首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of endogenous gamma interferon (IFN-gamma) in protective immunity against blood-stage Plasmodium chabaudi AS malaria was studied using IFN-gamma gene knockout (GKO) and wild-type (WT) C57BL/6 mice. Following infection with 10(6) parasitized erythrocytes, GKO mice developed significantly higher parasitemia during acute infection than WT mice and had severe mortality. In infected GKO mice, production of interleukin 12 (IL-12) p70 and tumor necrosis factor alpha in vivo and IL-12 p70 in vitro by splenic macrophages was significantly reduced compared to that in WT mice and the enhanced nitric oxide (NO) production observed in infected WT mice was completely absent. WT and GKO mice had comparable numbers of total nucleated spleen cells and B220(+) and Mac-1(+) spleen cells both before and after infection. Infected WT mice, however, had significantly more F4/80(+), NK1.1(+), and F4/80(+)Ia(+) spleen cells than infected GKO mice; male WT had more CD3(+) cells than male GKO mice. In comparison with those from WT mice, splenocytes from infected GKO mice had significantly higher proliferation in vitro in response to parasite antigen or concanavalin A stimulation and produced significantly higher levels of IL-10 in response to parasite antigen. Infected WT mice produced more parasite-specific immunoglobulin M (IgM), IgG2a, and IgG3 and less IgG1 than GKO mice. Significant gender differences in both GKO and WT mice in peak parasitemia levels, mortality, phenotypes of spleen cells, and proliferation of and cytokine production by splenocytes in vitro were apparent during infection. These results thus provide unequivocal evidence for the central role of endogenous IFN-gamma in the development of protective immunity against blood-stage P. chabaudi AS.  相似文献   

2.
The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudi AS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-gamma) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-gamma levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-alpha) levels were significantly increased in KO mice and were significantly higher than TNF-alpha levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-gamma and TNF-alpha production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.  相似文献   

3.
In vitro studies have suggested a role for interferon gamma (IFN-gamma) in host defense against disseminated candidiasis, but in vivo studies are inconclusive. We utilized homozygous IFN-gamma knockout (GKO) mice to determine if the cytokine is essential in host defense against this disease. Genotypes of mice were determined by PCR with specific primers for the normal or disrupted IFN-gamma gene. The GKO status of the mice was confirmed by an enzyme-linked immunosorbent assay, which showed no detectable IFN-gamma produced by their splenocytes stimulated by concanavalin A. To test the susceptibility of GKO mice to candidiasis, the animals were infected either intravenously (i.v.) or intragastrically (i.g.) with Candida albicans. GKO mice infected i.v. survived as long as wild-type (WT) mice and showed no difference in Candida CFU counts in liver, spleen, or kidneys compared to those for WT mice. When animals were given Candida i.g., at 3 h or at 10 or 21 days after infection, there was no dissemination of Candida to the lung, liver, spleen, or kidneys for either GKO or WT mice. There was no difference in Candida CFU counts recovered from the stomach or intestines between GKO and WT mice. Histological examination of the stomach cardial-atrium fold, where the fungus was located, showed that GKO mice did not have evidence of more tissue damage or fungal invasion than WT mice. Finally, the jejunum for both types of mice showed no evidence of tissue damage or fungal invasion. These studies indicate that IFN-gamma is not essential in host defense against C. albicans that originates from a mucosal site or that is given directly into the bloodstream in a mouse model.  相似文献   

4.
We examined the immunobiological responses to Histoplasma capsulatum in lungs of gamma interferon (IFN-gamma) knockout mice (GKO mice). Naive GKO mice succumbed by day 9 to intranasal challenge with 2.5 x 10(6) yeasts, whereas all wild-type (WT) mice survived for 45 days. Compared to lungs of WT mice, the lungs of acutely infected GKO mice exhibited dramatically elevated numbers of CFU in lungs and significantly higher levels of tumor necrosis factor alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF) but not interleukin-12 (IL-12) or IL-4. To determine if IFN-gamma is necessary in reexposure histoplasmosis, GKO and WT mice were inoculated with 10(4) yeasts intranasally and given amphotericin B for 3 weeks. Six weeks later, mice were rechallenged with 2.5 x 10(6) yeasts. All GKO mice died by day 6, whereas all WT mice survived for 45 days. Lungs of GKO mice contained substantially elevated numbers of CFU and higher TNF-alpha and GM-CSF levels but not IL-12 or IL-4. Thus, IFN-gamma is requisite for control of pulmonary histoplasmosis in naive and reexposed mice.  相似文献   

5.
6.
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium that can cause severe infection in the immunocompromised host, especially in human immunodeficiency virus-infected patients. However, little is known about the pathogenesis of this infection. Because patients suffering from M. kansasii infection are severely compromised in their cellular immune response, we studied the course of infection in CD4+ cell knockout (KO) mice. Wild-type (WT) mice and CD4+ KO mice were infected with 10(5) cfu of M. kansasii. Although previously shown to be susceptible to Mycobacterium tuberculosis infection, CD4+ KO mice demonstrated no impairment in clearing infection with M. kansasii when compared with WT animals, despite reduced pulmonary inflammation (reduced granuloma formation and lymphocyte infiltration in the lungs). Pulmonary IFN-gamma levels and M. kansasii-induced IFN-gamma production by splenocytes from infected animals were reduced in CD4+ KO mice, confirming that these mice were defective in the M. kansasii-specific T helper cell type 1 immune response. Furthermore, mice deficient for IFN-gamma, IL-12p35, IL-12p40, or IL-18 also displayed a normal host defense against pulmonary infection with M. kansasii. These data suggest that CD4+ cells, IFN-gamma, and an intact T helper cell type 1 response play a limited role in protective immunity against pulmonary M. kansasii infection.  相似文献   

7.
Blood-stage Plasmodium chabaudi AS infection was controlled by 4 weeks in mice with deletion of tumor necrosis factor p55 and p75 receptors (TNFR-knockout [KO]) and control wild-type (WT) mice, although female TNFR-KO mice showed slightly but significantly higher parasitemia immediately following the peak. Serum interleukin 12 (IL-12) p70 and gamma interferon (IFN-gamma) levels were similar but tumor necrosis factor alpha levels were significantly higher in TNFR-KO mice than in WT controls. Splenic IL-12 receptor beta1 and beta2 and IFN-gamma mRNA expression, as well as spleen cell production of IFN-gamma and IL-4, were comparable in both mouse types, but IL-10 production was significantly higher in cells from TNFR-KO mice than in cells from WT mice. Lipopolysaccharide-induced NO secretion by splenic macrophages in vitro was significantly reduced but systemic NO3- levels were similar in infected TNFR-KO and WT mice.  相似文献   

8.
The mechanisms leading to granuloma caseation, a hallmark of tuberculosis (TB) in humans, are poorly understood. Lung histopathology of C57BL/6 (WT) mice 16 weeks after aerosol infection with Mycobacterium avium strain TMC724 is uniquely characterized by centrally necrotizing granulomas, strongly resembling human TB lesions. However, IFN-gamma-deficient (GKO) and IFN-gamma-receptor-deficient (GRKO) mice did not develop granuloma necrosis following M. avium infection. Comparison of differentially expressed genes in infected WT and GKO lungs by DNA microarray and RNase protection assays revealed that the angiostatic chemokines CXCL9-11 were significantly reduced in GKO mice. In contrast, angiogenic mediators such as angiopoietin and vascular endothelial growth factor, and angiogenic chemokines such as CXCL2, CCL3, and CCL4, remained unchanged or were expressed at higher levels than in infected WT mice, suggesting impaired neovascularization of the granuloma as a possible mechanism for caseation in WT mice. Granuloma vascularization was significantly decreased in central, but not peripheral, areas of granulomas of infected WT compared to GKO mice. In contrast to GRKO mice, WT mice showed signs of severe hypoxia in cells immediately surrounding the necrotic core of granulomas as measured immunohistochemically with a reagent detecting pimonidazole adducts. To test the hypothesis that CXCR3, the common receptor for the angiostatic chemokines CXCL9-11, is involved in granuloma caseation, histomorphology was assessed in M. avium-infected mice deficient for CXCR3 (CXCR3-KO). 16 weeks after infection, these mice developed caseating granulomas similar to WT mice. We conclude that IFN-gamma causes a dysbalance between angiostatic and angiogenic mediators and a concomitant reduction in granuloma vascularization, but that CXCR3-targeted chemokines are not sufficient to induce granuloma necrosis in a mouse model of mycobacteria-induced immunopathology.  相似文献   

9.
To determine the role of interleukin-12 (IL-12) in primary and secondary immunity to a model intracellular bacterium, we have comprehensively evaluated infection with Francisella tularensis LVS in three murine models of IL-12 deficiency. Mice lacking the p40 protein of IL-12 (p40 knockout [KO] mice) and mice treated in vivo with neutralizing anti-IL-12 antibodies survived large doses of primary and secondary LVS infection but never cleared bacteria and exhibited a chronic infection. In dramatic contrast, mice lacking the p35 protein (p35 KO mice) of heterodimeric IL-12 readily survived large doses of primary sublethal LVS infection as well as maximal secondary lethal challenge, with only a slight delay in clearance of bacteria. LVS-immune wild-type (WT) lymphocytes produced large amounts of gamma interferon (IFN-gamma), but p35 KO and p40 KO lymphocytes produced much less; nonetheless, similar amounts of NO were found in all cultures containing immune lymphocytes, and all immune lymphocytes were equally capable of controlling intracellular growth of LVS in vitro. Purified CD4(+) and CD8(+) T cells from both WT and p40 KO mice controlled intracellular growth, even though T cells from WT mice produced much more IFN-gamma than those from p40 KO mice, and p40 KO T cells did not adopt a Th2 phenotype. Thus, while IL-12 p70 stimulation of IFN-gamma production may be important for bacteriostasis, IL-12 p70 is not necessary for appropriate development of LVS-immune T cells that are capable of controlling intracellular bacterial growth and for clearance of primary or secondary LVS infection. Instead, an additional mechanism dependent on the IL-12 p40 protein, either alone or in another complex such as the newly discovered heterodimer IL-23, appears to be responsible for actual clearance of this intracellular bacterium.  相似文献   

10.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a virulent molecule specific for tachyzoites of T. gondii. The expression of T.g.HSP70 rapidly increases just before death of the host, indicating that T.g.HSP70 functions as a danger signal during lethal acute T. gondii infection. In the present study, T.g.HSP70 was proven to be capable of inducing lethal anaphylactic reaction in T. gondii-infected wild-type (WT) mice. Anaphylactic reaction appeared within the first hour after intraperitoneal injection of T.g.HSP70 and was characterized by a series of consequent symptoms until death. T.g.HSP70-induced anaphylactic reaction was not observed in IFN-gamma knockout (GKO) mice, indicating the involvement of IFN-gamma in the reaction. The anaphylactic reaction was transferable to GKO mice by splenocytes but not serum from infected WT mice. Also, this reaction occurred in B cell-deficient mice, indicating that T.g.HSP70-induced anaphylactic reaction occurred through an Ig-independent pathway. The messenger RNA (mRNA) expression of IFN-gamma increased significantly in splenocytes from T. gondii-infected WT mice after T.g.HSP70 injection. Furthermore, the mRNA expression of platelet-activating factor (PAF) acetylhydrolase in WT, but not GKO mice, distinctly increased during the occurrence of T.g.HSP70-induced anaphylactic reaction, indicating the involvement of PAF in T.g.HSP70-induced anaphylactic reaction. Treatment with PAF receptor antagonist rescued WT mice from the anaphylactic reaction. These data demonstrated the involvement of IFN-gamma-dependent PAF activation in T.g.HSP70-induced anaphylactic reaction.  相似文献   

11.
Aiming to clarify the role of endogenous interleukin-12 (IL-12) in protective immunity against blood stages of Plasmodium chabaudi chabaudi (AS), we evaluated the course of infection in IL-12p40 gene knockout (IL-12p40KO) and wild-type (WT) C57BL/6 mice, focusing (1) on the ability of T cells to develop adequate type 1 responses and (2) on the potentiality of macrophages to respond to parasites, interferon-gamma (IFN-gamma), or both. We observed that IL-12p40KO mice develop significantly higher parasitemias during the acute infection, although mice from both groups clear the parasites within a month and similarly eliminate a secondary challenge. Thus, fully protective immunity to P. c. chabaudi can be generated in the absence of IL-12. However, this cytokine may promote parasite control during the early phase of infection. The increased acute parasitemia of IL-12p40KO mice was associated with both impaired IFN-gamma and nitric oxide (NO) response by spleen cells. Because stimulation with recombinant IFN-gamma (rIFN-gamma) failed to improve the NO response in IL-12p40KO macrophages, we investigated whether these cells have an intrinsic defect. Analysis of peritoneal macrophages revealed that IL-12p40KO cells produce higher levels of transforming growth factor-beta1 (TGF-beta1) compared with WT cells and respond to infected erythrocytes or rIFN-gamma by releasing little NO. Moreover, IL-12p40KO macrophages had a severely impaired ability to internalize opsonized infected erythrocytes, suggesting that the low effector profile assumed by these cells may compromise antibody-mediated immunity. Taken together, our results support the idea that the absence of IL-12p40 not only affects IFN-gamma production but also has deep consequences in macrophage effector functions that may contribute to exacerbation of the early phase of P. c. chabaudi malaria.  相似文献   

12.
To understand the role of the proinflammatory cytokine interleukin-1 (IL-1) in mycobacterial inflammation, IL-1 alpha/beta double-knockout (KO) mice were produced. These mice were infected with either Mycobacterium tuberculosis H37Rv by the airborne route using an airborne infection apparatus, and their capacities to control mycobacterial growth, granuloma formation, cytokine, and nitric oxide (NO) production were examined. The IL-1 alpha/beta mice developed significantly larger (p < 0.01) granulomatous, but not necrotic, lesions in their lungs than wild-type (WT) mice after infection with H37Rv. Inflammatory lesions, but not granulomas, were observed in spleen and liver tissues from both IL-1 alpha/beta KO and wild-type mice. Granulomatous lesion development in IL-1 alpha/beta KO mice was not significantly inhibited by treatment with exogenous recombinant IL-1 alpha/beta. Compared with wild-type mice, splenic IFN-gamma and IL-12 levels were within the normal range. NO production by cultured alveolar macrophages from IL-1 alpha/beta KO mice was lower than in wild-type mice but were increased by the addition of recombinant IL-1 alpha/beta. Our data clearly indicate that IL-1 is important for the generation of early-phase protective immunity against mycobacterial infection.  相似文献   

13.
14.
The role of cytokines in the control of tissue parasitism and pathogenesis of experimental Chagas' disease was investigated. Wild-type and different cytokine as well as inducible nitric oxide synthase (iNOS) knockout mice were infected with the Colombian strain of Trypanosoma cruzi, and the kinetics of tissue parasitism, inflammatory reaction, parasitemia, and mortality were determined. We demonstrate the pivotal role of the interleukin (IL)-12/interferon (IFN)-gamma/iNOS axis and the antagonistic effect of IL-4 in controlling heart tissue parasitism, inflammation, and host resistance to acute infection with T. cruzi. Further, the heart and central nervous system were shown the main sites of reactivation of T. cruzi infection in mice lacking functional genes for IFN-gamma and IL-12, respectively. Our results also show that in contrast to IFN-gamma knockout (KO) mice, splenocytes from IL-12 KO mice infected with T. cruzi produced low levels of IFN-gamma upon stimulation with antigen. Consistently, high levels of anti-T. cruzi IgG2a antibodies were detected in the sera from IL-12 KO, but not from IFN-gamma KO mice, infected with the Colombian strain of T. cruzi. Thus, our results suggest that the level of IFN-gamma deficiency is a major determinant of the site of reactivation of T. cruzi infection in immunocompromised host.  相似文献   

15.
Intravenous injection of Rhodococcus aurantiacus into mice causes granulomatous inflammation dependent on endogenous interferon-gamma (IFN-gamma). This study investigated the mechanism of granuloma formation with an adoptive transfer system in IFN-gamma knockout (IFN-gamma(-/-)) mice. IFN-gamma(-/-) mice infected with R. aurantiacus did not develop granulomas, and high titres of endogenous interleukin-10 (IL-10) were detected in spleen extracts at 2 weeks after infection. The adoptive transfer of splenocytes from infected wild-type (IFN-gamma(+/+)) mice did not restore granuloma formation, although this treatment diminished IL-10 production in IFN-gamma(-/-) mice. Adoptive transfer of splenocytes from infected IFN-gamma(-/-) mice into infected IFN-gamma(+/+) reduced granuloma formation. These results suggest that splenocytes of IFN-gamma(-/-) mice suppress granuloma formation. On the other hand, although IFN-gamma production induced by R. aurantiacus infection was detected in nude mice, which are deficient in T cells, granuloma formation was not induced in them. However, adoptive transfer of immune splenocytes from either IFN-gamma(+/+) mice or IFN-gamma(-/-) mice could induce granuloma formation. This means that splenocytes of IFN-gamma(-/-) mice have the ability to both induce and suppress granuloma formation. Induction of granuloma is probably dependent on both T cells and IFN-gamma produced by non-T cells. It is suggested that the role of T cells in granuloma formation is not dependent on their IFN-gamma production.  相似文献   

16.
We have previously shown that splenocytes from mice acutely infected with Trypanosoma cruzi exhibit high levels of nitric oxide (NO)-mediated apoptosis. In the present study, we used the gamma interferon (IFN-gamma)-knockout (IFN-gamma(-/-)) mice to investigate the role of IFN-gamma in modulating apoptosis induction and host protection during T. cruzi infection in mice. IFN-gamma(-/-) mice were highly susceptible to infection and exhibited significant reduction of NO production and apoptosis levels in splenocytes but normal lymphoproliferative response compared to the infected wild-type (WT) mice. Furthermore, IFN-gamma modulates an enhancement of Fas and Fas-L expression after infection, since the infected IFN-gamma(-/-) mice showed significantly lower levels of Fas and Fas-L expression. The addition of recombinant murine IFN-gamma to spleen cells cultures from infected IFN-gamma(-/-) mice increased apoptosis levels, Fas expression, and NO production. In the presence of IFN-gamma and absence of NO, although Fas expression was maintained, apoptosis levels were significantly reduced but still higher than those found in splenocytes from uninfected mice, suggesting that Fas-Fas-L interaction could also play a role in apoptosis induction in T. cruzi-infected mice. Moreover, in vivo, the treatment of infected WT mice with the inducible nitric oxide synthase inhibitor aminoguanidine also led to decreased NO and apoptosis levels but not Fas expression, suggesting that IFN-gamma modulates apoptosis induction by two independent and distinct mechanisms: induction of NO production and of Fas and Fas-L expression. We suggest that besides being of crucial importance in mediating resistance to experimental T. cruzi infection, IFN-gamma could participate in the immune response control through apoptosis modulation.  相似文献   

17.
Fumonisin B(1) (FB(1)) produces species-specific and organ-specific toxicity, including equine leukoencephalomalacia, porcine pulmonary edema, and hepatic or renal damage in other animals. FB(1) causes inhibition of ceramide synthase, leading to accumulation of free sphingoid bases. We previously reported that such cytokines as tumor necrosis factor-alpha (TNF-alpha) modify FB(1)-induced hepatic apoptosis in male mice. FB(1) also caused induction of interferon-gamma (IFN-gamma) in mouse liver, and, therefore, it was worthwhile to determine the role IFN-gamma plays in FB(1) toxicity. In the current study, male IFN-gamma-knockout (GKO) mice and their wild-type (WT) counterparts, C57BL/6J, were treated subcutaneously (s.c.) with 2.25 mg/kg/day of FB(1) for 5 days and sampled 1 day after the last injection. The levels of circulating liver enzymes were increased in WT animals but considerably less in GKO mice. Reduced hepatotoxicity in GKO mice was evident by histologic evaluation and enumeration of apoptotic cells. The induction of TNF-alpha and interleukin-12 (IL-12) p40 by FB(1) in liver was less in GKO mice compared with WT animals. The GKO mice also had a reduced accumulation of liver sphinganine than did WT mice after FB(1) treatment. Results suggested the implication of IFN-gamma in FB(1)-induced hepatotoxicity, which can be explained by a lack of TNF-alpha and IL-12 amplification in the liver of the GKO mice. In addition, the GKO mice had altered expression of various apoptotic and antiapoptotic factors in liver. These changes were accompanied by a greater number of proliferating cells in the liver of GKO mice after FB(1) treatment, which may also contribute to the reduced hepatotoxicity of FB(1) in GKO mice. Whereas the GKO mice show reduced sensitivity to FB(1) and FB(1) treatment elevates IFN-gamma expression, decreased hepatotoxicity to FB(1) could result from alterations in sphingolipid metabolism in the GKO strain.  相似文献   

18.
To facilitate identification of the effector mechanism(s) responsible for gamma interferon (IFN-gamma)-mediated host resistance to Legionella pneumophila, a murine model of legionellosis in BALB/c mice with a targeted disruption in the IFN-gamma gene (gamma knockout [GKO] mice) was developed. Immunocompetent BALB/c mice and GKO mice were inoculated intratracheally with virulent L. pneumophila (10(6) bacteria per mouse), and bacterial clearance and the pulmonary inflammatory response were assessed. L. pneumophila did not replicate in, and was rapidly cleared from, the lungs of immunocompetent BALB/c mice, demonstrating that immunocompetent BALB/c mice are resistant to replicative L. pneumophila pulmonary infections. In contrast, similarly infected GKO mice developed persistent, replicative intrapulmonary L. pneumophila infections with extrapulmonary dissemination of the bacteria to the spleen. Histopathologic and flow cytometric analysis of L. pneumophila-infected lung tissue demonstrated that while immunocompetent BALB/c mice develop multifocal pneumonitis which resolves, similarly infected GKO mice develop diffuse pneumonitis with persistent neutrophil recruitment into the lung. Intratracheal administration of exogenous IFN-gamma to L. pneumophila-infected GKO mice facilitated intrapulmonary clearance of the bacteria, confirming the pivotal role of IFN-gamma in innate host defenses to L. pneumophila lung infection in this murine host. The potential role of endogenous reactive nitrogen intermediates, including nitric oxide (NO), in IFN-gamma-mediated resistance to L. pneumophila pulmonary infections in immunocompetent BALB/c mice was subsequently assessed. Macrophage inducible nitric oxide synthetase (an enzyme responsible for the production of NO) was induced in alveolar cells from L. pneumophila-infected immunocompetent BALB/c mice (with maximal expression at 48 h postinfection) but was not induced in similarly infected GKO mice. However, administration of the NO synthetase inhibitor N-monomethyl-L-arginine did not significantly inhibit clearance of L. pneumophila from the lung of immunocompetent BALB/c mice (compared with that in similarly infected mice not administered N-monomethyl-L-arginine). In contrast, we have previously demonstrated that IFN-gamma-induced host resistance to replicative L. pneumophila lung infections in a susceptible murine host (A/J mice) is mediated, in part, by endogenous NO. Taken together, these studies identify a differing role of endogenous NO in IFN-gamma-mediated resistance to L. pneumophila pulmonary infection in susceptible and resistant murine hosts.  相似文献   

19.
Compared to wild-type (WT) mice, schistosome granulomas in Stat6 knockout (KO) mice lacked eosinophils and had Th1 features. Interleukin-4 (IL-4) acts through Stat6 in assisting Th2 cell development. The importance of Stat6 for Th2-cell development within schistosome granulomas had not been explored. Therefore we studied gamma interferon (IFN-gamma), IL-4, and IL-5 production in granulomas from Stat6 KO and WT mice. Dispersed granuloma cells from Stat6 KO and WT mice made similar amounts of IL-4 and IL-5. Only Stat6 KO granuloma cells released IFN-gamma. Granuloma T cells contained most of the IL-4, IL-5, and IFN-gamma mRNA and secreted these cytokines. In Stat6 KO mice, 16.6% of the granuloma cells were CD4(+). Of these, 10.7% stained for IFN-gamma and/or IL-4 by intracytoplasmic flow analysis. Few CD4(-) T cells stained positively. The IL-4-producing T cells did not stain for DX5 or with labeled alpha-GalCer CD1d tetramer, suggesting an absence of NK T cells. Thus, conventional Th cells in Stat6 KO granulomas produce IFN-gamma and Th2 cytokines. Stat6 limits IFN-gamma production but is unnecessary for Th2-cell development or localization within the granuloma.  相似文献   

20.
Chemokines and chemokine receptors play a role in cell recruitment during granulomatous inflammatory reactions. Here, we evaluated the expression of chemokines and chemokine receptors and their regulation by IFN-gamma in the course of Paracoccidioides brasiliensis (Pb) infection in mice. We found an association between KC and MIP-1alpha (CCL3) production and neutrophil infiltration in the lungs of Pb-infected mice during the early acute phase of infection. High levels of RANTES/CCL5, MCP-1/CCL2, IP-10/CXCL10, and Mig/CXCL9 simultaneously with mononuclear cell infiltration in the lungs was found. In the absence of IFN-gamma (GKO mice) we observed increased production of KC and MIP-1alpha and chronic neutrophilia. Moreover, we found a change in the chemokine receptor profiles expressed by wild-type (WT) versus GKO animals. Increased expression of CXCR3 and CCR5, and low levels of CCR3 and CCR4 were observed in the lungs of Pb-infected WT mice, whereas the opposite effect was observed in the lungs of GKO mice. Consistent with these results, infected cells from WT mice preferentially migrated in response to IP-10 (CXCR3 ligand), while those from GKO mice migrated in response to eotaxin/CCL11 (CCR3 ligand). These results suggest that IFN-gamma modulates the expression of chemokines and chemokine receptors as well as the kind of cells that infiltrate the lungs of Pb-infected mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号