首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (MDRI) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported solely using mRNA data. In this study, we describe a BCRP-specific monoclonal antibody, BXP-34, obtained from mice, immunized with mitoxantrone-resistant, BCRP mRNA-positive MCF-7 MR human breast cancer cells. BCRP was detected in BCRP-transfected cells and in several mitoxantrone- and topotecan-selected tumor cell sublines. Pronounced staining of the cell membranes showed that the transporter is mainly present at the plasma membrane. In a panel of human tumors, including primary tumors as well as drug-treated breast cancer and acute myeloid leukemia samples, BCRP was low or undetectable. Extended studies will be required to analyze the possible contribution of BCRP to clinical multidrug resistance.  相似文献   

3.
PURPOSE: Acute myeloid leukemia (AML) is considered a stem cell disease. Incomplete chemotherapeutic eradication of leukemic CD34+38- stem cells is likely to result in disease relapse. The purpose of this study was to investigate the role of the breast cancer resistance protein (BCRP/ATP-binding cassette, subfamily G, member 2) in drug resistance of leukemic stem cells and the effect of its modulation on stem cell eradication in AML. EXPERIMENTAL DESIGN: BCRP expression (measured flow-cytometrically using the BXP21 monoclonal antibody) and the effect of its modulation (using the novel fumitremorgin C analogue KO143) on intracellular mitoxantrone accumulation and in vitro chemosensitivity were assessed in leukemic CD34+38- cells. RESULTS: BCRP was preferentially expressed in leukemic CD34+38- cells and blockage of BCRP-mediated drug extrusion by the novel fumitremorgin C analogue KO143 resulted in increased intracellular mitoxantrone accumulation in these cells in the majority of patients. This increase, however, was much lower than in the mitoxantrone-resistant breast cancer cell line MCF7-MR and significant drug extrusion occurred in the presence of BCRP blockage due to the presence of additional drug transport mechanisms, among which ABCB1 and multiple drug resistance protein. In line with these findings, selective blockage of BCRP by KO143 did not enhance in vitro chemosensitivity of leukemic CD34+38- cells. CONCLUSIONS: These results show that drug extrusion from leukemic stem cells is mediated by the promiscuous action of BCRP and additional transporters. Broad-spectrum inhibition, rather than modulation of single mechanisms, is therefore likely to be required to circumvent drug resistance and eradicate leukemic stem cells in AML.  相似文献   

4.
BACKGROUND: Human cancer cell lines grown in the presence of the cytotoxic agent mitoxantrone frequently develop resistance associated with a reduction in intracellular drug accumulation without increased expression of the known drug resistance transporters P-glycoprotein and multidrug resistance protein (also known as multidrug resistance-associated protein). Breast cancer resistance protein (BCRP) is a recently described adenosine triphosphate-binding cassette transporter associated with resistance to mitoxantrone and anthracyclines. This study was undertaken to test the prevalence of BCRP overexpression in cell lines selected for growth in the presence of mitoxantrone. METHODS: Total cellular RNA or poly A+ RNA and genomic DNA were isolated from parental and drug-selected cell lines. Expression of BCRP messenger RNA (mRNA) and amplification of the BCRP gene were analyzed by northern and Southern blot hybridization, respectively. RESULTS: A variety of drug-resistant human cancer cell lines derived by selection with mitoxantrone markedly overexpressed BCRP mRNA; these cell lines included sublines of human breast carcinoma (MCF-7), colon carcinoma (S1 and HT29), gastric carcinoma (EPG85-257), fibrosarcoma (EPF86-079), and myeloma (8226) origins. Analysis of genomic DNA from BCRP-overexpressing MCF-7/MX cells demonstrated that the BCRP gene was also amplified in these cells. CONCLUSIONS: Overexpression of BCRP mRNA is frequently observed in multidrug-resistant cell lines selected with mitoxantrone, suggesting that BCRP is likely to be a major cellular defense mechanism elicited in response to exposure to this drug. It is likely that BCRP is the putative "mitoxantrone transporter" hypothesized to be present in these cell lines.  相似文献   

5.
Cyclosporin A is a broad-spectrum multidrug resistance modulator.   总被引:10,自引:0,他引:10  
PURPOSE: Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp), multidrug resistance protein (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) is associated with treatment failure in acute myeloid leukemia (AML) and other malignancies. The Pgp modulator cyclosporin A has shown clinical efficacy in AML, whereas its analogue PSC-833 has not. Cyclosporin A is known to also modulate MRP-1, and we hypothesized that broad-spectrum multidrug resistance modulation might contribute to its clinical efficacy. EXPERIMENTAL DESIGN: We studied the effects of cyclosporin A and PSC-833 on in vitro drug retention and cytotoxicity in resistant cell lines overexpressing Pgp, MRP-1, and BCRP and on nuclear-cytoplasmic drug distribution and cytotoxicity in cells overexpressing LRP. Cellular drug content was assessed by flow cytometry and nuclear-cytoplasmic drug distribution by confocal microscopy. RESULTS: Cyclosporin A enhanced retention of the substrate drug mitoxantrone in cells overexpressing Pgp (HL60/VCR), MRP-1 (HL60/ADR), and BCRP (8226/MR20, HEK-293 482R) and increased cytotoxicity 6-, 4-, 4-, and 3-fold, respectively. Moreover, cyclosporin A enhanced nuclear distribution of doxorubicin in 8226/MR20 cells, which also express LRP, and increased doxorubicin cytotoxicity 12-fold without an effect on cellular doxorubicin content, consistent with expression of wild-type BCRP, which does not efflux doxorubicin. Cyclosporin A also enhanced nuclear doxorubicin distribution in a second cell line with LRP overexpression, HT1080/DR4. PSC-833 enhanced mitoxantrone retention and cytotoxicity in cells overexpressing Pgp, but had no effect in cells overexpressing MRP-1, BCRP, or LRP. CONCLUSIONS: Cyclosporin A modulates Pgp, MRP-1, BCRP, and LRP, and this broad-spectrum activity may contribute to its clinical efficacy.  相似文献   

6.
Expression of the multidrug resistance proteins P-glycoprotein, encoded by the MDR1 gene, multidrug resistance-associated protein (MRP1) and the lung resistance-related protein or major vault protein (LRP/MVP) is associated with clinical resistance to chemotherapy in acute myeloid leukemia (AML). Recently, the breast cancer-resistant protein (BCRP), the equivalent of mitoxantrone-resistant protein (MXR) or placental ABC transporter (ABCP), was described in AML. We investigated MDR1, MRP1, LRP/MVP and BCRP mRNA expression simultaneously in 20 paired clinical AML samples from diagnosis and relapse or refractory disease, using quantitative Taqman analysis. In addition, standard assays for P-glycoprotein expression and function were performed. BCRP was the only resistance protein that was expressed at a significantly higher RNA level (median 1.7-fold, P = 0.04) at relapsed/refractory state as compared to diagnosis. In contrast, LRP/MVP mRNA expression decreased as disease evolved (P = 0.02), whereas MDR1 and MRP1 mRNA levels were not different at relapse as compared to diagnosis. Also, at the protein level no difference of MDR1 between diagnosis and relapse was found. A significant co-expression of BCRP and MDR1 was found at diagnosis (r = 0.47, P = 0.04). The present results suggest that BCRP, but not MDR1, MRP1 or LRP/MVP is associated with clinical resistant disease in AML.  相似文献   

7.
Basic fibroblast growth factor (bFGF) is known to play a critical role in tumorigenesis of solid tumors. The importance of bFGF in hematological malignancies such as acute myeloid leukemia (AML) remains to be elucidated. Therefore, we determined bFGF protein expression by immunohistochemical analyses in bone marrow biopsies of patients with newly diagnosed, untreated AML. The expression of bFGF was significantly increased in AML patients [n = 81; median, 3.0 (interquartile range, 1.8-3.9) arbitrary units (AU)] as compared with controls [n = 18; 1.9 (1.5-2.3) AU]. The degree of bFGF expression did not correlate with microvessel density. bFGF/FGF receptor mRNA and bFGF protein were detected in different AML cell lines. To study autocrine growth stimulation of AML blasts, the AML cell lines HL-60, M-07e, and KG-1 were incubated with bFGF. A significant dose-dependent increase in proliferation and colony formation was observed. These effects were abrogated by the addition of a polyclonal anti-bFGF antibody. In conclusion, increased expression of bFGF in the bone marrow of AML patients seems to play an important role in the pathophysiology of AML by promoting autocrine growth stimulation of leukemic blasts.  相似文献   

8.
Acute myeloid leukemia (AML) with rearrangement of the core-binding factor (CBF) alpha or beta subunit gene has a favorable prognosis, but CD56 expression in CBFalpha-AML is associated with short disease-free survival. A proposed mechanism is overexpression of the multidrug resistance (MDR) protein P-glycoprotein (Pgp). CD56 expression, Pgp expression and function, and expression of the additional MDR proteins multidrug resistance protein-1 (MRP-1), lung resistance protein (LRP) and breast cancer resistance protein (BCRP) were studied in pretreatment blasts from 25 CBF-AML patients. CD56 expression was frequent in CBFalpha but rare in CBFbeta, and Pgp expression and function were frequent in both subtypes. CD56 expression did not correlate with Pgp expression or function, nor with expression of the other MDR proteins. Treatment failure associated with CD56 expression in CBFalpha-AML is not likely attributable to Pgp.  相似文献   

9.
Breast cancer resistance protein (BCRP), also known as mitoxantrone resistance protein (MRX) or placenta ABC protein (ABC-P), is the second member of the ABCG subfamily of ABC transport proteins (gene symbol ABCG2). Transfection and enforced expression of BCRP in drug-sensitive cells confers resistance to mitoxantrone, doxorubicin, daunorubicin and topotecan. In this study the expression of BCRP gene was measured using TaqMan real-time PCR in 59 children with newly diagnosed AML. Nine patients were also analyzed in relapse. The median of BCRP gene expression was more than 10 times higher in patients who did not achieve remission after the first phase of chemotherapy (n = 24) as compared to patients who did achieve remission at this stage (n = 21; P = 0.012). In first relapse the expression of the BCRP gene was higher than at diagnosis (P = 0.038). Although high levels of BCRP gene expression were more frequent in subtypes of AML with a favorable prognosis, we found that within both risk groups (high and low risk), patients who expressed high levels of BCRP had a worse prognosis (P = 0.023). Our results strongly suggest that the expression of the BCRP gene reduces the response to chemotherapy in AML and that BCRP expression is higher at the time of relapse.  相似文献   

10.
BCRP mRNA expression v. clinical outcome in 40 adult AML patients   总被引:14,自引:0,他引:14  
Efflux pumps are considered being mechanisms behind drug resistance in acute myeloid leukaemia (AML). A recently described efflux pump, breast cancer resistance protein (BCRP), can be expressed in AML, but its clinical importance is uncertain. In this study BCRP mRNA expression was determined in samples from 40 AML patients by real-time RT-PCR. The expression varied from negative to 76 times that of control cells. There was no difference in BCRP mRNA expression between patients responding to induction treatment and non-responders. However, in the group of responders, the 14 patients with the highest expression had significantly shorter overall survival (mean 38 months, SEM 15 months) than the 14 patients with the lowest (74 months, SEM 16 months) (P = 0.047). This suggests a possible role of BCRP in drug resistance in AML.  相似文献   

11.
12.
13.
14.
15.
目的:建立HEK293/BCRP多药耐药细胞系并研究其生物学功能。方法:构建有BCRP基因的表达载体,利用脂质体转染方法将载体转入HEK293细胞,并用RT-PCR、间接免疫荧光染色和流式细胞术分析检测转染细胞系BCRP的表达,体外细胞毒试验检测其对米托蒽醌等的耐药指数,流式细胞术和激光共聚焦分别检测其对罗丹明123和阿霉素的外排作用。结果:HEK293/BCRP细胞系在BCRP mRNA和蛋白表达均明显升高(P<0.05),对米托蒽醌的耐药指数达112.07倍,经1.5 h和3 h外排,细胞内罗丹明123浓度分别降低了42.25%和69.01%,激光共聚焦显示细胞内阿霉素浓度降低。结论:成功构建了表达BCRP的胚肾细胞系HEK293/BCRP,并对多种抗肿瘤药物具有耐受性。  相似文献   

16.
Novel mechanisms of drug resistance in leukemia.   总被引:33,自引:0,他引:33  
D D Ross 《Leukemia》2000,14(3):467-473
A key issue in the treatment of acute leukemia is the development of resistance to chemotherapeutic drugs. Several mechanisms may account for this phenomenon, including failure of the cell to undergo apoptosis in response to chemotherapy, or failure of the drug to reach and/or affect its intracellular target. This review focuses on the latter mechanism, and on intracellular drug transport resistance mechanisms in particular. Expression of the ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) has generally been reported to correlate with prognosis in acute myeloid leukemia (AML). Additionally, but more controversial, expression of the ABC transporter multidrug resistance protein (MRP) and the vault-transporter lung resistance protein (LRP) have been correlated with outcome in AML. Despite these findings, functional efflux assays indicate the presence of non-Pgp, non-MRP transporters in AML. Recently, a novel ABC transporter, breast cancer resistance protein (BCRP) was cloned and sequenced in our laboratory. Transfection and overexpression of BCRP in drug-sensitive cells confers drug-resistance to the cells. BCRP is a half-transporter, and may homodimerize or form heterodimers (with a yet unknown half-transporter) to produce an active transport complex. Relatively high expression of BCRP mRNA is observed in approximately 30% of AML cases, suggesting a potential role for this new transporter in drug resistance in leukemia.  相似文献   

17.
Gemtuzumab ozogamicin (CMA-676), a calicheamicin-conjugated humanized anti-CD33 mouse monoclonal antibody, has recently been introduced clinically as a promising drug for the treatment of patients with acute myeloid leukemia (AML), more than 90% of which express CD33 antigen. However, our recent study suggested that CMA-676 was excreted by a multi- drug-resistance (MDR) mechanism in P-glycoprotein (P-gp)-expressing leukemia cell lines. We analyzed the in vitro effects of CMA-676 on leukemia cells from 27 AML patients in relation to the amount of P-gp, MDR-associated protein 1 (MRP1), CD33 and CD34, using a multi-laser-equipped flow cytometer. The cytocidal effect of CMA-676, estimated by the amount of hypodiploid portion on cell cycle, was inversely related to the amount of P-gp estimated by MRK16 monoclonal antibody (P = 0.004), and to the P-gp function assessed by intracellular rhodamine-123 accumulation in the presence of PSC833 or MS209 as a MDR modifier (P = 0.0004 and P = 0.002, respectively). In addition, these MDR modifiers reversed CMA-676 resistance in P-gp-expressing CD33(+) leukemia cells (P = 0.001 with PSC833 and P = 0.0007 with MS209). In CD33(+) AML cells from 13 patients, CMA-676 was less effective on CD33(+)CD34(+) than CD33(+)CD34(-) cells (P = 0.002). PSC833 partially restored the effect of CMA-676 in CD33(+)CD34(+) cells. These results suggest that the combined use of CMA-676 and a MDR modifier will be more effective on CD33(+) AML with P-gp-related MDR.  相似文献   

18.
Two proteins that have been correlated with the occurrence of multidrug resistance in acute myeloid leukemia (AML) are P-glycoprotein (Pgp) and the major vault protein (Mvp/LRP). With the purpose of further quantifying the potential contributions of Pgp-mediated drug efflux and Mvp/LRP to drug resistance in AML we have investigated whether the transport function of Pgp and the expression of Mvp/LRP correlated with the accumulation of daunorubicin (DNR) and the in vitro resistance to DNR cytotoxicity (LC50 by MTT assay) in AML cells. In de novo adult AML, the steady-state DNR accumulation (in pmol/10(6) cells) correlated with Pgp activity or expression, whereas the LC50 for DNR did not correlate with Pgp activity (measured as the modulation of rhodamine 123 or DNR accumulation by the Pgp inhibitor PSC833) or Pgp expression (measured by flow cytometry with the MRK-16 antibody). The contribution of MRP1 expression to a reduced DNR accumulation seems minor compared to Pgp. In addition, the modulation of the DNR LC50 by PSC833 did not correlate with Pgp protein or activity. The steady-state DNR accumulation showed no correlation with the DNR LC50. The Mvp/LRP expression (immunocytochemical staining) did neither correlate with DNR accumulation nor with the DNR LC50. A significant negative correlation was seen between the Mvp/LRP immunocytochemical staining and Pgp activity, indicating that both markers define (partially) different populations. In conclusion, it is shown that Pgp function, but not Mvp/LRP or MRP1 expression correlate with a low steady-state DNR accumulation in de novo AML. The Pgp activity does, however, not predict the DNR sensitivity in AML measured as in vitro DNR LC50 with an MTT-based assay. The reason for that seems to be that a low DNR accumulation may not be the most important factor in determining the LC50. While the clinical usefulness of these drug resistance tests remains to be proven they do not seem to provide as yet a straightforward explanation for the major cause(s) of clinical chemotherapy failure.  相似文献   

19.
Northern blotting confirmed previous results indicating that the mitogen-activated protein kinase (MAPK) phosphatase Pyst2-L was highly expressed in leukocytes obtained from acute myeloid leukemia (AML) patients. High levels of Pyst2-L mRNA were expressed in bone marrow (BM) and peripheral leukocytes from nine AML and acute lymphoblastic leukemia (ALL) patients. BM from healthy individuals expressed very low levels of Pyst2-L. Whereas high levels of Pyst2-L mRNA and protein were detected in several leukemia cell lines, Pyst2-L mRNA was detected neither in 33/34 samples of normal peripheral blood mononuclear cells (PBMC) nor in leukocyte fractions enriched with CD34+ cells. Certain solid tumor and lymphoblastoid cell lines expressed high levels of Pyst2-L mRNA. In view of the association of Pyst2-L to MAPK signaling cascades, we tested if cell activation, a process involving MAPK signaling, influences Pyst2-L expression. Indeed, activation of T cells and endothelial cells increased Pyst2-L in these cells. Furthermore, TPA, a known MAPK activator, induces the expression of both Pyst2-L mRNA as well as the Pyst2-L protein in leukemia cells. This induction was partially inhibited by PD098059, an Mek1/2-specific inhibitor. Based on the results of this and previous studies, we hypothesize that the high levels of Pyst2-L detected in the active state of AML and ALL diseases and in other types of cancer reflect an altered MAPK signaling pathway in such malignant processes. This alteration may be the result of a failed attempt to counter the constitutive activation of MAPK in transformed cells or alternatively, may represent the activated state of such cells.  相似文献   

20.
Mouse fibroblast cell lines lacking functional Mdr1a, Mdr1b, and Mrp1 genes were selected for resistance to topotecan, mitoxantrone, or doxorubicin. Each of the resulting drug-resistant lines showed marked gene amplification of Bcrp1, the mouse homologue of the human ATP-binding cassette transporter gene BCRP/MXR/ABCP, and greatly elevated expression of Bcrp1 mRNA. All three of the resistant cell lines were highly cross-resistant to topotecan and mitoxantrone and, to a variable extent, doxorubicin. All showed greatly reduced cellular accumulation and greatly increased efflux of mitoxantrone that was dependent on cellular ATP and efficiently reversed by the compound GF120918. The mouse Bcrp1 cDNA encodes a 657-amino-acid protein with 81% identity (86% similarity) to the human breast cancer resistance protein (BCRP) and a virtually superimposable hydrophobicity profile. Our data argue strongly that mouse Bcrp1 is functionally comparable with human BCRP, conferring multidrug resistance to topotecan, mitoxantrone, doxorubicin, and related compounds. Mouse models and cell lines should, therefore, be highly informative in understanding the clinical, pharmacological, and physiological roles of BCRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号