首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymerase chain reaction (PCR) assay, based on the amplification of internal transcribed spacer 1 (ITS1) regions of ribosomal DNA, was developed for the chicken coccidian species Eimeria maxima, E. mitis and E. praecox. Thus, taking into account our previous work, a complete set of ITS1-based, species-specific primers for the detection and discrimination of all seven Eimeria species that infect the domestic fowl is now available. ITS1 primers for each of these seven species of Eimeria were also used as capture probes in a paper chromatography assay (PACHA). The addition of PACHA to the PCR assay provided a faster, more simplified read-out compared to staining of amplified bands in an agarose gel with ethidium bromide.  相似文献   

2.
A real-time PCR assay was developed for the detection of Ehrlichia chaffeensis. The assay is species specific and provides quantitative results in the range 10 to 10(10) gene copies. The assay is not inhibited by the presence of tick, human, or mouse DNA and is compatible with high sample throughput. The assay was compared with previously described assays for E. chaffeensis.  相似文献   

3.
We describe a polymerase chain reaction (PCR)-based assay for the detection, identification and differentiation of pathogenic species of .Eimeria in poultry. The internal transcribed spacer 1 (ITS1) regions of ribosomal DNA (rDNA) from .Eimeria acervulina, E. brunetti, E. necatrix and .E. tenella were sequenced and regions of unique sequences identified. Four pairs of oligonucleotide primers, each designed to amplify the ITS1 region of a single .Eimeria species, were synthesised for use in the PCR assay. In tests on purified genomic DNA from all seven species of .Eimeria that infect the chicken, each of the four primer pairs amplified the ITS1 region from only their respective target species. The robustness of the approach was further demonstrated by the amplification of specific DNA fragments from tissues of experimentally infected animals and from oocysts recovered from field samples. We conclude that the ITS1 regions of .Eimeria species contain sufficient inter-specific sequence variation to enable the selection of primers that can be applied in PCR analyses to detect and differentiate between species. In future work they may provide excellent markers for epidemiological studies.  相似文献   

4.
The sensitivity and specificity of 7 PCR assays described for the identification of Campylobacter jejuni and Campylobacter coli were examined using alkaline cell lysates from a collection of 100 well characterized reference strains of C. jejuni, C. coli, Campylobacter lari and related Campylobacter, Helicobacter and Arcobacter species. Based on a preliminary evaluation, one multiplex test was excluded from further evaluation. The various assays differed considerably in sensitivity and specificity towards their target species. For C. coli, 4 of the 5 assays were 100% specific and sensitive, but for C. jejuni, none of the 5 assays were found to be 100% specific or sensitive. Subsequently, a statistically valid sample (n=263) was taken from a Belgian collection of 1906 human Campylobacter field isolates. This second collection was used to further evaluate two selected multiplex PCR assays. The present study indicates that PCR-based identification using each of the two selected multiplex PCR assays was highly reliable. The R-mPCR assay, followed by species-specific PCR assays or the ceu-oxr mPCR assay if necessary, is our current strategy of choice for the molecular identification of C. jejuni and C. coli. Results presented here should aid researchers in selecting a PCR assay suitable for their specific needs.  相似文献   

5.
A multiplex real-time PCR assay was developed for the simultaneous detection of Anaplasma phagocytophilum and Borrelia burgdorferi. The assay was tested on various Anaplasma, Borrelia, Erhlichia, and Rickettsia species, as well as on Bartonella henselae and Escherichia coli, and the assay was found to be highly specific for A. phagocytophilum and the Borrelia species tested (B. burgdorferi, B. parkeri, B. andersonii, and B. bissettii). The analytical sensitivity of the assay is comparable to that of previously described nested PCR assays (A. phagocytophilum, 16S rRNA; B. burgdorferi, fla gene), amplifying the equivalent of one-eighth of an A. phagocytophilum-infected cell and 50 borrelia spirochetes. The dynamic range of the assay for both A. phagocytophilum and B. burgdorferi was >/=4 logs of magnitude. Purified DNA from A. phagocytophilum and B. burgdorferi was spiked into DNA extracted from uninfected ticks and from negative control mouse and human bloods, and these background DNAs were shown to have no significant effect on sensitivity or specificity of the assay. The assay was tested on field-collected Ixodes scapularis ticks and shown to have 100% concordance compared to previously described non-probe-based PCR assays. To our knowledge, this is the first report of a real-time multiplex PCR assay that can be used for the simultaneous and rapid screening of samples for A. phagocytophilum and Borrelia species, two of the most common tick-borne infectious agents in the United States.  相似文献   

6.
Varicella-zoster vaccine is a live attenuated virus. It is, therefore, necessary to have a test to differentiate vaccine from wild-type varicella-zoster virus (VZV) strains for the investigation of varicella or zoster-like rash illness in individuals vaccinated previously. In addition, it is necessary to have a rapid VZV assay for use in the context of smallpox bioterrorism laboratory testing. Using specific primers and hybridization probes, a rapid method to differentiate vaccine strain VZV from wild-type VZV was developed based on the presence or absence of a Pst I restriction site within open reading frame (ORF) 38. Using this ORF 38 assay in conjunction with a similar previously described ORF 62 assay allows for further differentiation of vaccine strain, wild-type and a laboratory control strain (Ellen) VZV. This is accomplished because Ellen VZV is similar to wild-type VZV with respect to the ORF 38 assay but is similar to vaccine strain VZV with respect to the ORF 62 assay. The hybridization probes for each ORF are labeled with different fluorescent tags thus allowing both assays to be run simultaneously in a single tube. Both assays demonstrate a high degree of specificity for VZV and can reliably detect between 10 and 100 copies of VZV DNA. Thus, the real-time polymerase chain reaction (PCR) assay for VZV described below provides a rapid assay allowing the simultaneous differentiation of vaccine, wild-type and laboratory control strains of VZV.  相似文献   

7.
Trichomonas vaginalis is the agent of a highly prevalent sexually transmitted infection (STI) that can result in vaginitis, urethritis, and preterm birth. Traditional methods of diagnosis, including wet preparation, can be unreliable. In this study, we describe the adaptation of an existing PCR method for specific detection of T. vaginalis DNA into a rapid real-time PCR assay based on fluorescence resonance energy transfer (FRET) probe chemistry. The FRET-based assay described demonstrated high sensitivity with a detection limit of 1.06 organisms, as well as a high specificity. A total of 253 urine samples collected prospectively from both men and women were tested for T. vaginalis DNA with both the FRET-based assay and a previously validated PCR assay. When the validated PCR assay was used as the "gold standard" and after discrepancies had been resolved, our FRET-based assay demonstrated an analytical sensitivity and specificity of 90.1 and 100%, respectively. Overall results suggest that FRET-based assays can provide rapid, accurate, and high-throughput detection of T. vaginalis and may prove useful in clinical settings and for large-scale screening programs.  相似文献   

8.
Purpose: Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Materials and Methods: Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Results: Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. Conclusion: The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.  相似文献   

9.
The application of polymerase chain reaction (PCR) fingerprinting assays enables discrimination between species and strains of microorganisms. PCR primers aiming at arbitrary sequences in combination with primers directed against the repetitive extragenic palindrome (REP) or enterobacterial repetitive intergenic consensus (ERIC) motifs generate isolate-specific DNA banding patterns. Analysis of these PCR fingerprints obtained for 33 isolates of Campylobacter jejuni, 30 isolates of Campylobacter coli, and 8 isolates of Campylobacter lari revealed that besides generation of isolate-specific fragments, species-specific DNA fragments of identical size were synthesized. It appeared that these DNA fragments could be used as species-specific probes, since they are unique for the pattern which they are deriving from. The probes do not cross-react with amplified DNA originating from a large panel of nonrelated microorganisms. Moreover, these probes displayed species specificity, as they reacted with a single restriction fragment on Southern blots containing DNA from C. jejuni, C. coli, and C. lari and other Campylobacter species. This combination of PCR fingerprinting and probe hybridization results in a highly specific identification assay and provides an example of specific test development without the prior need for DNA sequence information. The principle of the procedure holds great promise for the rapid isolation of DNA probes which, in combination with a general PCR assay, may lead to efficient typing and detection procedures for a multitude of medically important nonviral microorganisms.  相似文献   

10.
Exserohilum rostratum was the major cause of the multistate outbreak of fungal meningitis linked to contaminated injections of methylprednisolone acetate produced by the New England Compounding Center. Previously, we developed a fungal DNA extraction procedure and broad-range and E. rostratum-specific PCR assays and confirmed the presence of fungal DNA in 28% of the case patients. Here, we report the development and validation of a TaqMan real-time PCR assay for the detection of E. rostratum in body fluids, which we used to confirm infections in 57 additional case patients, bringing the total number of case patients with PCR results positive for E. rostratum to 171 (37% of the 461 case patients with available specimens). Compared to fungal culture and the previous PCR assays, this real-time PCR assay was more sensitive. Of the 139 identical specimens from case patients tested by all three methods, 19 (14%) were positive by culture, 41 (29%) were positive by the conventional PCR assay, and 65 (47%) were positive by the real-time PCR assay. We also compared the utility of the real-time PCR assay with that of the previously described beta-d-glucan (BDG) detection assay for monitoring response to treatment in case patients with serially collected CSF. Only the incident CSF specimens from most of the case patients were positive by real-time PCR, while most of the subsequently collected specimens were negative, confirming our previous observations that the BDG assay was more appropriate than the real-time PCR assay for monitoring the response to treatment. Our results also demonstrate that the real-time PCR assay is extremely susceptible to contamination and its results should be used only in conjunction with clinical and epidemiological data.  相似文献   

11.
BACKGROUND: BK virus (BKV) and JC virus (JCV) are the only two known human polyomavirus that typically establish subclinical persistent infections. In immunocompromised hosts reactivation of the JCV infection is the cause of the central nervous system disease progressive multifocal leucoencephalopathy (PML), while BKV may cause renal nephropathy and haemorrhagic cystitis. OBJECTIVES: The goal of this study was to develop a specific quantification assay for each polyomavirus by LightCycler real-time polymerase chain reaction (PCR) based on SYBR Green I detection. STUDY DESIGN: DNA fragments of 138bp and 233bp from the "large T antigen" region of JCV and BKV, respectively, were amplified. The ability of the designed primer sets to separately quantify BKV DNA or JCV DNA and the PCR efficiency were assessed on reference DNA samples. Known amounts of cloned JCV DNA and BKV DNA from TEBU-BIO nv (Boechout, Belgium) were used to generate standard curves for the quantification assays. Species-specificity of the PCR was evaluated with cloned DNA and with DNA from patient samples. RESULTS: The assay allowed a specific quantification over a 7log dynamic range. Seventeen copies each of the viral genes were reproducibly and accurately detected. The primer sets generated specific DNA fragments for each virus confirmed by agarose gel analysis and by cycle sequencing. The similarities of the amplified gene sequences by BLAST analysis were 99% and 100% for BKV and JCV, respectively. There was no cross-reactivity within the dynamic range of the standard dilutions. CONCLUSIONS: We developed LightCycler real-time PCR assay based on SYBR Green I detection that provided rapid and specific quantification of polyomavirus load.  相似文献   

12.
Chlamydia pneumoniae is an important respiratory pathogen recently associated with atherosclerosis and several other chronic diseases. Detection of C. pneumoniae is inconsistent, and standardized PCR assays are needed. Two real-time PCR assays specific for C. pneumoniae were developed by using the fluorescent dye-labeled TaqMan probe-based system. Oligonucleotide primers and probes were designed to target two variable domains of the ompA gene, VD2 and VD4. The limit of detection for each of the two PCR assays was 0.001 inclusion-forming unit. Thirty-nine C. pneumoniae isolates obtained from widely distributed geographical areas were amplified by the VD2 and VD4 assays, producing the expected 108- and 125-bp amplification products, respectively. None of the C. trachomatis serovars, C. psittaci strains, other organisms, or human DNAs tested were amplified. The amplification results of the newly developed assays were compared to the results of culturing and two nested PCR assays, targeting the 16S rRNA and ompA genes. The assays were compared by testing C. pneumoniae purified elementary bodies, animal tissues, 228 peripheral blood mononuclear cell (PBMC) specimens, and 179 oropharyngeal (OP) swab specimens obtained from ischemic stroke patients or matched controls. The real-time VD4 assay and one nested PCR each detected C. pneumoniae in a single, but different, PBMC specimen. Eleven of 179 OP specimens (6.1%) showed evidence of the presence of C. pneumoniae in one or more tests. The real-time VD4 assay detected the most positive results of the five assays. We believe that this real-time PCR assay offers advantages over nested PCR assays and may improve the detection of C. pneumoniae in clinical specimens.  相似文献   

13.
The increasing incidence of invasive aspergillosis, a life-threatening infection in immunocompromised patients, emphasizes the need to improve the diagnostic tools for this disease. We established a LightCycler-based real-time PCR assay to detect and quantify rapidly, specifically, and sensitively Aspergillus fumigatus DNA in both bronchoalveolar lavage (BAL) and blood samples from high-risk patients. The primers and hybridization probes were derived from an A. fumigatus-specific sequence of the mitochondrial cytochrome b gene. The assay is linear in the range between 13.2 fg and 1.3 ng of A. fumigatus DNA, corresponding to 3 to 300,000 CFU per ml of BAL fluid or blood. No cross-amplification was observed with human DNA or with the DNA of fungal or bacterial pathogens. For clinical evaluation we investigated 10 BAL samples from nine neutropenic patients with malignant hematological diseases and 12 blood samples from seven neutropenic patients with malignant hematological diseases. Additionally, we tested one blood sample and one BAL sample from each of two neutropenic patients. In order to characterize the validity of the novel PCR assay, only samples that had shown positive results by a previously described sensitive and specific nested PCR assay were tested. Twelve of 12 BAL samples and 6 of 14 blood samples gave positive results by the LightCycler PCR assay. Eight of 14 blood samples gave negative results by the novel method. The LightCycler PCR-mediated quantification of the fungal burden showed 15 to 269,018 CFU per ml of BAL sample and 298 to 104,114 CFU per ml of blood sample. Twenty of 20 BAL samples and 50 of 50 blood samples from subjects without evidence of invasive pulmonary aspergillosis (IPA) were PCR negative. Compared to a previously described nested PCR assay, these preliminary data for the novel real-time PCR assay indicate a less sensitive rate of detection of IPA in high-risk patients, but the assay may be valuable for quantification of the fungal burden in individual clinical samples.  相似文献   

14.
The development and validation of a PCR assay based on the use of new 16S ribosomal DNA (rDNA)-targeted primers to detect Legionella DNA in respiratory specimens are described. The assay was originally developed as conventional PCR followed by electrophoretic detection and was then adapted to Lightcycler format with SYBR Green I detection and melting curve analysis. The 73 Legionella pneumophila strains tested were amplified with both applications. In addition, 21 and 23 out of 27 other Legionella strains were found positive by conventional and real-time PCR assays, respectively, including the clinically important species L. micdadei, L. bozemaniae, and L. dumoffii. Two DNA purification methods were compared using artificially seeded clinical specimens: a standard organic extraction method and a commercial kit based on adsorption of DNA to silica particles. The detection limit of the assay varied from 2 CFU to >200,000 CFU per ml of clinical specimen, depending on the background sample (i.e., pooled sputa or BAL fluids) and the DNA purification method, the silica method achieving lower detection limits. Analysis of 77 clinical samples (66 bronchoalveolar lavage fluid and 11 sputum samples) by conventional PCR yielded results that were consistent with Legionella culture results. The melting curve analysis in the Lightcycler system readily detected the specific amplification products. However, run-to-run variations in the measured melting temperatures required normalization against the standard sample in each run. The results obtained with the clinical specimens were similar to those obtained with conventional PCR, but more samples are required to determine whether the system can be applied to routine screening of samples for the presence of Legionella DNA.  相似文献   

15.
We developed a rapid thermocycling, real-time detection (also known as real-time PCR) method for the detection of Legionella species directly from clinical specimens. This method uses the LightCycler (Roche Molecular Biochemicals, Indianapolis, Ind.) and requires approximately 1 to 2 h to perform. Both a Legionella genus PCR assay and Legionella pneumophila species-specific PCR assay were designed. A total of 43 archived specimens from 35 patients were evaluated, including 19 bronchoalveolar lavage (BAL) specimens and 24 formalin-fixed, paraffin-embedded open lung biopsy specimens. Twenty-five of the specimens were culture-positive for Legionella (9 BAL specimens and 16 tissue specimens). BAL specimens were tested by LightCycler PCR (LC-PCR) methods and by a direct fluorescent antibody (DFA) assay, which detects L. pneumophila serogroups 1 to 6 and several other Legionella species. Tissue sections were tested by the two LC-PCR methods, by DFA, by an in situ hybridization (ISH) assay, specifically designed to detect L. pneumophila, and by Warthin-Starry (WS) staining. The results were compared to the "gold standard" method of bacterial culture. With BAL specimens the following assays yielded the indicated sensitivities and specificities, respectively: Legionella genus detection by Legionella genus LC-PCR, 100 and 100%; Legionella genus detection by DFA assay, 33 and 100%; and L. pneumophila detection by L. pneumophila species-specific LC-PCR, 100 and 100%. With open lung biopsy specimens the following assays yielded the indicated sensitivities and specificities, respectively: Legionella genus detection by LC-PCR 68.8 and 100%; Legionella genus detection by DFA assay, 44 and 100%; Legionella genus detection by WS staining, 63 and 100%; L. pneumophila species-specific detection by LC-PCR, 17 and 100%; and L. pneumophila species-specific detection by ISH, 100 and 100%. The analytical sensitivity of both LC-PCR assays was <10 CFU/reaction. LC-PCR is a reliable method for the direct detection of Legionella species from BAL specimens. The Legionella genus LC-PCR assay could be performed initially; if positive, L. pneumophila species-specific LC-PCR could then be performed (if species differentiation is desired). The speed with which the LC-PCR procedure can be performed offers significant advantages over both culture-based methods and conventional PCR techniques. In contrast, for the methods evaluated, culture was the best for detecting multiple Legionella species in lung tissue. WS staining, Legionella genus LC-PCR, and L. pneumophila species-specific ISH were useful as rapid tests with lung tissue.  相似文献   

16.
Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.  相似文献   

17.
18.
Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis.   总被引:5,自引:0,他引:5  
BACKGROUND: Human ehrlichiosis is a recently recognized tick-borne infection. Four species infect humans: Ehrlichia chaffeensis, E. sennetsu, E. canis, and the agent of human granulocytic ehrlichiosis. METHODS: We tested peripheral-blood leukocytes from 413 patients with possible ehrlichiosis by broad-range and species-specific polymerase-chain-reaction (PCR) assays for ehrlichia. The species present were identified by species-specific PCR assays and nucleotide sequencing of the gene encoding ehrlichia 16S ribosomal RNA. Western blot analysis was used to study serologic responses. RESULTS: In four patients, ehrlichia DNA was detected in leukocytes by a broad-range PCR assay, but not by assays specific for E. chaffeensis or the agent of human granulocytic ehrlichiosis. The nucleotide sequences of these PCR products matched that of E. ewingii, an agent previously reported as a cause of granulocytic ehrlichiosis in dogs. These four patients, all from Missouri, presented between May and August 1996, 1997, or 1998 with fever, headache, and thrombocytopenia, with or without leukopenia. All had been exposed to ticks, and three were receiving immunosuppressive therapy. Serum samples obtained from three of these patients during convalescence contained antibodies that reacted with E. chaffeensis and E. canis antigens in a pattern different from that of humans with E. chaffeensis infection but similar to that of a dog experimentally infected with E. ewingii. Morulae were identified in neutrophils from two patients. All four patients were successfully treated with doxycycline. CONCLUSIONS: These findings provide evidence of E. ewingii infection in humans. The associated disease may be clinically indistinguishable from infection caused by E. chaffeensis or the agent of human granulocytic ehrlichiosis.  相似文献   

19.
Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe   总被引:10,自引:0,他引:10  
Quantitation of HIV-1 specific RNA and DNA is pivotal to understanding the pathophysiology of HIV-1 diseases. A method has been developed for quantitation of HIV-1 DNA/RNA by real-time PCR using a unique fluorogenic primer-probe adduct known as scorpion. The probe hybridises to the extension of the adjoining primer intramolecularly, a process kinetically and thermodynamically more favourable than the conventional bimolecular probe-target hybridisation. Data presented in this paper indicate that the scorpion assay is extremely robust and is quite comparable to beacon-based assays. The scorpion assay is also comparable to quantitative competitive PCR (QC--PCR) assays but requires only a fraction of time and effort. Additionally, the dynamic range of the scorpion assay is several log-fold higher than the conventional end point PCR assays. As few as ten copies of vDNA can be detected in the presence of a large excess of exogenously added genomic DNA. Limiting dilution analysis indicates that the assay is capable of detecting a single copy of the viral template. Thus, the scorpion assay presents a specific and sensitive approach for quantitation of DNA/RNA templates by real-time PCR.  相似文献   

20.
Real-time PCR for detection and quantitation of hepatitis B virus DNA   总被引:18,自引:0,他引:18  
A sensitive and reproducible real-time PCR assay based on TaqMan technology was developed for the detection and quantitation of hepatitis B virus (HBV) DNA in serum, and compared with an "in-house" qualitative PCR assay. HBV DNA was measured in 125 serum samples from 76 hepatitis B patients, consisting of 22 patients with an acute infection, 20 patients with a previous history of hepatitis B infection, and 34 patients with a chronic hepatitis B. Four patients with a chronic infection were treated with either an IFN-alpha monotherapy or a combination of IFN-alpha and lamivudine. Twenty-nine sera from healthy individuals and non-hepatitis B patients served as negative controls. The assay was validated by using a 10-fold dilution series of the World Virological Quality Control (VQC) sample containing 3.73 x 10(7) genome equivalents per ml. The detection limit for the real-time PCR was 3.73 x 10(2) genome equivalents per ml (geq/ml), while it was 3.73 x 10(3) geq/ml for the in-house PCR. The real-time PCR assay had an 8-logarithm dynamic range spanning from 10(2) to 10(10) geq/ml. In clinical serum samples, the real-time PCR and the in-house PCR detected HBV DNA in 81% (101/125) and 66% (83/125) of samples, respectively. HBV DNA was not detected among the negative controls by either of these assays. In conclusion, real-time PCR is a sensitive, specific, and a reproducible approach for the detection and quantitation of HBV DNA in clinical serum samples, useful also for monitoring the efficacy of antiviral treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号