首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor cells shed gangliosides and populate their microenvironment with these biologically active membrane glycosphingolipids. In vitro, ganglioside enrichment amplifies receptor tyrosine kinase signaling and activation of vascular endothelial cells. However, a long-standing question is whether in the actual microenvironment of a neoplasm, in vivo, tumor cell ganglioside shedding stimulates angiogenesis. Here we tested the hypothesis that tumor gangliosides have a critical proangiogenic role in vivo using novel murine tumor cells, GM3synthase/GM2synthase double knockout (DKO) cells, genetically completely incapable of ganglioside synthesis and impaired in tumor growth versus wild-type (WT) ganglioside-rich cells. We studied angiogenesis during tumor formation by these ganglioside-depleted cells, quantifying vessel formation, angiogenic factor production/release, and consequences of reconstitution with purified WT gangliosides. DKO cells formed virtually avascular tumors, much smaller than ganglioside-rich WT tumors and displaying a striking paucity of blood vessels, despite levels of VEGF and other angiogenic factors that were similar to those of WT cells. Transient enrichment of the ganglioside milieu of the DKO cell inoculum by adding purified WT gangliosides partially restored angiogenesis and tumor growth. We conclude that tumor gangliosides trigger robust angiogenesis important for tumor growth. Our findings suggest strategies to eliminate their synthesis and shedding by tumor cells should be pursued.  相似文献   

2.
Several lines of evidence have implicated matrix metalloproteinase 9 (MMP-9) as a protease inducing an angiogenic switch critical for tumor progression. Among MMP-9-expressing cell types, including cancer cells and tumor-associated leukocytes, inflammatory neutrophils appear to provide an important source of MMP-9 for tumor angiogenesis. However, delivery of MMP-9 by neutrophils has not been mechanistically linked to its catalytic activity at the angiogenic site. By using a modified angiogenic model, allowing for a direct analysis of exogenously added cells and their products in collagen onplants grafted on the chorioallantoic membrane of the chicken embryo, we demonstrate that intact human neutrophils and their granule contents are highly angiogenic. Furthermore, purified neutrophil MMP-9, isolated from the released granules as a zymogen (proMMP-9), constitutes a distinctly potent proangiogenic moiety inducing angiogenesis at subnanogram levels. The angiogenic response induced by neutrophil proMMP-9 required activation of the tissue inhibitor of metalloproteinases (TIMP)-free zymogen and the catalytic activity of the activated enzyme. That the high angiogenic potency of neutrophil proMMP-9 is associated with its unique TIMP-free status was confirmed when a generated and purified stoichiometric complex of neutrophil proMMP-9 with TIMP-1 failed to induce angiogenesis. Recombinant human proMMP-9, operationally free of TIMP-1, also induced angiogenesis at subnanomolar levels, but lost its proangiogenic potential when stoichiometrically complexed with TIMP-1. Similar proMMP-9/TIMP-1 complexes, but naturally produced by human monocytic U937 cells and HT-1080 fibrosarcoma cells, did not stimulate angiogenesis. These findings provide biochemical evidence that infiltrating neutrophils, in contrast to other cell types, deliver a potent proangiogenic moiety, i.e., the unencumbered TIMP-free MMP-9.  相似文献   

3.
Okamoto R  Ueno M  Yamada Y  Takahashi N  Sano H  Suda T  Takakura N 《Blood》2005,105(7):2757-2763
Hematopoietic cells (HCs) promote blood vessel formation by producing various proangiogenic cytokines and chemokines and matrix metalloproteinases. We injected mouse colon26 colon cancer cells or human PC3 prostate adenocarcinoma cells into mice and studied the localization of HCs during tumor development. HCs were distributed in the inner tumor mass in all of the tumor tissues examined; however, the localization of HCs in the tumor tissue differed depending on the tumor cell type. In the case of colon26 tumors, as the tumor grew, many mature HCs migrated into the tumor mass before fine capillary formation was observed. On the other hand, although very few HCs migrated into PC3 tumor tissue, c-Kit+ hematopoietic stem/progenitor cells accumulated around the edge of the tumor. Bone marrow suppression induced by injection of anti-c-Kit neutralizing antibody suppressed tumor angiogenesis by different mechanisms according to the tumor cell type: bone marrow suppression inhibited the initiation of sprouting angiogenesis in colon26 tumors, while it suppressed an increase in the caliber of newly developed blood vessels at the tumor edge in PC3 tumors. Our findings suggest that HCs are involved in tumor angiogenesis and regulate the angiogenic switch during tumorigenesis.  相似文献   

4.
A solid tumor forms an organ-like entity comprised of neoplastic cells and non-transformed host stromal cells embedded in an extracellular matrix. Similar to normal tissues, blood vessels nourish cells residing in tumors. However, unlike normal blood vessels, tumor vasculature has abnormal organization, structure, and function. Tumor vessels are leaky and blood flow is heterogeneous and often compromised. Vascular hyperpermeability and the lack of functional lymphatic vessels inside tumors cause elevation of interstitial fluid pressure in solid tumors. Each of these abnormalities forms a physiological barrier to the delivery of therapeutic agents to tumors. Furthermore, elevated tumor interstitial fluid pressure increases fluid flow from the tumor margin into the peri-tumor area and may facilitate peri-tumor lymphatic hyperplasia and metastasis. Abnormal microcirculation in tumors also leads to a hostile microenvironment characterized by hypoxia and acidosis, which hinder the effectiveness of anti-tumor treatments such as radiation therapy and chemotherapy. In addition, host-tumor interactions regulate expression of pro- and anti-angiogenic factors and hence contribute to their imbalance and resulting pathophysiological characteristics of the tumor. Restoration of pro- and anti-angiogenic balance in tumors may "normalize" tumor vasculature and thus improve its function. Indeed, anti-angiogenic treatments directly targeting angiogenic signaling pathways as well as indirectly modulating angiogenesis show normalization of tumor vasculature and microenvironment at least transiently in both preclinical and clinical settings. Combination of cytotoxic therapy and anti-angiogenic treatment during the vascular normalization exhibits synergistic effect.  相似文献   

5.
Matrix metalloproteinases and matrikines in angiogenesis   总被引:16,自引:0,他引:16  
Neoangiogenesis, the formation of new blood capillaries from pre-existing vessels, plays an important role in a number of physiological and pathological processes, particularly in tumor growth and metastasis. Extracellular proteolysis by matrix metalloproteinases or other neutral proteinases is an absolute requirement for initiating tumor invasion and angiogenesis. Cryptic segments or pre-existing domains within larger proteins, most of them belonging to the extracellular matrix, can be exposed by conformational changes and/or generated by partial enzymatic hydrolysis. They can positively or negatively regulate important functions of endothelial cells including adhesion, migration, proliferation, cell survival and cell-cell interactions. Such regulations by cryptic segments and proteolytic fragments led to the concept of matricryptins and matrikines, respectively. Matrix metalloproteinases and matrikines in conjunction with other pro- or anti-angiogenic factors might act in concert at any step of the angiogenesis process. A number of matrikines have been identified as potent anti-angiogenic factors, which could provide a new alternative to anti-proteolytic strategies for the development of anti-angiogenic therapeutic molecules aimed at inhibiting tumor growth and metastasis. Some of them are currently being investigated in clinical trials.  相似文献   

6.
Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by endothelial cells (ECs) to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms.  相似文献   

7.
Angiogenesis, the development of new vessels, is an important process in health and disease. The perpetuation of neovascularization in inflammatory diseases, such as rheumatoid arthritis, spondyloarthropathies and some systemic autoimmune diseases, might facilitate the ingress of inflammatory cells into the synovium and, therefore, stimulate pannus formation. Disorders associated with perpetuated neovascularization are considered to be angiogenic inflammatory diseases. Several angiogenic mediators, including growth factors, cytokines, matrix metalloproteinases, matrix macromolecules, cell adhesion receptors, chemokines and chemokine receptors, have been implicated in the process of capillary formation. There is a regulatory network in inflamed tissues that is involved in the upregulation or downregulation of angiogenesis. Endogenous angiostatic factors downregulate neovascularization and might act as angiostatic agents. Furthermore, angiogenesis might be targeted by several specific approaches that could be therapeutically used to control inflammatory diseases.  相似文献   

8.
基质金属蛋白酶在肿瘤侵袭和转移中起着非常重要作用,而膜型基质金属蛋白酶是一类基质金属蛋白酶家族的新成员,其中膜型基质金属蛋白酶-1是研究最深、意义极为重要的一种,它直接或间接降解细胞外基质中的多种成分,通过调节多种细胞效应分子,影响肿瘤细胞的浸润、转移以及血管生成等过程,在肿瘤的浸润和转移的过程中有重要作用.  相似文献   

9.
Increasing evidence suggests the importance of bone marrow-derived cells for blood vessel formation (neovascularization) in tumors, which can occur in two mechanisms: angiogenesis and vasculogenesis. Angiogenesis results from proliferation and sprouting of existing blood vessels close to the tumor, while vasculogenesis is believed to arise from recruitment of circulating cells, largely derived from the bone marrow, and de novo clonal formation of blood vessels from these cells. Although bone marrow-derived cells are crucial for neovascularization, current evidence suggests a promotional role of these cells on the existing blood vessels rather than de novo neovascularization in tumors. This is believed to be due to the highly proangiogenic features of these cells. The bone marrow-derived cells are heterogeneous, consisting of many different cell types including endothelial progenitor cells, myeloid cells, lymphocytes, and mesenchymal cells. These cells are highly orchestrated under the influence of the specific tumor microenvironment, which varies depending on the tumor type, thereby tightly regulating neovascularization in the tumors. In this review, we highlight some of the recent findings on each of these cell types by outlining some of the essential proangiogenic cytokines that these cells secrete to promote tumor angiogenesis and vasculogenesis.  相似文献   

10.
Physiologic angiogenesis takes place during tissue growth and repair, during the female reproductive cycle, and during fetal development. Angiogenesis is also required for tumor growth and metastasis and, therefore, represents an exciting target for cancer treatment. Angiogenesis is a complex process that is tightly regulated by pro- and antiangiogenic growth factors. Pathologic angiogenesis is characterized by either excessive (eg. cancer) or inadequate (eg. coronary artery disease) neovascularization. Avascular tumors are severely restricted in their growth potential because of the lack of a blood supply. For tumors to develop in size and metastatic potential they must make an "angiogenic switch" through perturbing the local balance of proangiogenic and antiangiogenic factors. Frequently, tumors overexpress proangiogenic factors, such as vascular endothelial growth factor, allowing them to make this angiogenic switch. Two strategies used in the development of antiangiogenic agents involve the inhibition of proangiogenic factors (eg. anti-vascular endothelial growth factor monoclonal antibodies) as well as therapy with endogenous inhibitors of angiogenesis. Emerging antiangiogenic agents currently in clinical studies are discussed in this review.  相似文献   

11.
Angiogenesis in endocrine tumors   总被引:25,自引:0,他引:25  
Angiogenesis is the process of new blood vessel development from preexisting vasculature. Although vascular endothelium is usually quiescent in the adult, active angiogenesis has been shown to be an important process for new vessel formation, tumor growth, progression, and spread. The angiogenic phenotype depends on the balance of proangiogenic growth factors such as vascular endothelial growth factor (VEGF) and inhibitors, as well as interactions with the extracellular matrix, allowing for endothelial migration. Endocrine glands are typically vascular organs, and their blood supply is essential for normal function and tight control of hormone feedback loops. In addition to metabolic factors such as hypoxia, the process of angiogenesis is also regulated by hormonal changes such as increased estrogen, IGF-I, and TSH levels. By measuring microvascular density, differences in angiogenesis have been related to differences in tumor behavior, and similar techniques have been applied to both benign and malignant endocrine tumors with the aim of identification of tumors that subsequently behave in an aggressive fashion. In contrast to other tumor types, pituitary tumors are less vascular than normal pituitary tissue, although the mechanism for this observation is not known. A relationship between angiogenesis and tumor size, tumor invasiveness, and aggressiveness has been shown in some pituitary tumor types, but not in others. There are few reports on the role of microvascular density or angiogenic factors in adrenal tumors. The mechanism of the vascular tumors, which include adrenomedullary tumors, found in patients with Von Hippel Lindau disease has been well characterized, and clinical trials of antiangiogenic therapy are currently being performed in patients with Von Hippel Lindau disease. Thyroid tumors are more vascular than normal thyroid tissue, and there is a clear correlation between increased VEGF expression and more aggressive thyroid tumor behavior and metastasis. Although parathyroid tissue induces angiogenesis when autotransplanted and PTH regulates both VEGF and MMP expression, there are few studies of angiogenesis and angiogenic factors in parathyroid tumors. An understanding of the balance of angiogenesis in these vascular tumors and mechanisms of vascular control may assist in therapeutic decisions and allow appropriately targeted treatment.  相似文献   

12.
Angiogenesis entails new vessel formation from preexisting vessels. It follows vasculogenesis during embryo development. In post-natal life, it occurs both in physiological conditions (wound repair and cyclically in the female genital system) and pathological conditions such as tumors. Several sequential steps are involved, including basement membrane degradation by proteolytic enzymes secreted by the endothelial cells, chemotaxis toward the stimulus and proliferation of these cells, canalization, branching and formation of vascular loops, stabilization and functional maturation of neovessels following perivascular apposition of pericytes and smooth muscle cells, and neosynthesis of basement membrane constituents. Tumor angiogenesis is regulated by several factors, mainly growth factors for the endothelial cells secreted by both the tumor and host inflammatory cells, and mobilized from extracellular matrix stores by proteases secreted by tumor cells. Regulatory factors also include the extracellular matrix components and endothelial cell integrins, hypoxia, oncogenes and tumor suppressor genes. Angiogenesis is mandatory to the process of tumor progression (growth, invasion and metastasis), since it conveys oxygen and metabolites, whereas endothelial cells secrete growth factors for tumor cells and a variety of proteinases which facilitate invasion and increase opportunities for tumor cells to enter the circulation. We present our results concerning the relationship between angiogenesis and progression in patients with melanoma, multiple myeloma, B-cell non-Hodgkin's lymphomas and mycosis fungoides. Lastly, it is becoming increasingly evident that agents interfering with blood vessel formation also interfere with tumor progression. These include antagonists of angiogenic growth factors, angiogenic receptors, endothelial cell integrins, and proteolytic enzymes, as well as non-specific toxic agents for vessels and low-dose chemotherapeutic agents. Their recent applications in preclinical models and in neoplastic patients are reviewed.  相似文献   

13.
Platelets and angiogenesis in malignancy   总被引:9,自引:0,他引:9  
There is increasing evidence that platelets play an important role in the process of tumor angiogenesis. Thrombocytosis is a frequent finding in cancer patients (10-57%). Although the mechanisms underlying thrombocytosis are not yet fully elucidated, tumor-derived factors with thrombopoietin-like activity and growth factors, platelet-derived microparticles, and factors secreted from bone marrow endothelial cells, as well as growth factors released by megakaryocytes (acting via an autocrine loop), are postulated to influence this process. The progression of cancer is associated with hypercoagulability, which results from direct influences of tumor cells and diverse indirect mechanisms. Activated platelets serve as procoagulant surfaces amplifying the coagulation reactions. It is well known that hemostatic proteins are involved in different steps of the angiogenic process. Furthermore, platelets adhering to endothelium facilitate adhesion of mononuclear cells (which exert various proangiogenic activities) to endothelial cells and their transmigration to the extravascular space. It was also documented that platelets induce angiogenesis in vivo. Platelets are a rich source of proangiogenic factors. They also store and release angiogenesis inhibitors. In addition, platelets express surface growth factor receptors, which may regulate the process of angiogenesis. Platelets also contribute directly to the process of basement membrane and extracellular matrix proteolysis by releasing proteinases, or indirectly via inducing endothelial cells and tumor cells to release proteolytic enzymes, as well as through the proteolytic activities of platelet-derived growth factors. The multidirectional activities of platelets in the process of new blood vessel formation during tumor development and metastasis formation may create the possibility of introducing antiplatelet agents for antiangiogenic therapy in cancer patients. Thus far experimental studies employing inhibitors of glycoprotein IIb-IIIa have yielded promising results.  相似文献   

14.
The angiogenic potential of solid tumors, or the ability to initiate neovasculature development from pre-existing host vessels, is facilitated by soluble factors secreted by tumor cells and involves breaching of extracellular matrix barriers, endothelial cell (EC) proliferation, migration and reassembly. We evaluated the angiogenic potential of human melanoma cell lines differing in their degree of aggressiveness, based on their ability to regulate directionally persistent EC migration. We observed that conditioned-medium (CM) of the aggressive melanoma cell line BLM induced a high effective migratory response in ECs, while CMs of Mel57 and 1F6 had an inhibitory effect. Further, the melanoma cell lines exhibited a varied expression profile of tissue inhibitor of metalloproteinase-3 (TIMP3), detectable in the CM. TIMP3 expression inversely correlated with aggressiveness of the melanoma cell line, and ability of the respective CMs to induce directed EC migration. Interestingly, TIMP3 expression was found to be silenced in the BLM cell line, concurrent with its role as a tumor suppressor. Treatment with recombinant human TIMP3 and CM of modified, TIMP3 expressing, BLM cells mitigated directional EC migration, while CM of TIMP3 silenced 1F6 cells induced directed EC migration. The functional implication of TIMP3 expression on tumor growth and angiogenic potential in melanoma was evaluated in vivo. We observed that TIMP3 expression reduced tumor growth, angiogenesis and macrophage infiltration of BLM tumors while silencing TIMP3 increased tumor growth and angiogenesis of 1F6 tumors. Taken together, our results demonstrate that TIMP3 expression correlates with inhibition of directionally persistent EC migration and adversely affects the angiogenic potential and growth of melanomas.  相似文献   

15.
Endothelial-stromal interactions in angiogenesis   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Angiogenesis often occurs in the context of a wound or tumor stroma. This review will focus on the recent findings on the interactions between angiogenic endothelial cells and the other components of the stroma - fibroblasts, pericytes and extracellular matrix. RECENT FINDINGS: Large-scale gene expression arrays have provided a remarkable insight into the diversity of fibroblasts in different tissues and under different conditions. These somewhat neglected cells are now understood to play a critical role in tumor growth, regulating not only the phenotype of the tumor cells but also the angiogenic response that supports them. These advances are leading to an understanding of the soil and seed hypothesis at the molecular level. In addition, there is a new focus on the role of pericytes in regulating angiogenesis and their potential as targets for tumor therapy. SUMMARY: Initiation of new blood vessel formation requires metalloproteinase induction leading to the degradation of the basement membrane, sprouting of endothelial cells and regulation of pericyte attachment. Fibroblasts and their activated counterpart, the myofibroblast, play a large role in synchronizing these events through the expression of numerous extracellular matrix molecules, growth factors and morphogens, including fibroblast growth factors and transforming growth factor beta.  相似文献   

16.
Spurbeck WW  Ng CY  Strom TS  Vanin EF  Davidoff AM 《Blood》2002,100(9):3361-3368
Homeostasis of the extracellular matrix is a delicate balance between degradation and remodeling, the balance being maintained by the interaction of activated matrix metalloproteinases (MMPs) and specific tissue inhibitors of matrix metalloproteinases (TIMPs). Up-regulation of MMP activity, favoring proteolytic degradation of the basement membrane and extracellular matrix, has been linked to tumor growth and metastasis, as well as tumor-associated angiogenesis, whereas inhibition of MMP activity appears to restrict these processes. We have used retroviral-mediated gene delivery to effect sustained autocrine expression of TIMP-3 in murine neuroblastoma and melanoma tumor cells in order to further examine the ability of TIMPs to inhibit angiogenesis in vivo. Growth of both histologic types of gene-modified tumor cells in severe combined immunodeficiency (SCID) mice was significantly restricted when compared with controls. Grossly, these tumors were small and had few feeding vessels. Histologic evaluation revealed that although tumors overexpressing TIMP-3 had an increased number of CD31(+) endothelial cells, these endothelial cells had not formed functional tubules, as evidenced by decreased vessel continuity and minimal pericyte recruitment. This effect appears to be mediated, in part, by decreased expression of vascular endothelial (VE)-cadherin by endothelial cells in the presence of TIMP-3 as seen both in an in vitro assay and in TIMP-3-overexpressing tumors. Taken together, these results demonstrate that overexpression of TIMP-3 can inhibit angiogenesis and associated tumor growth, and that the antiangiogenic effects of TIMP-3 appear to be mediated through the inhibition of functional capillary morphogenesis.  相似文献   

17.
Angiogenesis is the formation of new microvessels from existing vasculature. It is a crucial component of normal embryogenic development and of some physiological processes in adulthood. Pathological conditions such as tumor growth and metastasis, which involve tissue remodeling and inflammation, are usually associated with vascular leakage and subsequent angiogenesis. Tumor angiogenesis often augments tumor survival, progression, and metastasis, thus enhancing the malignant characteristics of the disease. Proteolytic degradation of the extracellular matrix that surrounds both the capillary sprouts and the migrating tumor cells is an essential part of tumor angiogenesis and tumor growth. In particular, proteases of the fibrinolytic system and the matrix metalloproteinase family play a role in these processes. In addition to proangiogenic effects, proteases also can negatively regulate angiogenesis. Protein fragments that result from proteolytic degradation of extracellular matrix components and other proteins can exhibit potent antiangiogenic properties. A thorough understanding of tumor-associated proteolytic processes is required to identify specific targets that are suitable for protease-based tumor therapy.  相似文献   

18.
Pericellular proteases play an important role in angiogenesis and vasculogenesis. They comprise (membrane-type) matrix metalloproteinases [(MT-)MMPs], serine proteases, cysteine cathepsins, and membrane-bound aminopeptidases. Specific inhibitors regulate them. Major roles in initiating angiogenesis have been attributed to MT1-matrix metalloproteinase (MMP), MMP-2, and MMP-9. Whereas MT-MMPs are membrane-bound by nature, MMP-2 and MMP-9 can localize to the membrane by binding to alphavbeta3-integrin and CD44, respectively. Proteases switch on neovascularization by activation, liberation, and modification of angiogenic growth factors and degradation of the endothelial and interstitial matrix. They also modify the properties of angiogenic growth factors and cytokines. Neovascularization requires cell migration, which depends on the assembly of protease-protein complexes at the migrating cell front. MT1-MMP and urokinase (u-PA) form multiprotein complexes in the lamellipodia and focal adhesions of migrating cells, facilitating proteolysis and sufficient support for endothelial cell migration and survival. Excessive proteolysis causes loss of endothelial cell-matrix interaction and impairs angiogenesis. MMP-9 and cathepsin L stimulate the recruitment and action of blood- or bone-marrow-derived accessory cells that enhance angiogenesis. Proteases also generate fragments of extracellular matrix and hemostasis factors that have anti-angiogenic properties. Understanding the complexity of protease activities in angiogenesis contributes to recognizing new targets for stimulation or inhibition of neovascularization in disease.  相似文献   

19.
Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis.  相似文献   

20.
PURPOSE OF REVIEW: Understanding the role of integrins in the formation of vascular bed is important for designing new therapeutic approaches to ameliorate or inhibit pathological vascularization. Besides regulating cell adhesion and migration, integrins dynamically participate in a network with soluble molecules and their receptors. This study summarizes recent progress in the understanding of the reciprocal interactions between integrins, tyrosine kinase, and semaphorin receptors. RECENT FINDINGS: During angiogenic remodeling, endothelial cells that line blood vessel walls dynamically modify their integrin-mediated adhesive contacts with the surrounding extracellular matrix. During angiogenesis, opposing autocrine and paracrine loops of growth factors and semaphorins regulate endothelial integrin activation and function through tyrosine kinase receptors and the neuropilin/plexins system. Moreover, proangiogenic and antiangiogenic factors can directly bind integrins and regulate endothelial cell behavior. Studies describing these intense research areas are discussed. SUMMARY: Alteration in the balance between the angiogenic growth factors and semaphorins results in an impairment of integrin functions and could account for cardiovascular malformation and structural and functional abnormalities of the tumor vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号