. Numerical results are presented to demonstrate the validity of discontinuous Galerkin method for high nonlinear and tightly coupled radiation diffusion equation.  相似文献   

19.
We generalize the existing distorted Born iterative T-matrix (DBIT) method to seismic full-waveform inversion (FWI) based on the scalar wave equation, so that it can be used for seismic FWI in arbitrary anisotropic elastic media with variable mass densities and elastic stiffness tensors. The elastodynamic wave equation for an arbitrary anisotropic heterogeneous medium is represented by an integral equation of the Lippmann-Schwinger type, with a 9-dimensional wave state (displacement-strain) vector. We solve this higher-dimensional Lippmann-Schwinger equation using a transition operator formalism used in quantum scattering theory. This allows for domain decomposition and novel variational estimates. The tensorial nonlinear inverse scattering problem is solved iteratively by using an expression for the Fréchet derivatives of the scattered wavefield with respect to elastic stiffness tensor fields in terms of modified Green's functions and wave state vectors that are updated after each iteration. Since the generalized DBIT method is consistent with the Gauss-Newton method, it incorporates approximate Hessian information that is essential for the reduction of multi-parameter cross-talk effects. The DBIT method is implemented efficiently using a variant of the Levenberg-Marquard method, with adaptive selection of the regularization parameter after each iteration. In a series of numerical experiments based on synthetic waveform data for transversely isotropic media with vertical symmetry axes, we obtained a very good match between the true and inverted models when using the traditional Voigt parameterization. This suggests that the effects of cross-talk can be sufficiently reduced by the incorporation of Hessian information and the use of suitable regularization methods. Since the generalized DBIT method for FWI in anisotropic elastic media is naturally target-oriented, it may be particularly suitable for applications to seismic reservoir characterization and monitoring. However, the theory and method presented here is general.  相似文献   

20.
The local one-dimensional multisymplectic scheme (LOD-MS) is developed for the three-dimensional (3D) Gross-Pitaevskii (GP) equation in Bose-Einstein condensates. The idea is originated from the advantages of multisymplectic integrators and from the cheap computational cost of the local one-dimensional (LOD) method. The 3D GP equation is split into three linear LOD Schrödinger equations and an exactly solvable nonlinear Hamiltonian ODE. The three linear LOD Schrödinger equations are multisymplectic which can be approximated by multisymplectic integrator (MI). The conservative properties of the proposed scheme are investigated. It is mass-preserving. Surprisingly, the scheme preserves the discrete local energy conservation laws and global energy conservation law if the wave function is variable separable. This is impossible for conventional MIs in nonlinear Hamiltonian context. The numerical results show that the LOD-MS can simulate the original problems very well. They are consistent with the numerical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号