首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid rafts have an important property to preferentially concentrate some proteins, while excluding others. Lipid rafts can also act as functional platforms for multiple signalling and trafficking processes. Several reports have shown that lipid rafts play a crucial role in the assembly of several enveloped viruses and possibly their cell entry. In this study we investigated the importance of lipid raft formation in Coxsackievirus A9 (CAV-9) entry and cell infection. Here by using a variety of biochemical and biophysical methods, we report that receptor molecules integrin alphavbeta3 and GRP78, which are implicated in CAV-9 infection as well as accessory molecules such as MHC class I, are accumulated in increased concentrations in lipid rafts following CAV-9 infection. In addition our studies revealed that raft integrity is essential for this virus since CAV-9 activates the Raf/MAPK signalling pathway within the raft and raft-disrupting drugs such as nystatin and MCD can successfully inhibit CAV-9 infection.  相似文献   

2.
Lipid rafts, specialized membrane microdomains enriched in sphingolipids and cholesterol, have been shown to function as signaling platforms in T cells. Surface raft expression is known to be increased in human T cells upon activation, and this increased raft expression may account for efficient signaling capability and decreased dependency for co-stimulation in effector and/or activated T cells. However, raft-mediated signaling ability in activated T cells remains to be clarified. In this study, we analyzed the structure and function of lipid rafts in human activated T cells. We demonstrated that raft protein constituents are dramatically changed after activation along with an increase in lipid contents. T cells stimulated with anti-CD3 plus anti-CD28 antibodies showed an increase not only in surface monosialoganglioside GM1 expression but also in total amounts of raft-associated lipids such as sphingomyelin, cholesterol and glycosphingolipids. Raft proteins increased after activation include Csk, Csk-binding protein and Fyn, the molecules known to be involved in negative regulation of T cell activation. Consistent with the increase in expression of these proteins, TCR-mediated Ca(2+) response, a response dependent on raft integrity, was clearly inhibited in activated T cells. Thus, the structure and function of lipid rafts in human activated T cells seem to be quite distinct from those in naive T cells. Further, human activated T cells are relatively resistant to signaling, at least transiently, by TCR re-stimulation even though their raft expression is increased.  相似文献   

3.
Cuadras MA  Greenberg HB 《Virology》2003,313(1):308-321
The pathway by which rotavirus is released from the cell is poorly understood but recent work has shown that, prior to cell lysis, rotavirus is released almost exclusively from the apical surface of the infected cell. By virtue of their unique biochemical and physical properties, viruses have exploited lipid rafts for host cell entry and/or assembly. Here we characterized the association of rhesus rotavirus (RRV) with lipid rafts during the rotavirus replication cycle. We found that newly synthesized infectious virus associates with rafts in vitro and in vivo. RRV proteins cosegregated with rafts on density gradients. Viral infectivity and genomic dsRNA also cosegregated with the raft fractions. Confocal microscopic analysis of raft and RRV virion proteins demonstrated colocalization within the cell. In addition, cholesterol depletion interfered with the association of RRV particles with rafts and reduced the release of infectious particles from the cell. Furthermore, murine rotavirus associates with lipid rafts in intestinal epithelial cells during a natural infection in vivo. Our results confirm the association of rotavirus infectious particles with rafts during replication in vitro and in vivo and strongly support the conclusion that this virus uses these microdomains for transport to the cell surface during replication.  相似文献   

4.
5.
Following ligand binding the TCR segregates to plasma membrane microdomains, termed lipid rafts, characterized by a highly ordered lipid structure favoring partitioning of glycosyl phosphatidyl inositol-linked costimulatory receptors and acylated signaling molecules. Here we show that the inducible association of the TCR and key signaling proteins with lipid rafts is dependent on the actin cytoskeleton through a mechanism involving raft coalescence. Although lipid rafts are required for full activation of the TCR-dependent tyrosine phosphorylation cascade and sustained signaling, triggering of TCR-proximal events, including Fyn activation and a first wave of Vav phosphorylation, is independent of lipid rafts, while a second wave of raft-dependent Vav phosphorylation occurs after raft coalescence, as also supported by the finding that Vav is phosphorylated in response to lipid raft clustering by GM1 aggregation. The constitutive association found between Vav and the CD3zeta chain suggests a model whereby the TCR-associated signaling machinery initiates raft aggregation by promoting F-actin reorganization, which permits full activation of the tyrosine phosphorylation cascade, further reorganization of the actin cytoskeleton and sustained signaling, leading to cell activation.  相似文献   

6.
Summary. The matrix protein of paramyxoviruses plays an important role in virus assembly through its interactions with cell membrane, virus envelope and virus nucleocapsid. In the present study, we investigated the possible association of respiratory syncytial virus (RSV) matrix (M) protein with the plasma membrane of infected cells. Using confocal microscopy we found that M was present at the cytoplasmic side of the plasma membrane. We used flotation gradients to purify membranes from RSV infected cells and treated them with cold Triton X-100 to obtain lipid rafts in the insoluble fraction. Western blot of the lipid raft fraction with specific antibodies showed that it contained M, as well as G (attachment) and N (nucleocapsid) proteins. We also found that RSV purified on sucrose gradients contained lipid raft markers. Together, our data suggest that RSV uses lipid rafts for assembly and budding.  相似文献   

7.
The matrix protein of paramyxoviruses plays an important role in virus assembly through its interactions with cell membrane, virus envelope and virus nucleocapsid. In the present study, we investigated the possible association of respiratory syncytial virus (RSV) matrix (M) protein with the plasma membrane of infected cells. Using confocal microscopy we found that M was present at the cytoplasmic side of the plasma membrane. We used flotation gradients to purify membranes from RSV infected cells and treated them with cold Triton X-100 to obtain lipid rafts in the insoluble fraction. Western blot of the lipid raft fraction with specific antibodies showed that it contained M, as well as G (attachment) and N (nucleocapsid) proteins. We also found that RSV purified on sucrose gradients contained lipid raft markers. Together, our data suggest that RSV uses lipid rafts for assembly and budding.  相似文献   

8.
The current model suggesting that raft integrity is required for T cell activation is mostly (but not exclusively) based on the use of drugs, such as methyl-beta-cyclodextrin (M beta CD), that disorganize rafts and inhibit T cell receptor (TCR)-induced Ca2+ influx. Here we show that conditions that disrupt lipid raft integrity do not inhibit TCR triggering in Jurkat cells and normal T lymphocytes. Indeed, we found that the reported inhibition of TCR-induced Ca2+ influx by M beta CD treatment is mainly due to (a) nonspecific depletion of intracellular Ca2+ stores and (b) plasma membrane depolarization of T cells. When these side-effects are taken into account, raft disorganization does not alter TCR-dependent Ca2+ signaling. In line with these results, also TCR-induced tyrosine phosphorylation is not inhibited by dispersion of lipid rafts. By contrast, in the same conditions, Ca2+ signaling via the glycosylphosphatidylinositol (GPI)-anchored protein CD59 is totally abolished. These results indicate that, while signaling through GPI-anchored proteins requires lipid raft integrity, CD3-dependent TCR activation occurs independently of cholesterol extraction.  相似文献   

9.
Alphaherpesviruses comprise closely related viruses of man and animal, including herpes simplex virus, varicella-zoster virus and pseudorabies virus (PRV). Here, using methyl-beta-cyclodextrin and fluorescently tagged PRV, we directly show that depletion of cholesterol from the plasma membrane of host cells significantly reduces PRV entry. Cholesterol depletion did not reduce PRV attachment, but stalled virus particles at the plasma membrane before penetration of the cell. Cholesterol depletion results in destabilization of lipid raft microdomains in the plasma membrane, which have been shown before to be involved in efficient entry of different viruses. A significant fraction of PRV virions appears to localize juxtaposed to GM1, a lipid raft marker, during entry. Together, these data indicate that cholesterol and possibly cholesterol-rich lipid rafts may be important during PRV entry.  相似文献   

10.
Lipid rafts and HIV-1: from viral entry to assembly of progeny virions.   总被引:8,自引:0,他引:8  
BACKGROUND: Lipid rafts are currently an intensely investigated topic of cell biology. In addition to a demonstrated role in signal transduction of the host cell, lipid rafts serve as entry and exit sites for microbial pathogens and toxins, such as FimH-expressing enterobacteria, influenza virus, measles virus and cholera toxin. Furthermore, caveolae, a specialised form of lipid raft, are required for the conversion of the non-pathogenic prion protein to the pathogenic scrapie isoform. OBJECTIVES: A number of reports have shown, directly or indirectly, that lipid rafts are important at various stages of the human immunodeficiency virus type-1 (HIV-1) replication cycle. The purpose of this paper is to provide a brief overview of the role of membrane-associated lipid rafts in cell biology, and to evaluate how HIV-1 has hijacked this cellular component to support HIV-1 replication. Special sections are devoted to discussing the role of lipid rafts in (1) the entry of HIV-1, (2) signal transduction regulation in HIV-1-infected cells, (3) the trafficking of HIV-1 proteins via lipid rafts during HIV-1 assembly; and a further section discusses the role of cholesterol in mature HIV-1. SUMMARY: Like a number of other pathogens, HIV-1 has evolved to rely on the host cell lipid rafts to support its propagation during multiple stages of the HIV-1 replication cycle. This review has highlighted the importance of lipid rafts in HIV-1 replication.  相似文献   

11.
Productive T cell activation depends on the assembly of a highly ordered and compartmentalized immunological synapse or supramolecular activation complex (SMAC). Reorganization of the actin cytoskeleton and clustering of specialized membrane microdomains, or lipid rafts, occur early following TCR/CD3 and costimulatory receptor ligation. Many key signaling molecules localize in lipid raft patches during T cell activation. Lipid raft reorganization is required for T cell activation, where it plays an apparently important role in stabilizing the T cell synapse. Here we review recent evidence supporting the role of lipid rafts in T cell activation. Particular emphasis is placed on the coupling of protein kinase C-theta(PKCtheta), which is selectively expressed in T cells and is known to function as an essential signal for T cell activation, and lipid rafts.  相似文献   

12.
The plasma membranes of eukaryotic cells are not uniform and possess distinct cholesterol- and sphingolipid-rich raft microdomains that are enriched in proteins known to be essential for cellular function. Lipid raft microdomains are important for T cell receptor (TCR)-mediated activation of T cells. However, the importance of lipid rafts on antigen presenting cells (APCs) and their role in major histocompatibility (MHC) class II-restricted antigen presentation has not been examined. MHC class II molecules were found to be constitutively present in plasma membrane lipid rafts in B cells. Disruption of these microdomains dramatically inhibited antigen presentation at limiting concentrations of antigen. The inhibitory effect of raft disruption on antigen presentation could be overcome by loading the APCs with exceptionally high doses of antigen, showing that raft association concentrates MHC class II molecules into microdomains that allow efficient antigen presentation at low ligand densities.  相似文献   

13.
Lipid architecture of the plasma membrane plays an important role in the capacitation process of the sperm cell. During this process, an increase in membrane fluidity takes place, which coincides with a redistribution of cholesterol to the apical region of the head plasma membrane and subsequently an efflux of cholesterol. Cholesterol is also a major player in the formation of lipid rafts or microdomains in the membrane. Lipid rafts favour specific protein-protein interactions by concentrating certain proteins in these microdomains while excluding others. In this study, we investigated the organization of lipid rafts during in vitro capacitation of boar sperm cells. We report on the presence of the lipid raft-specific proteins caveolin-1 and flotillin-1 in sperm cells. Capacitation induced a change in membrane distribution of these proteins. Lipid analysis on detergent-resistant membranes (DRMs) of sperm cells indicated that capacitation induces a lipid raft concentration rather than a disintegration of lipid rafts, because the total amount of lipid in the DRM fraction remained unaltered. Using a proteomic approach, we identified several major DRM proteins, including proteins involved in capacitation-dependent processes and zona pellucida binding. Our data indicate that sperm raft reorganization may facilitate capacitation-specific signalling events and binding to the zona pellucida.  相似文献   

14.
The plasma membrane of T cells is made up of a combination of phospholipids and proteins organized as glycolipoprotein microdomains termed lipid rafts. The structural assembly of lipid rafts was investigated by various physical and biochemical assays. Depending on the differentiation status of T cells, the lipid rafts seclude various protein receptors instrumental for the early T cell signaling, cytoskeleton reorganization, protein and membrane trafficking, and the entry of infectious organisms into the cells. This review article summarizes recent information on the assembly of lipid rafts in plasma membrane of T cells and their signaling output in mature and thymic precursors towards cell growth and differentiation, and possible modalities by which the function of lipid rafts can be altered by drugs and T cell ligands. The concept of using lipid rafts as a target for pharmaceutical compounds and biological T cell ligands to ultimately alter the T cell function is discussed.  相似文献   

15.
T cell receptor (TCR) antigen recognition induces the formation of a specialized 'immunological synapse' at the T cell : antigen presenting cell (APC) junction. This junction is generated by the recruitment and exclusion of particular proteins from the contact area and is required for T cell activation. We and others have hypothesized that lipid raft/non-raft partitioning provides a molecular basis for protein sorting which organizes the TCR, co-stimulators, signal transducers and the actin cytoskeleton at the T cell : APC interface. Here we discuss the emerging paradigm that co-stimulators induce the directional transport and clustering of lipid rafts at the T cell : APC interface, thus generating platform(s) specialized for processive and sustained TCR signal transduction and T cell activation. We also discuss recent data implicating the involvement of 'counter-stimulators' and other negative regulators which prevent optimal raft clustering at the TCR contact site and, thus, facilitate T cell inactivation and tolerance induction.  相似文献   

16.
Aging is associated with a decline in T cell activation and proliferation, but the underlying mechanisms are not fully understood. Recent findings suggest that lipid rafts act as a platform in the initiation of T cell activation by selectively recruiting signaling proteins associated with formation of the initial complex of signal transduction. We tested the hypothesis that lipid raft properties are altered in T lymphocytes from elderly, healthy individuals in comparison with young subjects. Results showed that the cholesterol content of lipid rafts derived from these cells was consistently higher in the case of elderly donors and that membrane fluidity was decreased. In addition, lipid rafts coalescence to the site of T cell receptor engagement was impaired in T cells from elderly donors. The recruitment of p56(lck), linker of activated T cells, and their tyrosine-phosphorylated forms to lipid rafts was decreased in activated T cells from aged individuals. CD45 was not recruited to the lipid raft fractions in either group of subjects. Our data suggest that some properties of lipid rafts are altered in aging, and this finding may be part of the causes for the decline in T cell functions that are observed in elderly individuals.  相似文献   

17.
Lipid rafts play an important role in signal integration and in the cellular activation of a number of cytokine and growth factor receptors. It has recently been demonstrated that flotillin proteins are recruited to lipid raft microdomains upon cellular activation and play a role in neural cell regeneration, receptor signaling and lymphocyte activation. However, little is known about the relevance of the flotillin proteins during T cell responses to chemoattractant stimulation. To this end, cytoplasmic and lipid raft fractions from human T cells were analyzed for flotillin protein redistribution prior to and after CXCL12 stimulation. Flotillin-1, but not flotillin-2, redistributes to lipid rafts upon CXCR4 ligation. Moreover, in CXCL12-treated T cells, flotillin-1 also associates with several raft proteins including LAT, CD48 and CD11a but not Lck. In addition, an increase in CXCR4 association with flotillin-1 in lipid rafts was observed after chemokine treatment. RNAi technology was also utilized to inhibit the expression of flotillin-1, resulting in an inhibition of CXCL12-mediated signaling, function and CXCR4 recruitment into lipid rafts. Together, these data suggest that the increased association of cellular flotillin-1 with lipid raft microdomains during chemokine exposure may play an important role in chemokine receptor signaling and receptor partitioning with lipid rafts.  相似文献   

18.
Hasebe R  Raymond GJ  Horiuchi M  Caughey B 《Virology》2012,422(2):205-213
Cholesterol and sphingolipid enriched lipid raft micro-domains in the plasma membrane play an important role in the life-cycle of numerous enveloped viruses. Although human respiratory syncytial virus (RSV) proteins associate with the raft domains of infected cells and rafts are incorporated in RSV virion particles, the functional role of raft during RSV infection was unknown. In the current study we have identified rafts as an essential component of host cell that is required for RSV infection. Treatment of human lung epithelial cells with raft disrupting agent methyl-beta-cyclodextrin (MBCD) led to drastic loss of RSV infectivity due to diminished release of infectious progeny RSV virion particles from raft disrupted cells. RSV infection of raft deficient Niemann-Pick syndrome type C human fibroblasts and normal human embryonic lung fibroblasts revealed that during productive RSV infection, raft is required for release of infectious RSV particles.  相似文献   

19.
Organization of plasma membrane functional rafts upon T cell activation   总被引:10,自引:0,他引:10  
Raft microdomains have been shown to play a key role in T cell activation. We found that in human T lymphocytes the formation of functional rafts at the plasma membrane was induced by T cell priming. In resting T cells from peripheral blood Lck and the raft glycosphingolipid GM1 resided in intracellular membranes. T cell activation induced synthesis of GM1 and effector cells showed very high levels of this lipid, which became predominantly plasma membrane associated. TCR triggering also induced targeting of the cytosolic Lck to the plasma membrane. Thus, effector cells acquire an improved signaling machinery by increasing the amount of rafts at the plasma membrane. The fact that, when compared with naive T cells, memory T cells showed higher GM1 levels suggests that raft lipid synthesis may be developmentally regulated and tune T cell responsiveness.  相似文献   

20.
The existence of major histocompatibility complex (MHC) class II molecules in lipid rafts has been described in dendritic cells (DC); however, the importance of rafts in T-cell activation has not been clarified. In this study, the distribution of the lipid raft components (CD59 and GM1 ganglioside) in human monocyte-derived DC was investigated. DC had an even distribution of these components at the cell surface. In addition, raft-associated GM1 ganglioside colocalized with cross-linked MHC class II. This implies coaggregation of raft components with these MHC molecules, which may be important in the interaction between T cells and antigen-presenting cells. In studies carried out to investigate the effect of the DC : T-cell interaction on raft distribution, we found a clustering of the lipid raft component CD59 on DC at the synaptic interface, with associated activation of the interacting T cell. In an antigen-specific response between DC and CD4+ T-cell clones, disruption of lipid rafts resulted in inhibition of both CD59 clustering and T-cell activation. This was most pronounced when limiting amounts of cognate peptide were used. Together, these data demonstrate the association of MHC class II with lipid rafts during DC : T-cell interaction and suggest an important role for DC lipid rafts in T-cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号