首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mechanisms of neuronal cell death are still largely unknown. In the present study, the signal transduction pathway of cell death in cerebellar granule neurons was examined by employing various death-preventative agents. When death was induced by the depletion of serum and a depolarizing level of potassium, transient increase in active c-Jun, mitochondrial membrane potential (Δψ) loss, activation of caspase-3 (-like) proteases, and nuclear condensation and fragmentation were observed. The protein synthesis inhibitor cycloheximide blocked all these phenomena, whereas RNA synthesis inhibitor actinomycin-D, survival factor such as insulin-like growth factor-1, brain-derived neurotrophic factor, high K+ (25 mm ) and overproduced antiapoptotic protein Bcl-2, prevented Δψ loss, caspase activation, and nuclear change, but not an increase in active c-Jun. The caspase inhibitor z-Asp-CH2-DCB (carbobenzoxy-l -aspartyl-α-[(2,6-dichlorobenzoyl) oxy]methane) only inhibited activation of caspases and nuclear change. These results suggest that the death signal in cerebellar granule neurons is sequentially transduced in the order of c-Jun activation, de novo RNA synthesis, mitochondrial Δψ loss, activation of caspase-3 (-like) proteases and nuclear change.  相似文献   

2.
Recent discoveries show that caspase-independent cell death pathways are a pervasive mechanism in neurodegenerative diseases, and apoptosis-inducing factor (AIF) is an important effector of this mode of neuronal death. There are currently two known mechanisms underlying AIF release following excitotoxic stress, PARP-1 and calpain. To test whether there is an interaction between PARP-1 and calpain in triggering AIF release, we used the NMDA toxicity model in rat primary cortical neurons. Exposure to NMDA resulted in AIF truncation and nuclear translocation, and shRNA-mediated knockdown of AIF resulted in neuroprotection. Both calpain and PARP-1 are involved with AIF processing as AIF truncation, nuclear translocation and neuronal death were attenuated by calpain inhibition using adeno-associated virus-mediated overexpression of the endogenous calpain inhibitor, calpastatin, or treatment with the PARP-1 inhibitor 3-ABA. Activation of PARP-1 is necessary for calpain activation as PARP-1 inhibition blocked mitochondrial calpain activation. Finally, NMDA toxicity induces mitochondrial Ca2+ dysregulation in a PARP-1 dependent manner. Thus, PARP-1 and mitochondrial calpain activation are linked via PARP-1-induced alterations in mitochondrial Ca2+ homeostasis. Collectively, these findings link the two seemingly independent mechanisms triggering AIF-induced neuronal death.  相似文献   

3.
Our previous studies in retina on the mechanism for hypoxia-induced cell death suggested activation of a class of calcium-activated proteases known as calpains. This conclusion was based on data showing proteolysis of a calpain substrate alpha-spectrin, autolysis of activated calpain, and reduction of cell damage by calpain inhibitor SJA6017. Less is known about changes in downstream pathways after calpain activation. Thus, the purpose of the present investigation was to measure proteolysis of neuronal cytoskeletal proteins and apoptotic cell signaling factors during hypoxia-induced retinal cell death. Rat retinas were incubated in RPMI medium with glucose and 95% O2/5% CO2 to supply sufficient oxygen for retinal cell survival. Hypoxia was induced with 95% N2/5% CO2 without glucose. Immunoblotting was used to detect activation of calpain and proteolysis of substrates. Amounts of mRNA for calpain 1 and 2 were determined by quantitative PCR. Twelve times more calpain 2 mRNA than calpain 1 was present in retinas. Activation of calpain 2 and production of a calpain-specific alpha-spectrin breakdown product at 150 kDa were confirmed in hypoxic retinas. Further, pro-caspase-3 at 32 kDa was proteolyzed to a fragment at 30 kDa, tau protein was lost, and p35 was proteolyzed to p25 suggesting prolonged activation of cdk5. SJA6017 partially inhibited the production of these fragments. During hypoxia in rat retinas, calpains may be major proteases causing breakdown of neuronal proteins involved in apoptotic cell death. Calpain inhibitor SJA6017 may have potential for testing as a therapeutic agent against retinal pathologies such those caused by glaucoma, although future studies such as testing in in vivo animal models are required.  相似文献   

4.
Delayed calcium deregulation (DCD) plays an essential role in glutamate excitotoxicity, a major detrimental factor in stroke, traumatic brain injury, and various neurodegenerations. In the present study, we examined the role of calpain activation and Na+/Ca2+ exchanger (NCX) degradation in DCD and excitotoxic cell death in cultured hippocampal neurons. Exposure of neurons to glutamate caused DCD accompanied by secondary mitochondrial depolarization. Activation of calpain was evidenced by detecting NCX isoform 3 (NCX3) degradation products. Degradation of NCX isoform 1 (NCX1) was below the detection limit of Western blotting. Degradation of NCX3 was detected only after 1 hr of incubation with glutamate, whereas DCD occurred on average within 15 min after glutamate application. Calpeptin, an inhibitor of calpain, significantly attenuated NCX3 degradation but failed to inhibit DCD and excitotoxic neuronal death. Calpain inhibitors I, III, and VI also failed to influence DCD and glutamate‐induced neuronal death. On the other hand, MK801, an inhibitor of the NMDA subtype of glutamate receptors, added shortly after the initial glutamate‐induced jump in cytosolic Ca2+, completely prevented DCD and activation of calpain and strongly protected neurons against excitotoxicity. Taken together, our results suggest that, in glutamate‐treated hippocampal neurons, the initial increase in cytosolic Ca2+ that precedes DCD is insufficient for sustained calpain activation, which most likely occurs downstream of DCD. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Methylmercury (MeHg) has been implicated to induce massive neurodegeneration by disruption of neuron–glia interactions besides a direct potent neurotoxicity. In the present study, we examined potential cytotoxic effects of MeHg on primary cultured rat microglia. Following treatment with a relatively low concentration (0.5 μM) of MeHg, microglia had induced cell death accompanied by DNA fragmentation and an activation of caspase-3-like protease. MeHg-induced microglial death was significantly suppressed by the caspase-3-like protease inhibitor benzyloxycarbonyl-Try-Val-Ala-Asp-fluoromethyl-ketone indicating the occurrence of caspase-3-like protease-executed apoptosis. The aspartic protease inhibitor pepstatin A had a partial but significant inhibitory effect on MeHg-induced microglial apoptosis. These results indicate that a relatively low concentration of MeHg predominantly induces caspase-3-like protease-executed apoptosis of microglia, while the endosomal/lysosomal system is also partially involved in the cell death pathway.  相似文献   

6.
Oxidative stress has been implicated in the pathogenesis of methylmercury (MeHg) neurotoxicity. Studies of mature neurons suggest that the mitochondrion may be a major source of MeHg-induced reactive oxygen species and a critical mediator of MeHg-induced neuronal death, likely by activation of apoptotic pathways. It is unclear, however, whether the mitochondria of developing and mature neurons are equally susceptible to MeHg. Murine embryonal carcinoma (EC) cells, which differentiate into neurons following exposure to retinoic acid, were used to compare the differentiation-dependent effects of MeHg on ROS production and mitochondrial depolarization. EC cells and their neuronal derivatives were pre-incubated with the ROS indicator 2',7'-dichlorofluoroscein diacetate or tetramethylrhodamine methyl ester, an indicator of mitochondrial membrane potential, with or without cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore opening, and examined by laser scanning confocal microscopy in the presence of 1.5 μM MeHg. To examine consequences of mitochondrial perturbation, immunohistochemical localization of cytochrome c (cyt c) was determined after incubation of cells in MeHg for 4 h. MeHg treatment induced earlier and significantly higher levels of ROS production and more extensive mitochondrial depolarization in neurons than in undifferentiated EC cells. CsA completely inhibited mitochondrial depolarization by MeHg in EC cells but only delayed this response in the neurons. In contrast, CsA significantly inhibited MeHg-induced neuronal ROS production. Cyt c release was also more extensive in neurons, with less protection afforded by CsA. These data indicate that neuronal differentiation state influences mitochondrial transition pore dynamics and MeHg-stimulated production of ROS.  相似文献   

7.
Caspase 3-like proteases are key executioners in mammalian apoptosis, and the calpain family of cysteine proteases has also been implicated as an effector of the apoptotic cascade. However, the influence of upstream events on calpain/caspase activation and the role of calpain/caspase activation on subsequent downstream events are poorly understood. This investigation examined the temporal profile of apoptosis-related events after staurosporine-induced apoptosis in mixed glial-neuronal septo-hippocampal cell cultures. Following 3 hr exposure to staurosporine (0.5 μM), calpain and caspase 3-like proteases processed α-spectrin to their signature proteolytic fragments prior to endonuclease-mediated DNA fragmentation (not evident until 6 hr), indicating that endonuclease activation is downstream from calpain/caspase activation. Cycloheximide, a general protein synthesis inhibitor, completely prevented processing of α-spectrin by calpains and caspase 3-like proteases, DNA fragmentation and cell death, indicating that de novo protein synthesis is an upstream event necessary for activation of calpains and caspase 3-like proteases. Calpain inhibitor II and the pan-caspase inhibitor Z-D-DCB each inhibited their respective protease-specific processing of α-spectrin and attenuated endonuclease DNA fragmentation and cell death. Thus, activation of calpains and caspase 3-like proteases is an early event in staurosporine-induced apoptosis, and synthesis of, as yet, unknown protein(s) is necessary for their activation. J. Neurosci. Res. 52:505–520, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Previously we reported that amyloid-β (Aβ) leads to endoplasmic reticulum (ER) stress in cultured cortical neurons and that ER-mitochondria Ca2 + transfer is involved in Aβ-induced apoptotic neuronal cell death. In cybrid cells which recreate the defect in mitochondrial cytochrome c oxidase (COX) activity observed in platelets from Alzheimer's disease (AD) patients, we have shown that mitochondrial dysfunction affects the ER stress response triggered by Aβ. Here, we further investigated the impact of COX inhibition on Aβ-induced ER dysfunction using a neuronal model. Primary cultures of cortical neurons were challenged with toxic concentrations of Aβ upon chemical inhibition of COX with potassium cyanide (KCN). ER Ca2 + homeostasis was evaluated under these conditions, together with the levels of ER stress markers, namely the chaperone GRP78 and XBP-1, a mediator of the ER unfolded protein response (UPR). We demonstrated that COX inhibition potentiates the Aβ-induced depletion of ER Ca2 + content. KCN pre-treatment was also shown to enhance the rise of cytosolic Ca2 + levels triggered by Aβ and thapsigargin, a widely used ER stressor. This effect was reverted in the presence of dantrolene, an inhibitor of ER Ca2 + release through ryanodine receptors. Similarly, the increase in GRP78 and XBP-1 protein levels was shown to be higher in neurons treated with Aβ or thapsigargin in the presence of KCN in comparison with levels determined in neurons treated with the neurotoxins alone. Although the decrease in cell survival, the activation of caspase-9- and -3-mediated apoptotic cell death observed in Aβ- and thapsigargin-treated neurons were also potentiated by KCN, this effect is less pronounced than that observed in Ca2 + signalling and UPR. Furthermore, in neurons treated with Aβ, the potentiating effect of the COX inhibitor in cell survival and death was not prevented by dantrolene. These results show that inhibition of mitochondrial COX activity potentiates Aβ-induced ER dysfunction and, to a less extent, neuronal cell death. Furthermore, data supports that the effect of impaired COX on Aβ-induced cell death occurs independently of Ca2 + release through ER ryanodine receptors. Together, our data demonstrate that mitochondria dysfunction in AD enhances the neuronal susceptibility to toxic insults, namely to Aβ-induced ER stress, and strongly suggest that the close communication between ER and mitochondria can be a valuable future therapeutic target in AD.  相似文献   

9.
The tripeptide thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) has been shown to possess neuroprotective activity in in vitro and in vivo models. Since its potential utility is limited by relatively rapid metabolism, metabolically stabilized analogues have been constructed. In the present study we investigated the influence of TRH and its three stable analogues: Montirelin (MON, CG-3703), RGH-2202 (L-6-keto-piperidine-2carbonyl-l-leucyl-l-prolinamide) and Z-TRH (N-carbobenzyloxy-pGlutamyl-Histydyl-Proline) in various models of mouse cortical neuronal cell injury. Twenty four hour pre-treatment with TRH and its analogues in low micromolar concentrations attenuated the neuronal cell death evoked by excitatory amino acids (EAAs: glutamate, NMDA, kainate, quisqualate) and hydrogen peroxide. All the peptides showed neuroprotective action on staurosporine (St)-evoked apoptotic neuronal cell death, but this effect was caspase-3 independent. Interestingly, in mixed neuronal-glial cell preparations only MON decreased St- and glutamate-evoked neurotoxicity. None of the peptides inhibited the doxorubicin- and lactacystin-induced neuronal cortical cell death, agents acting via activation of death receptor (FAS) or inhibition of proteasome function, respectively. Furthermore, we found that neither inhibitors of PI3-K (wortmannin, LY 294002) nor MAPK/ERK1/2 (PD 098059, U 0126) were able to inhibit neuroprotective properties of TRH and MON in St model of apoptosis. The protection mediated by TRH and MON it that model was also not connected with influence of peptides on the pro-apoptotic GSK-3β and JNK protein kinase expression and activity. Further studies showed that calpains, calcium-activated proteases were induced by Glu, but not by St in cortical neurons. Moreover, the Glu-evoked increase in spectrin alpha II cleavage product induced by calpains was blocked by TRH. The obtained data showed that the potency of TRH and its analogues in inhibiting EAAs- and H2O2-induced neuronal cell death from the highest to lowest activity was: MON > TRH > Z-TRH > RHG. Interestingly, all peptides were active against St-induced apoptosis, however, on concentration basis MON was far more potent than the other peptides. None of the peptides inhibited Dox- and LC-evoked apoptotic cell death. Additionally, the data exclude potential role of pro-survival (PI3-K/Akt and MAPK/ERK1/2) and pro-apoptotic (GSK-3β and JNK) pathways in neuroprotective effects of TRH and its analogues on St-induced neuronal apoptosis. Moreover, the results point to involvement of the inhibition of calpains in the TRH neuroprotective effect in Glu model of neuronal cell death.  相似文献   

10.
Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive F?rster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.  相似文献   

11.
The family of calcium-activated neutral proteases, calpains, appears to play a key role in neuropathologic events following traumatic brain injury (TBI). Neuronal calpain activation has been observed within minutes to hours after either contusive or diffuse brain trauma in animals, suggesting that calpains are an early mediator of neuronal damage. Whereas transient calpain activation triggers numerous cell signaling and remodeling events involved in normal physiological processes, the sustained calpain activation produced by trauma is associated with neuron death and axonal degeneration in multiple models of TBI. Nonetheless, the causal relationship between calpain activation and neuronal death is not fully understood. Much remains to be learned regarding the endogenous regulatory mechanisms for controlling calpain activity, the roles of different calpain isoforms, and the in vivo substrates affected by calpain. Detection of stable proteolytic fragments of the submembrane cytoskeletal protein αII-spectrin specific for cleavage by calpains has been the most widely used marker of calpain activation in models of TBI. More recently, these protein fragments have been detected in the cerebrospinal fluid after TBI, driving interest in their potential utility as TBI-associated biomarkers. Post-traumatic inhibition of calpains, either direct or indirect through targets related to intracellular calcium regulation, is associated with attenuation of functional and behavioral deficits, axonal pathology, and cell death in animal models of TBI. This review focuses on the current state of knowledge of the role of calpains in TBI-induced neuropathology and effectiveness of calpain as a therapeutic target in the acute post-traumatic period.  相似文献   

12.
It has been suggested that, after ischaemia, activation of proteases such as calpains could be involved in cytoskeletal degradation leading to neuronal cell death. In vivo, calpain inhibitors at high doses have been shown to reduce ischaemic damage and traumatic brain injury, however, the relationship between calpain activation and cell death remains unclear. We have investigated the role of calpain activation in a model of ischaemia based on organotypic hippocampal slice cultures using the appearance of spectrin breakdown products (BDPs) as a measure of calpain I activation. Calpain I activity was detected on Western blot immediately after a 1-h exposure to ischaemia. Up to 4 h post ischaemia, BDPs were found mainly in the CA1 region and appeared before uptake of the vital dye propidium iodide (PI). 24 h after the insult, BDPs were detected extensively in CA1 and CA3 pyramidal cells, all of which was PI-positive. However, there were many more PI-positive cells that did not have BDPs, indicating that the appearance of BDPs does not necessarily accompany ischaemic cell death. Inhibition of BDP formation by the broad-spectrum protease inhibitor leupeptin was not accompanied by any neuroprotective effects. The more specific and more cell-permeant calpain inhibitor MDL 28170 had a clear neuroprotective effect when added after the ischaemic insult. In contrast, when MDL 28170 was present throughout the entire pre- and post-incubation phases, PI labelling actually increased, indicating a toxic effect. These results suggest that calpain activation is not always associated with cell death and that, while inhibition of calpains can be neuroprotective under some conditions, it may not always lead to beneficial outcomes in ischaemia.  相似文献   

13.
To clarify the mechanism of postischaemic delayed cornu Ammonis (CA)-1 neuronal death, we studied correlations among calpain activation and its subcellular localization, the immunoreactivity of phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ mobilization in the monkey hippocampus by two independent experimental approaches: in vivo transient brain ischaemia and in vitro hypoxia-hypoglycaemia of hippocampal acute slices. The CA-1 sector undergoing 20 min of ischaemia in vivo showed microscopically a small number of neuronal deaths on day 1 and almost global neuronal loss on day 5 after ischaemia. Immediately after ischaemia, CA-1 neurons ultrastructurally showed vacuolation and/or disruption of the lysosomes. Western blotting using antibodies against inactivated or activated μ-calpain demonstrated μ-calpain activation specifically in the CA-1 sector immediately after ischaemia. This finding was confirmed in the perikarya of CA-1 neurons by immunohistochemistry. CA-1 neurons on day 1 showed sustained activation of μ-calpain, and increased immunostaining for inactivated and activated forms of μ- and m-calpains and for PIP2. Activated μ-calpain and PIP2 were found to be localized at the vacuolated lysosomal membrane or endoplasmic reticulum and mitochondrial membrane respectively, by immunoelectron microscopy. Calcium imaging data using hippocampal acute slices showed that hypoxia-hypoglycaemia in vitro provoked intense Ca2+ mobilization with increased PIP2 immunostaining specifically in CA-1 neurons. These data suggest that transient brain ischaemia increases intracellular Ca2+ and PIP2 breakdown, which will activate calpain proteolytic activity. Therefore, we suggest that activated calpain at the lysosomal membrane, with the possible release of biodegrading enzyme, will cause postischaemic CA-1 neuronal death.  相似文献   

14.
Jurewicz A  Matysiak M  Andrzejak S  Selmaj K 《Glia》2006,53(2):158-166
Tumor necrosis-related apoptosis-inducing ligand (TRAIL) induces apoptosis of oligodendrocytes, target cells of immune attack in multiple sclerosis (MS). TRAIL-induced human oligodendrocyte (hOL) death depends on TRAIL ligation with its receptor 1 (TRAIL-R1). However, the intracellular signaling initiated with ligation of TRAIL-R1 in hOLs is unknown. We defined that intracellular transduction signaling involved in TRAIL-induced death of hOLs is associated with strong activation of c-jun NH2-terminal kinase (JNK) and a dominant negative mutant of MKK4/SEK1, MAP kinase upstream of JNK, inhibited TRAIL-induced apoptosis of hOLs. The immunoprecipitation experiments showed that JNK3 isoform was predominantly activated upon hOLs exposure to TRAIL and JNK-3 activation occurred before mitochondrial membrane dysfunction. The other mitogen-activated protein kinase p38 and ERK, as well as calpains and serine proteases, were not activated during TRAIL-induced hOL death. Accordingly, the calpain inhibitor, ZLLY.FMK, p38 kinase inhibitor, SB 203580, and serine proteases inhibitor, TPCK, did not protect hOLs from TRAIL-induced apoptosis. These results demonstrate that JNK pathway is critically involved in hOL death induced by TRAIL and might have significant importance in designing new molecules to protect immune-mediated hOLs demise.  相似文献   

15.
Traumatic brain injury (TBI) results in abrupt, initial cell damage leading to delayed neuronal death. The calcium-activated proteases, calpains, are known to contribute to this secondary neurodegenerative cascade. Although the specific inhibitor of calpains, calpastatin, is present within neurons, normal levels of calpastatin are unable to fully prevent the damaging proteolytic activity of calpains after injury. In this study, increased calpastatin expression was achieved using transgenic mice that overexpress the human calpastatin (hCAST) construct under control of a calcium–calmodulin-dependent kinase II α promoter. Naïve hCAST transgenic mice exhibited enhanced neuronal calpastatin expression and significantly reduced protease activity. Acute calpain-mediated spectrin proteolysis in the cortex and hippocampus induced by controlled cortical impact brain injury was significantly attenuated in calpastatin overexpressing mice. Aspects of posttraumatic motor and cognitive behavioral deficits were also lessened in hCAST transgenic mice compared to their wildtype littermates. However, volumetric analyses of neocortical contusion revealed no histological neuroprotection at either acute or long-term time points. Partial hippocampal neuroprotection observed at a moderate injury severity was lost after severe TBI. This study underscores the effectiveness of calpastatin overexpression in reducing calpain-mediated proteolysis and behavioral impairment after TBI, supporting the therapeutic potential for calpain inhibition. In addition, the reduction in spectrin proteolysis without accompanied neocortical neuroprotection suggests the involvement of other factors that are critical for neuronal survival after contusion brain injury.  相似文献   

16.
Prenatal and early childhood exposure to methylmercury (MeHg) or polychlorinated biphenyls (PCBs) are associated with deficits in cognitive, sensory, motor and other functions measured by neurobehavioral tests. The main objective of this pilot study was to determine whether functional magnetic resonance imaging (fMRI) is effective for visualization of brain function alterations related to neurobehavior in subjects with high prenatal exposure to the two neurotoxicants, MeHg and PCBs. Twelve adolescents (all boys) from a Faroese birth cohort assembled in 1986-1987 were recruited based on their prenatal exposures to MeHg and PCB. All underwent fMRI scanning during behavioral tasks at age 15 years. Subjects with high mixed exposure to MeHg and PCBs were compared to those with low mixed exposure on fMRI photic stimulation and a motor task. Boys with low mixed exposures showed patterns of fMRI activation during visual and motor tasks that are typical of normal control subjects. However, those with high exposures showed activation in more areas of the brain and different and wider patterns of activation than the low mixed exposure group. The brain activation patterns observed in association with increased exposures to MeHg and PCBs are meaningful in regard to the known neurotoxicity of these substances. This methodology therefore has potential utility in visualizing structural neural system determinants of exposure-induced neurobehavioral dysfunction.  相似文献   

17.
Caspase and calpain substrates: roles in synaptic plasticity and cell death.   总被引:24,自引:0,他引:24  
Neurons are an unusual type of cell in that they send processes (axons and dendrites) over great distances. This elaborate morphology, together with their excitability, places neurons at risk for multiple insults. Recent studies have demonstrated that apoptotic and excitotoxic mechanisms not only contribute to neuronal death, but also to synaptic dysfunction and a breakdown in neural circuitry (see Mattson and Duan [1999] J. Neurosci. Res. 58:152-166, this issue). Proteases of the caspase and calpain families have been implicated in neurodegenerative processes, as their activation can be triggered by calcium influx and oxidative stress. Caspases and calpains are cysteine proteases that require proteolytic cleavage for activation. The substrates cleaved by caspases include cytoskeletal and associated proteins, kinases, members of the Bcl-2 family of apoptosis-related proteins, presenilins and amyloid precursor protein, and DNA-modulating enzymes. Calpain substrates include cytoskeletal and associated proteins, kinases and phosphatases, membrane receptors and transporters, and steroid receptors. Many of the substrates of caspases and calpains are localized in pre- and/or postsynaptic compartments of neurons. Emerging data suggest that, in addition to their roles in neurodegenerative processes, caspases and calpains play important roles in modulating synaptic plasticity. The present article provides a review of the properties of the different caspases and calpains, their roles in cell death pathways, and the substrates upon which they act. Emerging data are considered that suggest key roles for these proteases in the regulation of synaptic plasticity.  相似文献   

18.
Mitochondrial fission mediated by cytosolic dynamin related protein 1 (Drp1) is essential for mitochondrial quality control but may contribute to apoptosis as well. Blockade of Drp1 with mitochondrial division inhibitor 1 (mdivi-1) provides neuroprotection in several models of neurodegeneration and cerebral ischemia and has emerged as a promising therapeutic drug. In oligodendrocytes, overactivation of AMPA-type ionotropic glutamate receptors (AMPARs) induces intracellular Ca2+ overload and excitotoxic death that contributes to demyelinating diseases. Mitochondria are key to Ca2+ homeostasis, however it is unclear how it is disrupted during oligodendroglial excitotoxicity. In the current study, we have analyzed mitochondrial dynamics during AMPAR activation and the effects of mdivi-1 on excitotoxicity in optic nerve-derived oligodendrocytes. Sublethal AMPAR activation triggered Drp1-dependent mitochondrial fission, whereas toxic AMPAR activation produced Drp1-independent mitochondrial swelling. Accordingly, mdivi-1 efficiently inhibited Drp1-mediated mitochondrial fission and did not prevent oligodendrocyte excitotoxicity. Unexpectedly, mdivi-1 also induced mitochondrial depolarization, ER Ca2+ depletion and modulation of AMPA-induced Ca2+ signaling. These off-target effects of mdivi-1 sensitized oligodendrocytes to excitotoxicity and ER stress and eventually produced oxidative stress and apoptosis. Interestingly, in cultured astrocytes mdivi-1 induced nondetrimental mitochondrial depolarization and oxidative stress that did not cause toxicity or sensitization to apoptotic stimuli. In summary, our results provide evidence of Drp1-mediated mitochondrial fission during activation of ionotropic glutamate receptors in oligodendrocytes, and uncover a deleterious and Drp1-independent effect of mdivi-1 on mitochondrial and ER function in these cells. These off-target effects of mdivi-1 limit its therapeutic potential and should be taken into account in clinical studies.  相似文献   

19.
Cerebellar granule cells (CGCs) are a sensitive target for methylmercury (MeHg) neurotoxicity. In vitro exposure of primary cultures of rat CGCs to MeHg resulted in a time- and concentration-dependent cell death. Within 1 hr exposure, MeHg at 5-10 microM caused impairment of mitochondrial activity, de-energization of mitochondria and plasma membrane lysis, resulting in necrotic cell death. Lower MeHg concentrations (0.5-1 microM) did not compromise cell viability, mitochondrial membrane potential and function at early time points. Later, however, the cells progressively underwent apoptosis and 100% cell death was reached by 18 hr treatment. Neuronal network fragmentation and microtubule depolymerization were detected as early as within 1.5 hr of MeHg (1 microM) exposure, long before the occurrence of nuclear condensation (6-9 hr). Neurite damage worsened with longer exposure time and proceeded to the complete dissolution of microtubules and neuronal processes (18 hr). Microtubule stabilization by taxol did not prevent MeHg-induced delayed apoptosis. Similarly ineffective were the caspase inhibitors z-VAD-fluoromethylketone and z-DEVD-chloromethylketone, the L-type calcium channel inhibitor nifedipine, the calcium chelator EGTA and BAPTA, and the NMDA receptor antagonist MK-801. On the other hand, insulin-like growth factor-I partially rescued CGCs from MeHg-triggered apoptosis. Altogether these results provide evidence that the intensity of MeHg insult is decisive in the time of onset and the mode of neuronal death that follows, i.e., necrosis vs. apoptosis, and suggest that cytoskeletal breakdown and deprivation of neurotrophic support play a role in MeHg delayed toxicity.  相似文献   

20.
α motor neurons (MNs) are a target of the environmental neurotoxicant methylmercury (MeHg), accumulating MeHg and subsequently degenerating. In mouse spinal cord MN cultures, MeHg increased intracellular Ca2+ [Ca2+]i; the AMPA receptor (AMPAR) antagonist CNQX delayed the increase in [Ca2+]i, implicating the role of AMPARs in this response. Here we used human induced pluripotent stem cell-derived MNs (hiPSC-MNs), to characterize the role of MN AMPARs in MeHg neurotoxicity. Acute exposure to MeHg (0.1, 0.2, 0.5, 1 and 1.5 μM), fura-2 microfluorimetry, and a standard cytotoxicity assay, were used to examine MN regulation of [Ca2+]i, and cytotoxicity, respectively. Contribution of Ca2+-permeable and impermeable AMPARs was compared using either CNQX, or the Ca2+-permeable AMPAR antagonist N-acetyl spermine (NAS). MeHg-induced cytotoxicity was evaluated following a 24 h delay subsequent to 1 h exposure of hiPSC-MNs. MeHg caused a characteristic biphasic increase in [Ca2+]i, the onset of which was concentration-dependent; higher MeHg concentrations hastened onset of both phases. CNQX significantly delayed MeHg’s effect on onset time of both phases. In contrast, NAS significantly delayed only the 2nd phase increase in fura-2 fluorescence. Exposure to MeHg for 1 h followed by a 24 h recovery period caused a concentration-dependent incidence of cell death. These results demonstrate for the first time that hiPSC-derived MNs are highly sensitive to effects of MeHg on [Ca2+]i, and cytotoxicity, and that both Ca2+-permeable and impermeable AMPARs contribute the elevations in [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号