首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The adult cat sciatic nerve was examined for Schwann cell biosynthesis of the major myelin glycoprotein (P0) in the distal segments after permanent nerve transection, where there is no axonal regeneration or myelin assembly. Endoneurial slices (intrafascicular tissue) from the distal segment of the desheathed cat sciatic nerves at 10 wk after transection and from normal adult desheathed brachial nerves were incubated with radioactive mannose; [3H]mannose incorporation into P0 was observed by fluorography after sodium dodecyl sulphate-pore gradient electrophoresis (SDS-PGE). Analysis of immune precipitates by SDS-PGE after incubation of an aliquot of an endoneurial fraction with rabbit antichick P0 gamma globulin verified that the [3H]mannose-labeled glycoprotein was P0. The level of incorporation of [3H]mannose into P0 and into other endoneurial glycoproteins in the normal brachial nerve from the adult cat was at substantially reduced levels compared with the transected nerve. Such incorporation was detectable by fluorography only after prolonged exposure to X-ray film (15 days). As a result, the level of biosynthesis of P0 in the normal adult cat is substantially reduced, suggesting that the extent of active myelination in the adult cat nerve is at a low level. Furthermore, Schwann cells are capable of continued synthesis of P0 in the adult, permanently transected nerve in the absence of axonal influence, suggesting that axonal association is not an absolute requirement for specifying myelin protein synthesis.  相似文献   

2.
PURPOSE: In the present study we have morphometrically examined a regeneration model in which axons normally residing in CNS have regrown and are interacting with Schwann cells from the PNS. This study will not only provide morphometric data on regenerated optic fibers but also shed light on possible factors in determining the fiber morphometry. METHODS: The optic nerves of rats aged 6 weeks were cut intra-orbitally and replaced with a autologous sciatic nerve. After a survival period of 9 months, the graft or "regenerated" nerves containing the regenerated optic axons and Schwann cells were processed for morphometric measurements. RESULTS: The mean myelinated axon diameter of regenerated nerve (1.8 +/- 0.2 micro m) was significantly (P < 0.05) greater than that of the optic nerve (0.9 +/- 0.03 micro m). However, unmyelinated regenerated optic axons had a smaller mean axon diameter (0.49 +/- 0.04 micro m) than normal myelinated optic axons. This may suggest that myelinating glial cells exert an influence on axon caliber and Schwann cells seem to have greater effect than oligodendrocytes. The mean g-ratio showing the relative myelin sheath thickness was found to be the highest in the optic nerve (0.78 +/- 0.003), least in the sciatic nerve (0.6 +/- 0.009) and intermediate in the regenerated nerve (0.68 +/- 0.01). The results indicated that Schwann cells myelinating the regenerated optic axons have produced a thinner myelin sheath. Intra-axonally, no significant difference was detected in the number of axonal microtubules and neurofilaments between the regenerated and optic nerves. Therefore the disposition of microtubules and neurofilaments into axon may be intrinsically determined. CONCLUSIONS: In this study, we have identified some of the extrinsic and intrinsic factors in determining the fiber morphometry of the regen-erated nerve. The axon-size and myelination by glial cells were determined through the external axon-glial interactions, whereas the number of axonal microtubules and neurofilaments were intrinsically determined.  相似文献   

3.
4.
5.
Osteopontin (OPN) is a RGD-containing glycoprotein with cytokine-like, chemotactic, and pro-adhesive properties. During wound healing, OPN is abundantly expressed by infiltrating macrophages and has been implicated in posttraumatic tissue repair. To delineate a role in the regenerative response to axotomy we examined the expression of OPN in Wallerian degeneration of the sciatic nerve in rats. Unexpectedly, we found high constitutive expression of OPN by myelinating Schwann cells (SCs) in uninjured control nerves. OPN mRNA expression was confirmed in primary cultures of rat SCs. Upon axotomy, SC-expressed OPN in the degenerating distal nerve stump transiently increased during the first days after injury, but was continuously downregulated thereafter, reaching its minimum at Day 14. Macrophages invading axotomized nerves were OPN-negative. During late stages after axotomy, SC-OPN was reexpressed in regenerating but not permanently transected nerves. We also found OPN expression by myelinating SCs in human sural nerves with a dramatic reduction in severe axonal polyneuropathies. Taken together, our study identifies OPN as a novel Schwann cell gene regulated by axon-derived signals. The lack of OPN induction in infiltrating macrophages indicates fundamental differences in tissue repair between axonal injury in the peripheral nervous system and structural lesions in other organ systems.  相似文献   

6.
7.
Neuronal growth factors produced by adult peripheral nerve after injury   总被引:4,自引:0,他引:4  
Dorsal root ganglion neurons from embryonic rats, co-cultured with endoneurial explants from transected, adult rat sciatic nerve, extended neurites in the absence of exogenous nerve growth factor (NGF). The effect was seen with endoneurial explants from normal adult sciatic nerves or from nerves which had been permanently transected up to 51 days prior to explantation. The rate of outgrowth decreased at 5 and 7 days and reached a minimum at 14 days after transection. A second phase of increased neurite-promoting activity appeared in 28-, 35-, 41- and 51-day posttransection tissue. The early phase, but not the late phase, was partially inhibited by antisera to NGF.  相似文献   

8.
Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush‐injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 μsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par‐3, and brain‐derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par‐3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20‐Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES‐treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par‐3 in the ES‐treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We have examined the regulation of growth-associated protein 43 kD (GAP-43) in rat Schwann cells. In unlesioned adult nerves, GAP-43-immunoreactivity was restricted to non-myelinating Schwann cells and unmyelinated axons. When adult nerves were transected to cause permanent axotomy, previously myelinating Schwann cells expressed progressively more GAP-43-immunoreactivity over 3 weeks and GAP-43 mRNA levels increased over a similar time course. The peak level of GAP-43 mRNA occurred at least 2 weeks later than that of nerve growth factor receptor, another marker of denervated Schwann cells. In contrast, after nerve-crush, which allows axonal regeneration, many fewer Schwann cells had GAP-43-immunoreactivity, and the amount of GAP-43 mRNA was markedly lower than in transected nerves. Forskolin, a drug that activates adenylate cyclase and mimics many effects of axon-Schwann cell interactions, markedly reduced GAP-43-immunoreactivity and mRNA expression in cultured Schwann cells, whereas interleukin-1 had no effect. These data demonstrate that axon-Schwann cell interactions inhibit the expression of GAP-43 in Schwann cells and that this effect is mimicked by forskolin. © 1994 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
Axonal modulation of myelin gene expression in the peripheral nerve.   总被引:7,自引:0,他引:7  
Myelin gene expression (P0, MBP, P2, and MAG) was investigated during Wallerian degeneration and in the presence or absence of subsequent axonal regeneration and remyelination. The steady state levels of mRNA and protein were assessed in the crushed or permanently transected rat sciatic nerve at 0, 1, 4, 7, 10, 12, 14, 21, and 35 days after injury. The mRNA and protein steady state levels of the myelin specific genes, P0 and the MBPs, decreased to low yet detectable levels during Wallerian degeneration and returned to normal levels with subsequent axonal regeneration. The steady state level of P2 protein also followed a similar pattern of expression. The steady state level of MAG mRNA decreased to undetectable levels by 4 days of injury in the permanently transected nerve. After crush injury, re-expression of MAG to levels comparable to those of normal nerves preceded that of P2 by 2 days and that of P0 and the MBPs by 3 weeks during axonal regeneration and remyelination. These results support the proposed roles for MAG in the formation of initial Schwann cell-axonal contact required for myelin assembly, for P2 in fatty acid transport during myelination, and for P0 and the MBPs in the maintenance of the integrity and compactness of the myelin sheath. In addition, these results indicate that the expression of the myelin specific genes, P0 and MBP, is constitutive and that the level of myelin specific mRNAs is modulated by axonal contact and myelin assembly.  相似文献   

13.
A Weerasuriya 《Brain research》1988,445(1):181-187
In degenerating frog sciatic nerves an in situ perfusion technique was used to measure the permeability coefficient-surface area product (PA) of endoneurial capillaries to [14C]sucrose, and the endoneurial vascular space (V). Both PA and V started to increase after the 3rd day of degeneration. The increase in PA peaked around the 14th day of degeneration and then declined to reach near normal levels at 6 weeks post-transection. V increased until about the end of the 3rd week of degeneration and then declined to near normal levels at 6 weeks after transection. The delayed increase in capillary permeability may reflect an adaptive reorganization of endoneurial capillary structure and function in response to altered conditions of the endoneurial microenvironment, and it is suggested that this permeability increase is induced by breakdown products of axons or chemical signals from Schwann cells enveloping transected axons. Fluid extravasation from these leaking capillaries is probably responsible for the endoneurial oedema observed in Wallerian degeneration. The recovery of endoneurial capillary tone to near-normal levels at 6 weeks after transection leads to the intriguing conclusion that healthy nerve fibers are not essential for the maintenance of normal endoneurial capillary permeability.  相似文献   

14.
Axonal dependency of the postnatal upregulation in neurofilament expression   总被引:1,自引:0,他引:1  
A coordinated up-regulation in the expression of all three neurofilament (NF) proteins occurs during postnatal development in the rat (Schlaepfer and Bruce, J Neurosci Res [in press], 1990a). In the present study, sciatic nerves were transected in neonatal rats in order to determine the effects of axotomy on the postnatal upregulation of NF expression in neurons of rat dorsal root ganglia (DRG). Left sciatic nerves were transected at postnatal day 3 (P3), 6 (P6), 8 (P8), or 10 (P10). mRNA and protein levels of the light (NF-L), mid-sized (NF-M), and heavy (NF-H) NF proteins were compared in L4 and L5 DRGs from the transected (left) vs. control (right) sides of the same animals at varying intervals after transection. When nerves were transected at P10, mRNA levels of all three NF proteins declined markedly in the parent DRG neurons, thereby completely interrupting the postnatal upregulation of NF expression. P10 transections also led to widespread chromatolytic changes in axotomized neurons, indistinguishable from those that occur in adult DRG following sciatic nerve transection (Goldstein et al., J Neurosci 7:1586-1594, 1987). Nerve transections at earlier (e.g., P3) neonatal timepoints also led to a decrease of NF expression, but to a lesser extent than that which resulted from a P10 transection. Also, P3 transections caused only minimal chromatolytic changes in the axotomized neurons. Thus, the postnatal upregulation of NF expression is dependent upon axonal continuity and the extent of axonal dependency increases during early postnatal development. These findings support the hypothesis that the postnatal upregulation of NF expression, the axotomy-induced downregulation of NF expression and the chromatolytic reaction to nerve transection are all dependent upon or responsive to axonal- or target cell-derived signals that are acquired during postnatal maturation.  相似文献   

15.
Immunofluorescence with laminin antisera revealed a striking change in the localization of this basal membrane glycoprotein in rat sciatic nerve as a result of Wallerian degeneration. The staining was confined to the endoneurium in normal sciatic nerve and during the first days of degeneration. On day 11 endoneurial tubes were no longer identified in the distal stump of crushed nerves or of nerves that had been transected and tightly ligated to prevent regeneration. In both crushed and ligated nerves proliferating Schwann cells forming the cell-bands of Büngner were intensely laminin positive. With double-labeling experiments, laminin and neurofilament antisera revealed similar but not identical staining patterns in crushed nerves, which suggests a close relation between laminin and regenerating axons. Crushed nerves had recovered their normal appearance 18 days after operation while anti-laminin reactivity was decreased in parts of ligated nerves undergoing fibrosis. The localization of laminin in reactive Schwann cells was confirmed by electron microscopy using the indirect immunoperoxidase procedure. Axons did not contain reaction product.  相似文献   

16.
Induction of myelin gene expression denotes the last stage of differentiation of myelinating glial cells. Following peripheral nerve transection, Schwann cells (SC) lose myelin gene expression and proliferate, resembling premyelinating embryonic SC (eSC). We show that a fusion protein of the soluble interleukin-6 receptor to interleukin-6 (IL6RIL6), a potent activator of the gp130 signaling receptor, is an inducer of MBP and Po gene products in rat E18 embryonic dorsal root ganglia (DRG) 3 day cultures. Cells whose growth is dependent on the IL6RIL6 chimera were isolated from DRG. These cells (designated CH cells) express Krox-20, as do promyelinating and myelinating SC (mSC). IL6RIL6 induces Po and MBP in CH cells and their cocultures with neurons. In addition, IL6RIL6 leads to a disappearance of Pax-3, a marker of eSC and nonmyelinating Schwann cells (nmSC). Glial fibrillary acidic protein, present in nmSC, is not significantly induced by IL6RIL6. The CH cells acquire glial morphology when exposed to IL6RIL6 and cover axons in cocultures. In a sciatic nerve-derived SC line, IL6RIL6 also induces Po and triggers a rapid attachment along axons. In vivo administration of IL6RIL6 intraperitoneally to rats after sciatic nerve transection and resuture increases 4-fold the number of myelinated nerve fibers (MF) measured on day 12, 2.5-5 mm distal to the suture. The stimulation by IL6RIL6 treatment is highest (7.1-fold) at the more distant 5 mm site, and the thickness of myelin sheaths is increased. Compared to known SC growth factors, the gp130 activator IL6RIL6 appears to combine both in vitro mitogenic effects and promotion of myelin gene expression.  相似文献   

17.
Summary Long-term endoneurial changes in the distal stump of transected rat sciatic nerve were examined from 8 to 50 weeks after nerve transection. The morphological alterations were followed both in nerves which were allowed to regenerate and in nerves in which regeneration was prevented by suturing. The nerves prevented from regenerating showed markedly atrophied Schwann cell columns after 20 weeks and a disappearance of some Schwann cell columns after 30 weeks. The surrounding endoneurial fibroblast-like cells gradually lost their delicate cytoplasmic extensions and formed rough fascicles around numerous shrunken Schwann cell columns or around areas from which Schwann cells had apparently disappeared. Inside the fascicles, the Schwann cell loss was replaced by collagen fibrils or occasionally, by a dense accumulation of microfibrils. The loss of endoneurial cytoplasmic processes continued up to 50 weeks, leaving behind patches of thin fibrils around numerous shrunken Schwann cell columns or around collagenous areas where Schwann cells were lost. The endoneurial matrix showed presence of thin 25- to 30-nm collagen fibrils close to shrunken Schwann cell columns up to 50 weeks but in areas with advanced degeneration a shift towards regular 50- to 60-nm collagen fibrils occurred. The degenerated areas resembled those described in Renaut bodies and neurofibromas. Despite suturing of transected nerves to prevent sprouting, occasional regenerating sprouts were noted in the Schwann cell columns. These axons were surrounded in a sheath-like fashion by pre-existing endoneurial cell fascicles covered by a basal lamina. In the reinnervating nerves the endoneurial space gradually lost its compartmentized structures consisting of collagen fibrils and endoneurial fibroblast-like cells. After 20 weeks the endoneurial cells were inconspicuous and the extracelluar matrix consisted mainly of 50- to 60-nm collagen fibrils. During axonal growth and maturation, Schwann cells containing unmyelinated axons surrounded large, myelinated axons in a collar-like fashion. Close to these collars of Schwann cells, thin 25- to 30-nm collagen fibrils were noted in focal areas, even after 50 weeks. Occasionally, numerous clusters of regenerating axonal sprouts were noted in the perineurium. These were surrounded by multiple layers of cells possessing basal lamina. The present results show that after nerve transection the distal stump of the severed nerve shows dynamic changes in the endoneurial space, especially in nerves where reinnervation is prevented. The endoneurial fascicles around occasional axonal sprouts in sutured nerves, representing possibly a delayed type of regeneration, show that axons have a strong ability to grow but on the other hand endoneurial structures are unable to respond normally to axonal growth after advanced degeneration.  相似文献   

18.
The identification of connexin32 (Cx32) in myelinating Schwann cells and the association of Cx32 mutations with peripheral neuropathies suggest a functional role for gap junction proteins in the nerve. However, after nerve crush injury, Cx32 expression dramatically decreases in Schwann cells in the degenerating region, returning to control levels at newly formed nodes of Ranvier and Schmidt–Lantermann incisures by 30 days. The present study examined increases in expression of other connexins that occur after peripheral nerve injury. A 56/58-kDa connexin46 (Cx46) protein species was detected in adult rat sciatic nerve, along with very low levels of Cx46 mRNA. However, by 3 days after crush injury, coincident with changes in Schwann cell phenotype, Cx46 mRNA rapidly increased in the degenerating regions. Additionally, the 56/58-kDa Cx46 protein species present in adult nerve decreased and a 53-kDa Cx46 species, which was also present in cultured Schwann cells, became apparent. Connexin43 (Cx43) mRNA and protein, which was localized to perineurial cells in adult nerve, dramatically increased in endoneurial fibroblasts in the crush and distal regions by 3 days, coincident with macrophage infiltration. By 12 days after injury, Cx43 decreased and was comparable to normal nerve. These results suggest that enhanced expression of Cx46 and Cx43, by nonneuronal cells, may be important for the injury and regenerative responses of peripheral nerves.  相似文献   

19.
Glucose metabolism by aldose reductase (AR) is implicated in the pathogenesis of many diabetic complications, including neuropathy. We have re-evaluated the distribution of AR in the sciatic nerve and dorsal root ganglion (DRG) of normal rats, expanded these observations to describe the location of AR in the spinal cord and footpad skin, and investigated whether diabetes alters the distribution of AR. In sciatic nerve, AR was restricted to cytoplasm of myelinated Schwann cells and endothelial cells of epineurial, but not endoneurial, blood vessels. AR immunoreactivity (IR) was present in satellite cells in the DRG. In skin, AR-IR was detected in vascular endothelial cells, Schwann cells of myelinated fibers, and axons of perivascular sympathetic nerves. AR was localized selectively to oligodendrocytes of the white matter of spinal cord. The distribution of AR-IR in sciatic nerve, DRG, skin, and spinal cord was not altered by up to 12 weeks of streptozotocin-induced diabetes. Identification of perineuronal satellite cells, oligodendrocytes, and perivascular sympathetic nerves as AR-expressing cells reveals them as cellular sites with the potential to contribute to diabetic neuropathy.  相似文献   

20.
Role of axons in the regulation of P0 biosynthesis by Schwann cells.   总被引:1,自引:0,他引:1  
The role of axons in the expression of the major myelin glycoprotein, P0, has been investigated using neuron/Schwann cell cultures. These cultures were either nonmyelinating or myelinating due to growth in defined medium or in medium containing serum and chick embryo extract, respectively. The neurons and Schwann cells used in the studies were derived from embryonic day 15 rat dorsal root ganglia (DRG), and the Schwann cells from these ganglia are shown not to synthesize appreciable levels of P0 prior to growth in culture. Myelinating cultures of Schwann cells and neurons grown together for 18-21 days synthesize P0 that is readily identified by immunoblotting. The nonmyelinating cultures, which do not assemble basal lamina, also synthesize P0 that is detectable by either [3H]mannose precursor incorporation or by immunoblotting. The steady-state level of P0 in the nonmyelinating cultures is less than that of the myelinating cultures, and the P0 that is synthesized by the former appears to be catabolized shortly after its biosynthesis. Since nonmyelinating Schwann cells synthesize P0 when in contact with neurites in vitro, we have examined the ability of such nonmyelinating cells to express the glycoprotein in vivo. Very little steady-state P0 is detected in immunoblots of the adult rat cervical sympathetic trunk (CST), a nerve in which approximately 99% of the axons are nonmyelinated. Similarly, the amounts of [3H]mannose and [3H]amino acids that are incorporated into newly synthesized P0 are much lower in the CST than in the adult sciatic nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号