首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply in this study an area preserving level set method to simulate gas/water interface flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible fluid flow are approximated by the fifth-order accurate upwinding combined compact difference (UCCD) scheme. This scheme development employs two coupled equations to calculate the first- and second-order derivative terms in the momentum equations. For accurately predicting the level set value, the interface tracking scheme is also developed to minimize phase error of the first-order derivative term shown in the pure advection equation. For the purpose of retaining the long-term accurate Hamiltonian in the advection equation for the level set function, the time derivative term is discretized by the sixth-order accurate symplectic Runge-Kutta scheme. Also, to keep as a distance function for ensuring the front having a finite thickness for all time, the re-initialization equation is used. For the verification of the optimized UCCD scheme for the pure advection equation, two benchmark problems have been chosen to investigate in this study. The level set method with excellent area conservation property proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam-break, Rayleigh-Taylor instability, two-bubble rising in water, and droplet falling problems.  相似文献   

2.
This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.  相似文献   

3.
In the present work, a new type of coupled compact difference scheme has been proposed for the solution of computational acoustics and flow problems. The proposed scheme evaluates the first, the second and the fourth derivative terms simultaneously. Derived compact difference scheme has a significant spectral resolution and a physical dispersion relation preserving (DRP) ability over a considerable wavenumber range when a fourth order four stage Runge-Kutta scheme is used for the time integration. Central stencil has been used for the present numerical scheme to evaluate spatial derivative terms. Derived scheme has the capability of adding numerical diffusion adaptively to attenuate spurious high wavenumber oscillations responsible for numerical instabilities. The DRP nature of the proposed scheme across a wider wavenumber range provides accurate results for the model wave equations as well as computational acoustic problems. In addition to the attractive feature of adaptive diffusion, present scheme also helps to control spurious reflections from the domain boundaries and is projected as an alternative to the perfectly matched layer (PML) technique.  相似文献   

4.
In this paper a three-step scheme is applied to solve the Camassa-Holm (CH) shallow water equation. The differential order of the CH equation has been reduced in order to facilitate development of numerical scheme in a comparatively smaller grid stencil. Here a three-point seventh-order spatially accurate upwinding combined compact difference (CCD) scheme is proposed to approximate the first-order derivative term. We conduct modified equation analysis on the CCD scheme and eliminate the leading discretization error terms for accurately predicting unidirectional wave propagation. The Fourier analysis is carried out as well on the proposed numerical scheme to minimize the dispersive error. For preserving Hamiltonians in Camassa-Holm equation, a symplecticity conserving time integrator has been employed. The other main emphasis of the present study is the use of u−P−α formulation to get nondissipative CH solution for peakon-antipeakon and soliton-anticuspon head-on wave collision problems.  相似文献   

5.
In this paper, a novel implementation of immersed interface method combined with Stokes solver on a MAC staggered grid for solving the steady two-fluid Stokes equations with interfaces. The velocity components along the interface are introduced as two augmented variables and the resulting augmented equation is then solved by the GMRES method. The augmented variables and/or the forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines and are then applied to the fluid through the jump conditions. The Stokes equations are discretized on a staggered Cartesian grid via a second order finite difference method and solved by the conjugate gradient Uzawa-type method. The numerical results show that the overall scheme is second order accuracy. The major advantages of the present IIM-Stokes solver are the efficiency and flexibility in terms of types of fluid flow and different boundary conditions. The proposed method avoids solution of the pressure Poisson equation, and comparisons are made to show the advantages of time savings by the present method. The generalized two-phase Stokes solver with correction terms has also been applied to incompressible two-phase Navier-Stokes flow.  相似文献   

6.
In this article we propose a higher-order space-time conservative method for hyperbolic systems with stiff and non-stiff source terms as well as relaxation systems. We call the scheme a slope propagation (SP) method. It is an extension of our scheme derived for homogeneous hyperbolic systems [1]. In the present inhomogeneous systems the relaxation time may vary from order of one to a very small value. These small values make the relaxation term stronger and highly stiff. In such situations underresolved numerical schemes may produce spurious numerical results. However, our present scheme has the capability to correctly capture the behavior of the physical phenomena with high order accuracy even if the initial layer and the small relaxation time are not numerically resolved. The scheme treats the space and time in a unified manner. The flow variables and their slopes are the basic unknowns in the scheme. The source term is treated by its volumetric integration over the space-time control volume and is a direct part of the overall space-time flux balance. We use two approaches for the slope calculations of the flow variables, the first one results directly from the flux balance over the control volumes, while in the second one we use a finite difference approach. The main features of the scheme are its simplicity, its Jacobian-free and Riemann solver-free recipe, as well as its efficiency and high order accuracy. In particular we show that the scheme has a discrete analog of the continuous asymptotic limit. We have implemented our scheme for various test models available in the literature such as the Broadwell model, the extended thermodynamics equations, the shallow water equations, traffic flow and the Euler equations with heat transfer. The numerical results validate the accuracy, versatility and robustness of the present scheme.  相似文献   

7.
A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.  相似文献   

8.
The development of high-order schemes has been mostly concentrated on the limiters and high-order reconstruction techniques. In this paper, the effect of the flux functions on the performance of high-order schemes will be studied. Based on the same WENO reconstruction, two schemes with different flux functions, i.e., the fifth-order WENO method and the WENO-Gas-Kinetic scheme (WENO-GKS), will be compared. The fifth-order finite difference WENO-SW scheme is a characteristic variable reconstruction based method which uses the Steger-Warming flux splitting for inviscid terms, the sixth-order central difference for viscous terms, and three stages Runge-Kutta time stepping for the time integration. On the other hand, the finite volume WENO-GKS is a conservative variable reconstruction based method with the same WENO reconstruction. But it evaluates a time dependent gas distribution function along a cell interface, and updates the flow variables inside each control volume by integrating the flux function along the boundary of the control volume in both space and time. In order to validate the robustness and accuracy of the schemes, both methods are tested under a wide range of flow conditions: vortex propagation, Mach 3 step problem, and the cavity flow at Reynolds number 3200. Our study shows that both WENO-SW and WENO-GKS yield quantitatively similar results and agree with each other very well provided a sufficient grid resolution is used. With the reduction of mesh points, the WENO-GKS behaves to have less numerical dissipation and present more accurate solutions than those from the WENO-SW in all test cases. For the Navier-Stokes equations, since the WENO-GKS couples inviscid and viscous terms in a single flux evaluation, and the WENO-SW uses an operator splitting technique, it appears that the WENO-SW is more sensitive to the WENO reconstruction and boundary treatment. In terms of efficiency, the finite volume WENO-GKS is about 4 times slower than the finite difference WENO-SW in two dimensional simulations. The current study clearly shows that besides high-order reconstruction, an accurate gas evolution model or flux function in a high-order scheme is also important in the capturing of physical solutions. In a physical flow, the transport, stress deformation, heat conduction, and viscous heating are all coupled in a single gas evolution process. Therefore, it is preferred to develop such a scheme with multi-dimensionality, and unified treatment of inviscid and dissipative terms. A high-order scheme does prefer a high-order gas evolution model. Even with the rapid advances of high-order reconstruction techniques, the first-order dynamics of the Riemann solution becomes the bottleneck for the further development of high-order schemes. In order to avoid the weakness of the low order flux function, the development of high-order schemes relies heavily on the weak solution of the original governing equations for the update of additional degree of freedom, such as the non-conservative gradients of flow variables, which cannot be physically valid in discontinuous regions.  相似文献   

9.
This paper presents an exponential compact higher order scheme for Convection-Diffusion Equations (CDE) with variable and nonlinear convection coefficients. The scheme is O(h4) for one-dimensional problems and produces a tri-diagonal system of equations which can be solved efficiently using Thomas algorithm. For two-dimensional problems, the scheme produces an O(h4+k4) accuracy over a compact nine point stencil which can be solved using any line iterative approach with alternate direction implicit procedure. The convergence of the iterative procedure is guaranteed as the coefficient matrix of the developed scheme satisfies the conditions required to be positive. Wave number analysis has been carried out to establish that the scheme is comparable in accuracy with spectral methods. The higher order accuracy and better rate of convergence of the developed scheme have been demonstrated by solving numerous model problems for one- and two-dimensional CDE, where the solutions have the sharp gradient at the solution boundary.  相似文献   

10.
The high-order gas-kinetic scheme (HGKS) has achieved success in simulating compressible flows with Cartesian meshes. To study the flow problems in general geometries, such as the flow over a wing-body, the development of HGKS in general curvilinear coordinates becomes necessary. In this paper, a two-stage fourth-order gas-kinetic scheme is developed for the Euler and Navier-Stokes solutions in the curvilinear coordinates from one-dimensional to three-dimensional computations. Based on the coordinate transformation, the kinetic equation is transformed first to the computational space, and the flux function in the gas-kinetic scheme is obtained there and is transformed back to the physical domain for the update of flow variables inside each control volume. To achieve the expected order of accuracy, the dimension-by-dimension reconstruction based on the WENO scheme is adopted in the computational domain, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. In the two-stage fourth-order gas-kinetic scheme, the point values as well as the spatial derivatives of conservative variables at Gaussian quadrature points have to be used in the evaluation of the time dependent flux function. The point-wise conservative variables are obtained by ratio of the above reconstructed data, and the spatial derivatives are reconstructed through orthogonalization in physical space and chain rule. A variety of numerical examples from the accuracy tests to the solutions with strong discontinuities are presented to validate the accuracy and robustness of the current scheme for both inviscid and viscous flows. The precise satisfaction of the geometrical conservation law in non-orthogonal mesh is also demonstrated through the numerical example.  相似文献   

11.
New surgical techniques require fine control from the surgeon's point of view. Until recently, the necessary experience was only obtainable through traditional training protocols (using cadavers, animals, etc.). However, numerous training simulators have now been developed for use in this area. We present a new approach based on a three-dimensional finite element software and on different kinds of linear and nonlinear elastic constitutive equations that is able to predict realistic results. To classify these equations in terms of accuracy, we performed ex-vivo experimental measurements on lamb kidneys. The software has been applied to soft tissue deformation, namely lamb kidney and human uterus, and the numerical results have been compared to experimental ones.  相似文献   

12.
Are extensions to continuum formulations for solving fluid dynamic problems in the transition-to-rarefied regimes viable alternatives to particle methods? It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. These inaccuracies are attributed primarily to the linear approximations of the stress and heat flux terms in the Navier-Stokes equations. The inclusion of higher-order terms, such as Burnett or high-order moment equations, could improve the predictive capabilities of such continuum formulations, but there has been limited success in the shock structure calculations, especially for the high Mach number case. Here, after reformulating the viscosity and heat conduction coefficients appropriate for the rarefied flow regime, we will show that the Navier-Stokes-type continuum formulation may still be properly used. The equations with generalization of the dissipative coefficients based on the closed solution of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation, are solved using the gas-kinetic numerical scheme. This paper concentrates on the non-equilibrium shock structure calculations for both monatomic and diatomic gases. The Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the quantitative difference between the translational and rotational temperatures inside the shock layer. Variations of shear stress, heat flux, temperatures, and densities in the internal structure of the shock waves are compared with, (a) existing theoretical solutions of the Boltzmann solution, (b) existing numerical predictions of the direct simulation Monte Carlo (DSMC) method, and (c) available experimental measurements. The present continuum formulation for calculating the shock structures for monatomic and diatomic gases in the Mach number range of 1.2 to 12.9 is found to be satisfactory.  相似文献   

13.
Lagrangian methods are widely used in many fields for multi-material compressible flow simulations such as in astrophysics and inertial confinement fusion (ICF), due to their distinguished advantage in capturing material interfaces automatically. In some of these applications, multiple internal energy equations such as those for electron, ion and radiation are involved. In the past decades, several staggered-grid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly. These schemes can be easily extended to solve problems with multiple internal energy equations. However, such schemes are typically not conservative for the total energy. Recently, significant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping. However, these schemes are commonly designed to solve the Euler equations in the form of the total energy, therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications. Such modifications, if not designed carefully, may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy. In this paper, we establish an equivalency relationship between the cell-centered discretizations of the Euler equations in the forms of the total energy and of the internal energy. By a carefully designed modification in the implementation, the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equations and meanwhile it does not lose its total energy conservation property. An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations. Several two dimensional numerical examples for both Euler equations and three-temperature hydrodynamic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving, accuracy and non-oscillatory performance.  相似文献   

14.
For steady Euler equations in complex boundary domains, high-order shockcapturing schemes usually suffer not only from the difficulty of steady-state convergence but also from the problem of dealing with physical boundaries on Cartesian grids to achieve uniform high-order accuracy. In this paper, we utilize a fifth-order finite difference hybrid WENO scheme to simulate steady Euler equations, and the same fifth-order WENO extrapolation methods are developed to handle the curved boundary. The values of the ghost points outside the physical boundary can be obtained by applying WENO extrapolation near the boundary, involving normal derivatives acquired by the simplified inverse Lax-Wendroff procedure. Both equivalent expressions involving curvature and numerical differentiation are utilized to transform the tangential derivatives along the curved solid wall boundary. This hybrid WENO scheme is robust for steady-state convergence and maintains high-order accuracy in the smooth region even with the solid wall boundary condition. Besides, the essentially non-oscillation property is achieved. The numerical spectral analysis also shows that this hybrid WENO scheme has low dispersion and dissipation errors. Numerical examples are presented to validate the high-order accuracy and robust performance of the hybrid scheme for steady Euler equations in curved domains with Cartesian grids.  相似文献   

15.
Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years. Similar to Monte Carlo methods, the stochastic collocation methods are non-intrusive in that they can be implemented via repetitive execution of an existing deterministic solver without modifying it. The choice of collocation points leads to a variety of stochastic collocation methods including tensor product method, Smolyak method, Stroud 2 or 3 cubature method, and adaptive Stroud method. Another type of collocation method, the probabilistic collocation method (PCM), has also been proposed and applied to flow in porous media. In this paper, we discuss these methods in terms of their accuracy, efficiency, and applicable range for flow in spatially correlated random fields. These methods are compared in details under different conditions of spatial variability and correlation length. This study reveals that the Smolyak method and the PCM outperform other stochastic collocation methods in terms of accuracy and efficiency. The random dimensionality in approximating input random fields plays a crucial role in the performance of the stochastic collocation methods. Our numerical experiments indicate that the required random dimensionality increases slightly with the decrease of correlation scale and moderately from one to multiple physical dimensions.  相似文献   

16.
Hemodynamics is a complex problem with several distinct characteristics; fluid is non-Newtonian, flow is pulsatile in nature, flow is three-dimensional due to cholesterol/plague built up, and blood vessel wall is elastic. In order to simulate this type of flows accurately, any proposed numerical scheme has to be able to replicate these characteristics correctly, efficiently, as well as individually and collectively. Since the equations of the finite difference lattice Boltzmann method (FDLBM) are hyperbolic, and can be solved using Cartesian grids locally, explicitly and efficiently on parallel computers, a program of study to develop a viable FDLBM numerical scheme that can mimic these characteristics individually in any model blood flow problem was initiated. The present objective is to first develop a steady FDLBM with an immersed boundary (IB) method to model blood flow in stenoic artery over a range of Reynolds numbers. The resulting equations in the FDLBM/IB numerical scheme can still be solved using Cartesian grids; thus, changing complex artery geometry can be treated without resorting to grid generation. The FDLBM/IB numerical scheme is validated against known data and is then used to study Newtonian and non-Newtonian fluid flow through constricted tubes. The investigation aims to gain insight into the constricted flow behavior and the non-Newtonian fluid effect on this behavior.  相似文献   

17.
BACKGROUND: We have developed velocity-flow urodynamics using Doppler sonography based on the hypothesis that microbubbles formed in the urethra are responsible for Doppler signals. In order to confirm this hypothesis derived from Bernoulli's principle, we investigated the simultaneous detection of cavitation noise and Doppler signals in an experimental system. METHODS: An experimental circuit was built in which a stenosis was created using a glass or silicon tube with tap water used as the sample fluid. Doppler signals, pressure before and after the stenosis, flow rate, flow velocity and cavitation noise were measured. Direct detection of cavitation with a high-speed charged-coupled device (CCD) camera was conducted in the glass tube. The relationship between cross-sectional area and flow velocity in terms of the detection of Doppler signals was analyzed in the silicon tube study. RESULTS: In the glass tube study, a high-speed CCD camera clearly detected masses of microbubbles associated with cavitation. The range of flow rates creating cavitation completely corresponded with those producing Doppler signals detected by ultrasonography. A similar correlation was observed in the silicon tube study, which showed that a low flow velocity of 41.5 cm/sec through a stenosis with a cross-sectional area of 20 mm(2) created Doppler signals at a flow rate of 8.3 mL/sec. CONCLUSION: The results of the present study confirmed that microbubbles created in flowing urine are responsible for Doppler signals. Measurement of velocity-flow urodynamics has great potential to become a non-invasive and reliable alternative to conventional pressure- flow urodynamic studies.  相似文献   

18.
In this study, we compare different diffuse and sharp interface schemes of direct-forcing immersed boundary — thermal lattice Boltzmann method (IB-TLBM) for non-Newtonian flow over a heated circular cylinder. Both effects of the discrete lattice and the body force on the momentum and energy equations are considered, by applying the split-forcing Lattice Boltzmann equations. A new technique based on predetermined parameters of direct forcing IB-TLBM is presented for computing the Nusselt number. The study covers both steady and unsteady regimes (20相似文献   

19.
In this paper an explicit finite-difference time-domain scheme for solving the Maxwell's equations in non-staggered grids is presented. The proposed scheme for solving the Faraday's and Ampère's equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell's equations are also preserved discretely all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta scheme. The remaining spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are then discretized to provide an accurate mathematical dispersion relation equation that governs the numerical angular frequency and the wavenumbers in two space dimensions. To achieve the goal of getting the best dispersive characteristics, we propose a fourth-order accurate space centered scheme which minimizes the difference between the exact and numerical dispersion relation equations. Through the computational exercises, the proposed dual-preserving solver is computationally demonstrated to be efficient for use to predict the long-term accurate Maxwell's solutions.  相似文献   

20.
This paper presents a new Lagrangian type scheme for solving the Euler equations of compressible gas dynamics. In this new scheme the system of equations is discretized by Runge-Kutta Discontinuous Galerkin (RKDG) method, and the mesh moves with the fluid flow. The scheme is conservative for the mass, momentum and total energy and maintains second-order accuracy. The scheme avoids solving the geometrical part and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the non-oscillatory property of the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号