首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Interleukin-12 (IL-12) may play a central role in the development and progression of rheumatoid arthritis by driving the immune response towards T helper 1 (Th1) type responses characterized by high IFN-gamma and low IL-4 production. In this study we investigated the effect of auranofin (AF), an anti-rheumatic gold compound, on IL-12 production in mouse macrophages and dendritic cells, and studied whether AF-mediated inhibition of IL-12 production could regulate a cytokine profile of antigen (Ag)-primed CD4(+) Th cells. 2. Treatment with AF significantly inhibited IL-12 production in lipopolysaccharide (LPS)-stimulated macrophages and also in CD40L-stimulated dendritic cells. AF-pretreated macrophages reduced their ability to induce IFN-gamma and increased the ability to induce IL-4 in Ag-primed CD4(+) T cells. AF did not influence the cell surface expression of the class II MHC molecule and the costimulatory molecules CD80 and CD86. 3. Addition of recombinant IL-12 to cultures of AF-pretreated macrophages and CD4(+) T cells restored IFN-gamma production in Ag-primed CD4(+) T cells. 4. The in vivo administration of AF resulted in the inhibition of IL-12 production by macrophages stimulated in vitro with LPS or heat-killed Listeria monocytogenes (HKL), leading to the inhibition of Th1 cytokine profile (decreased IFN-gamma and increased IL-4 production) in Ag-primed CD4(+) T cells. 5. These findings may explain some known effects of AF including anti-rheumatic effects and the inhibition of encephalitogenicity, and point to a possible therapeutic use of AF in the Th1-mediated immune diseases such as autoimmune diseases.  相似文献   

2.
Autoimmunity results from the dysregulation of the immune system leading to tissue damage. Th1 and Th17 cells are known to be cellular mediators of inflammation in autoimmune diseases. The specific cytokine milieu within the site of inflammation or within secondary lymphatic tissues is important during the priming and effector phases of T cell response. In this review, we will address the nature of the inflammatory response in the context of autoimmune disease, specifically we will discuss the role of dendritic cells following stimulation of their innate pathogen recognition receptors in directing the development of T cell responses. We will focus on how dendritic cell subsets change the balance between major players in autoimmunity, namely Th1, Th17 and regulatory T cells. Th17 cells, once thought to only act as pathogenic effectors through production of IL-17, have been shown to have regulatory properties as well with co-production of the anti-inflammatory cytokine IL-10 by a subset now referred to as regulatory Th17 cells. IL-17 is important in the induction of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and inflammatory bowel disease (IBD). Study of the inflammatory process following encounter with agents that stimulate the innate immune responses such as adjuvants opens a new horizon for the discovery of therapeutic agents including those derived from microorganisms. Microbial products such as adjuvants that function as TLR ligands may stimulate the immune system by interacting with Toll-like receptors (TLR) on antigen-presenting cells. Microbial agents such as Bacille Calmette-Guérin (BCG) or Freund's adjuvant (CFA) that induce a Th17 response are protective in models of autoimmune diseases particularly EAE and type 1 diabetes (T1D). The induction of innate immunity by these microbial products alters the balance in the cytokine microenvironment and may be responsible for modulation of the inflammation and protection from autoimmunity.  相似文献   

3.
The discovery of two distinct subsets of helper T cells, IFN-γ-producing Th1 cells and IL-4-producing Th2 cells, about three decades ago enabled us to understand the immunopathology of cell-mediated and allergic inflammatory diseases in humans. The observation that T cell-mediated experimental autoimmune diseases can be induced in mice lacking Th1 and Th2 cell responses prompted many immunologists to hypothesize that there might be additional subsets in helper T cell population which mediate autoimmunity in the absence of Th1 and Th2 cells. Consequently, multiple independent research groups identified IL-17-expressing RORγt+CD4+ T cell population as a distinct subset of helper T cells which promotes autoimmune tissue inflammation. Subsequent studies have revealed that innate immune cells, including γδ T cells, NKT cells and innate lymphoid cells, also produce type 17 cytokines and contribute to tissue inflammation. In this review, we discuss our current understanding on the biology of IL-17 and the therapeutic potential of targeting IL-17 for the treatment of immune disorders in humans.  相似文献   

4.
摘要: 白细胞介素 7 受体 (IL7R) 属于Ⅰ型细胞因子受体家族成员的跨膜受体, 由特异性α链和γ链组成, 在淋巴前体细胞、 祖 B 细胞、 T 细胞、 胸腺细胞、 树突状细胞、 髓样细胞及单核细胞中均可表达。生理情况下, IL7R 是淋巴细胞发育中的关键调控分子。IL7R 在多发性硬化 (MS) 的发生中发挥了重要的作用, 其多态性与 MS 密切相关; IL7Rα 中和抗体可显著改善实验性变态反应脑脊髓炎小鼠模型的表型。上述研究提示 IL7R 可能是 MS 新的治疗靶点。  相似文献   

5.
Interleukin (IL)-33 is a member of the IL-1 family. Serum levels of IL-33 are increased in inflammatory bowel diseases (IBD), suggesting that IL-33 is involved in the pathogenesis of IBD, although its role is not clear. In this study, we investigated the role of IL-33 in the regulation of T-helper (Th) cell and B cell responses in mesenteric lymph nodes (MLN) in mice with dextran sulfate sodium (DSS)-induced colitis. Here, we showed that IL-33-treated mice were susceptible to DSS-induced colitis as compared with PBS-treated mice. The production of spontaneous inflammatory cytokines production by macrophages or dendritic cells (DC) in MLN significantly increased, and the responses of Th2, regulatory T cells (Treg) and regulatory B cells (Breg) were markedly upregulated, while Th1 responses were significantly downregulated in MLN of IL-33-treated mice with DSS-induced colitis. Our results demonstrate that IL-33 contributes to the pathogenesis of DSS-induced colitis in mice by promoting Th2 responses, but suppressing Th1 responses, in MLN. Moreover, IL-33 treatment increased Breg and Treg responses in MLN in mice with DSS-induced colitis. Therefore, modulation of IL-33/ST2 signaling is implicated as a novel biological therapy for inflammatory diseases associated with Th1 responses.  相似文献   

6.
B cells play a pivotal role in host adaptive immunity against pathogenic microorganisms, but may also maladaptively contribute to the pathogenesis of autoimmune diseases. In contrast, distinct B cell subsets have the capacity to regulate host immune response, and suppress inflammation. B regulatory cells are a rare population of endogenous Blymphocytes defined in part by production of the anti-inflammatory cytokine IL-10. Although "natural" B regulatory cells exist in vivo, the low frequency of B regulatory cells may be a limiting factor on their impact in autoimmune ailments. In answer to this unmet need, we have developed a novel strategy for alternate lymphoid activation: fusokines. These wholly engineered chimeric leukines fuse two functionally unrelated cytokines for the purpose of alternate immune modulation. The GM-CSF- and IL-15-derived fusokine: GIFT15, possesses entirely novel and unheralded immune modulating properties mediated through the IL15 receptor which reprograms naive B cells into B regulatory cells (Bregs). In this article, we review the current approaches to generate Bregs in vitro, and highlight gain-of-function mechanisms by which GIFT15- induced Bregs abrogate pathogenic autoimmunity in mice. We also demonstrate that the human equivalent of inducible Bregs may also serve as a new potent therapeutic tool for treatment of autoimmune disease.  相似文献   

7.
Quercetin is a popular flavonoid compound that is biosynthesized by plants; it is suggested to modulate a variety of inflammatory responses of macrophages and T lymphocytes. Oral administration of quercetin in arthritic rats dramatically diminishes clinical signs of arthritis. Moreover, quercetin ameliorates experimental autoimmune encephalomyelitis, which is associated with Th1-mediated immune responses. Like quercetin inhibits macrophage-induced cytokine production, it also blocks IL-12-dependent JAK-STAT signaling in Th cells. Despite the anti-inflammatory effects of quercetin acting through Th cells, the regulatory mechanisms remain unclear. Here, we studied the function of quercetin in Th cells and found that quercetin suppressed both IFNgamma and IL-2 production upon T cell receptor stimulation. Furthermore, we uncovered the regulatory mechanisms of quercetin involved in the inhibition of cytokine production during Th cell activation. The fact that quercetin-derived IFNgamma suppression was blocked in T-bet-deficient Th cells demonstrated quercetin act through the modulation of T-bet expression. Whereas IL-2 inhibition by quercetin was independent of T-bet expression, quercetin diminished IL-2R alpha expression, which is critical for positive regulatory loop of IL-2 autoactivation. Taken together, quercetin is suggested to repress both IFNgamma and IL-2 cytokine production by independent mechanisms; T-bet-dependent IFNgamma suppression and IL-2R alpha-dependent IL-2 inhibition.  相似文献   

8.
9.
10.
Iloprost, a stable prostaglandin I2 (PGI2) analog, can inhibit allergic inflammation in an ovalbumin (OVA)-induced asthma model via inhibition of airway dendritic cell (DC) function. However, the underlying mechanism of PGI2 signaling-mediated immunosuppression remains unclear. This study explored whether iloprost-treated DCs can suppress inflammation by promoting antigen-specific regulatory T cell (Treg) differentiation through PGI2-G-protein-coupled receptor (IP). We established an allergic lung inflammation model using a hydrogel biomaterial delivery system and observed that iloprost significantly suppressed OVA-induced Th2 lung inflammation and increased the frequency of OVA-specific Tregs in vivo. We further observed that iloprost-treated DCs displayed tolerogenic characteristics, including low inflammatory cytokine (IL-12, TNF-α, IL-6, IL-23) expression levels, high anti-inflammatory cytokine (IL-10) production, and a semimature phenotype. In addition, iloprost-treated DCs increased OVA-specific CD4+Foxp3+ T cell differentiation from naïve T cells in an IP-dependent pathway in vitro and in vivo. Blocking experiments showed that iloprost-treated DCs promoted Treg differentiation, at least in part, through programmed death ligand 1 (PD-L1), whereas iloprost-induced PD-L1 expression in DCs was through the IP receptor. Furthermore, iloprost treatment suppressed DC-mediated airway inflammation and increased the frequency of OVA-specific Tregs through PD-L1 in vivo. Taken together, these results show that PGI2-IP signaling mediated by iloprost in DCs may lead to immune tolerance, suggesting that the PGI2 analog has the potential to be applied therapeutically for tolerogenic DC immunotherapy in autoimmune diseases or allergic asthma.  相似文献   

11.
Th17 cells in inflammation   总被引:1,自引:0,他引:1  
Na?ve T cells are multipotential precursors that differentiate into various effector subsets, such as T helper type 1 (Th1) and Th2 cells, which are characterized by their distinct functions. The IL-17-producing T helper (Th17) cell has been recently identified as a new subset of the T helper cell and a mediator of inflammation associated with various autoimmune diseases. Although several cytokines participate in Th17 cell development, IL-6 and TGF-β are key factors for the generation of Th17 cells from na?ve T cells. On the other hand, IL-6 inhibits TGF-β-induced regulatory T (Treg) cells, which suppress adaptive T cell responses and prevent autoimmunity. Recent studies suggest that it is an effective approach in the treatment of various autoimmune and inflammatory diseases to normalize the balance between Treg and Th17 cell development. Here, we review the discovery of the Th17 subset, its properties and relationship with several autoimmune diseases.  相似文献   

12.
Interleukin-12 (IL-12) plays a central role in the immune system by driving the immune response towards T helper 1 (Th1) type responses characterized by high IFN-gamma and low IL-4 production. In this study we investigated whether retinoid-mediated inhibition of interleukin-12 production in mouse macrophages could regulate cytokine profile of antigen (Ag)-primed CD4(+) Th cells. Pretreatment with retinoids (9-cis-RA, all-trans-RA, TTNPB) significantly inhibited IL-12 production by mouse macrophages stimulated with lipopolysaccharide (LPS) or heated-killed Listeria monocytogenes (HKL). Retinoid-pretreated macrophages reduced their ability to induce IFN-gamma and increased the ability to induce IL-4 in Ag-primed CD4(+) T cells. Addition of recombinant IL-12 to cultures of retinoid-pretreated macrophages and CD4(+) T cells restored IFN-gamma production in CD4(+) T cells. The in vivo administration of 9-cis-RA resulted in the inhibition of IL-12 production by macrophages stimulated in vitro with either LPS or HKL, leading to the inhibition of Th1 cytokine profile (decreased IFN-gamma and increased IL-4 production) in CD4(+) T cells. These findings may explain some known effects of retinoids including the inhibition of encephalitogenicity, and point to a possible therapeutic use of retinoids in the Th1-mediated immune diseases such as autoimmune diseases.  相似文献   

13.
Type 1, or cellular, immune response is characterized by overproduction of TNF-alpha, IFN-gamma, IL-1, IL-2 and IL-8 and is the underlying immune mechanism of psoriasis, alopecia areata, rheumatoid arthritis, Crohn's disease, multiple sclerosis, insulin-dependent diabetes mellitus and experimental autoimmune uveitis (EAU). Type 2 immune response is seen in antibody-mediated autoimmune diseases. Based on the pharmacokinetic effects of cetirizine and allopurinol, this paper introduces these two safe and inexpensive drugs as novel potential agents against cell-mediated autoimmune disorders. Cetirizine, supposed to inhibit DNA binding activity of NF-kappa B, inhibits the expression of adhesion molecules on immunocytes and endothelial cells and the production of IL-8 and LTB4, two potent chemoattractants, by immune cells. It induces the release of PGE2, a suppressor of antigen presentation and MHC class II expression, from monocyte/macrophages and reduces the number of tryptase positive mast cells in inflammation sites. Tryptase is a chemoattractant, generates kinins from kininogen, activates mast cells, triggers maturation of dendritic cells and stimulates the release of IL-8 from endothelial cells and the production of Th1 lymphokines by mononuclear immunocytes. Allopurinol is a free radical scavenger, suppresses the production of TNF-alpha and downregulates the expression of ICAM-1 and P2X(7) receptors on monocyte/macrophages. ICAM-1 serves as a ligand for LFA-1 (on T lymphocytes), allowing proper antigen presentation. P2X(7) receptors are thought to be involved in IL-1beta release, mitogenic stimulation of T lymphocytes and the probable cytoplasmic communication between macrophages and lymphocytes at inflammation sites. Allopurinol was markedly more effective than prednisolone in treating experimental autoimmune uveitis and in combination with cyclosporine suppressed the inflammatory reaction of this condition more effectively than either agent alone. As allopurinol is a competitive inhibitor of xanthine oxidase and decreases serum levels of uric acid, which is protective against multiple sclerosis, it should preferably be coadministered with uric acid precursors in the treatment of this condition. Cetirizine and allopurinol may prove of benefit in the treatment of various cellular autoimmune disorders.  相似文献   

14.
15.
Natural killer T (NKT) cells are a subset of lymphocytes that express receptors characteristic of conventional T cells together with receptors typically found on natural killer cells. A key feature of NKT cells is the expression of a semi-invariant T cell receptor that is specific for glycolipid antigens presented by the unusual major histocompatibility complex class I-like molecule CD1d. While their precise immunological functions remain unknown, NKT cells have been implicated in the regulation of adaptive immune responses, including those directed against autoantigens. These findings raise the possibility that specific stimulation of NKT cells may be exploited for therapeutic purposes. A number of laboratories have tested this hypothesis, utilizing the sea sponge-derived agent alpha-galactosylceramide (alpha-GalCer), a specific agonist of NKT cells. Administration of alpha-GalCer to mice results in potent activation of NKT cells, rapid and robust cytokine production, and activation of a variety of cells of the innate and adaptive immune systems. Most notably, repeated administration of alpha-GalCer to mice favors the generation of conventional T lymphocytes producing T helper (Th) type 2 cytokines such as IL-4 and IL-10. These findings suggest that alpha-GalCer can modulate inflammatory conditions that are mediated by pathogenic Th1 cells. Indeed, recent studies have demonstrated that alpha-GalCer prevents the development of Type 1 diabetes in non-obese diabetic mice and central nervous system inflammation in mouse models of multiple sclerosis. Collectively, these studies provide a solid foundation for the development of NKT cell ligands as pharmacological agents for treatment of autoimmune diseases.  相似文献   

16.
Psoriasis is a common chronic immune-mediated inflammatory disease. It is well known that macrophages, neutrophils and T-helper 1 (Th1)/T-helper 17 (Th17) cells play important roles in skin lesions by provoking inflammation. Paeoniflorin (PF) is the major effective component extracted from the root of Paeonia lactiflora, which has been widely used in China to treat inflammatory and autoimmune diseases, including psoriasis. Although PF shows a clinical therapeutic effect on psoriasis patients, how PF affects infiltrated immune cells in psoriasis skin lesions is still unknown. In this study, using a generated imiquimod (IMQ)-induced psoriasis-like mouse model, we found that PF ameliorates inflammation and skin lesions. Subsequent analyses showed that PF decreases the number of F4/80+CD68+ macrophages and their related cytokine production (TNF-α, IL-1β, IL-6, IL-12 and inducible nitric oxide synthase (iNOS)) in the skin of IMQ-challenged mice. Moreover, PF suppresses the number of CD11b+Gr-1+ neutrophils and the expression of macrophage inflammatory protein-2 (MIP-2; a counterpart of human IL-8, which is responsible for the recruitment of neutrophils in mice). Finally, PF also down-regulates Th1- and Th17-related cytokine expression. Therefore, our new findings reveal that PF alleviates psoriatic skin lesions by inhibiting inflammation, which provides new insights into the immunomodulatory effect of PF in psoriasis treatment.  相似文献   

17.
Th17细胞与急性冠状动脉综合征   总被引:1,自引:0,他引:1  
韦德宇  丁晓梅 《安徽医药》2010,14(12):1375-1377
辅助性T细胞(T help,Th)17是新近发现的T效应细胞亚群,主要分泌IL-17因子,在多种自身免疫性疾病、感染性疾病、炎症性疾病中发挥重要作用。急性冠状动脉综合征(acute coronary syndrome)的发病与动脉粥样硬化斑块的不稳定性密切相关。Th17细胞在调控慢性炎症、动脉粥样硬化、血栓形成中起重要作用,加速动脉粥样硬化的进程。并且Th17细胞可能在动脉粥样硬化斑块的不稳定性中起驱动作用。  相似文献   

18.
Immune deviation strategies in the therapy of psoriasis   总被引:2,自引:0,他引:2  
The experience with biologicals in currently available animal models suggest that inflammatory autoimmune disease depend on IFN-gamma-producing T helper (Th) cells. Deletion of T cells improves most of these autoimmune diseases but bears the risks of general immunosuppression. Alternatively, selective deviation of the inflammatory, disease-inducing Th cells into an anti-inflammatory Th cell phenotype may be a promising strategy to treat inflammatory autoimmune diseases, such as psoriasis, rheumatoid arthritis, multiple sclerosis or autoimmune diabetes. The common feature of these organ-specific autoimmune diseases is the close association with IFN-gamma-producing Th1 cells, which recognize organ-specific antigens and orchestrate the cells and mediators that ultimately cause the tissue damage. Even though the autoantigens recognized in psoriasis remain enigmatic, it has been the first Th1-mediated autoimmune disease successfully treated in humans by immune deviation. The basis of such an immune intervention therapy has been established in experimental mice with model diseases of multiple sclerosis, rheumatoid arthritis or autoimmune diabetes. In all these autoimmune diseases clinical improvement was associated with the skewing of IFN-gamma producing autoantigen-specific Th1 cells into an IL-4 dominated Th2 phenotype. Such Th2 cells are still reactive to the autoantigen but provide a different cytokine pattern. The most powerful cytokines capable of inducing anti-inflammatory Th2 cells are IL-4 itself or IL-11. Interestingly, another agent that has been used for decades in the therapy of psoriasis in some European countries, fumaric acid esters (FAE), seems also to induce immune deviation. This review focuses on the potential immune deviating strategies based on the use of IL-4, IL-11 or FAE in the therapy of psoriasis, the effects of these agents on the immune system, potential risks and future perspectives for therapeutic intervention by immune deviation replacing immunosuppression.  相似文献   

19.
Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.  相似文献   

20.
Expression of α7 nicotinic acetylcholine receptors (nAChRs) on antigen presenting cells (APCs), such as macrophages and dendritic cells, is now well established. We have shown that GTS-21, a selective α7 nAChR agonist, downregulates APC-dependent CD4+ T cell differentiation into regulatory T cells (Tregs) and effector Th1, Th2 and Th17 cells by inhibiting antigen processing, thereby interfering with antigen presentation. α7 nAChRs on Jurkat human leukemic T cells require functional T cell receptors (TCRs)/CD3 and leukocyte-specific tyrosine kinase to mediate nicotine-induced Ca2+-signaling via Ca2+ release from intracellular stores, and are insensitive to two conventional α7 nAChR antagonists, α-bungarotoxin (α-BTX) and methyllycaconitine (MLA). We investigated the effects of GTS-21, α-BTX and MLA on ovalbumin (OVA)-induced Th cytokine release from spleen cells isolated from OVA-specific TCR transgenic DO11.10 mice. We found that: (1) GTS-21 dose-dependently suppresses OVA-induced IFN-γ, IL-4 and IL-17 release, but neither α-BTX nor MLA alone affected the OVA-induced cytokine release. (2) Neither α-BTX nor MLA abolished the suppressive effects of GTS-21 on IFN-γ and IL-17 release from OVA-activated DO11.10 spleen cells. (3) GTS-21 significantly suppressed OVA-induced APC-dependent CD4+ T cell differentiation into Tregs. Neither MLA nor mecamylamine, a non-specific nAChR antagonist, abolished the suppressive effect of GTS-21 on Treg differentiation. These results suggest that α7 nAChRs on APCs involved in cytokine synthesis and T cell differentiation are insensitive to the conventional α7 nAChR antagonists, α-BTX and MLA, and that α7 nAChRs on APCs differ pharmacologically from those in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号