首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Androgen action generates sex-related differences that include changes in the gut microbiota composition. Hypoandrogenism and hyperandrogenism in males and females, respectively, are associated with the prevalence of metabolic disorders. Our recent work showed that male androgen receptor knockout (ARKO) mice developed high-fat diet (HFD)-dependent sarcopenic abdominal obesity, hyperglycemia, and hepatic steatosis, leading to early death. The ARKO mice also exhibited alterations in intestinal microbiota but did not experience metabolic abnormalities when administered with antibiotics. Here, we show that time-dependent changes in feed efficiency (ratio of body weight gain to food intake) and weight of dried feces-to-food ratio could be good markers for changes in gut microbiota. Turicibacter spp., Lactobacillus spp., and L. reuteri increased in the gut in both HFD-fed ARKO and castrated mice having metabolic abnormalities. HFD-fed ARKO mice showed increased plasma levels of aspartate, but not alanine, aminotransferase. Changes in the gut microbiome appear to provoke androgen deficiency-induced metabolic diseases, leading to early mortality.  相似文献   

2.
Excess weight and obesity are severe public health threats worldwide. Recent evidence demonstrates that gut microbiota dysbiosis contributes to obesity and its comorbidities. The body weight‐reducing and energy balancing effects of melatonin have been reported in several studies, but to date, no investigations toward examining whether the beneficial effects of melatonin are associated with gut microbiota have been carried out. In this study, we show that melatonin reduces body weight, liver steatosis, and low‐grade inflammation as well as improving insulin resistance in high fat diet (HFD)‐fed mice. High‐throughput pyrosequencing of the 16S rRNA demonstrated that melatonin treatment significantly changed the composition of the gut microbiota in mice fed an HFD. The richness and diversity of gut microbiota were notably decreased by melatonin. HFD feeding altered 69 operational taxonomic units (OTUs) compare with a normal chow diet (NCD) group, and melatonin supplementation reversed 14 OTUs to the same configuration than those present in the NCD group, thereby impacting various functions, in particular through its ability to decrease the Firmicutes‐to‐Bacteroidetes ratio and increase the abundance of mucin‐degrading bacteria Akkermansia, which is associated with healthy mucosa. Taken together, our results suggest that melatonin may be used as a probiotic agent to reverse HFD‐induced gut microbiota dysbiosis and help us to gain a better understanding of the mechanisms governing the various melatonin beneficial effects.  相似文献   

3.
The health benefits of a high fiber diet (HFD) result in part from the action of metabolic end products made by gut commensals on the host epithelium. Butyrate is one such beneficial metabolite; however, butyrate paradoxically enhances the capacity of Escherichia coli-produced Shiga toxin type 2 (Stx2) to kill tissue culture cells. We recently showed that mice fed an HFD exhibited increased butyrate in gut contents and had an altered intestinal microbiota with reduced numbers of Escherichia species. Furthermore, mice fed an HFD and infected with Stx-producing E. coli (STEC) were colonized to a higher degree, lost more weight and succumbed to infection at greater rates compared with STEC-infected low fiber diet animals. The HFD animals showed higher levels of the Stx receptor globotriaocylceramide (Gb3) in both the gut and kidneys. We speculate that an HFD that leads to increased intestinal butyrate and Gb3 in the intestines and kidneys may explain the higher rate of the hemolytic uremic syndrome in females over males.  相似文献   

4.
ABSTRACT

A Western diet comprising high fat, high carbohydrate, and low fiber content has been suggested to contribute to an increased prevalence of colitis. To clarify the effect of dietary cellulose (an insoluble fiber) on gut homeostasis, for 3 months mice were fed a high-cellulose diet (HCD) or a low-cellulose diet (LCD) based on the AIN-93G formulation. Histologic evaluation showed crypt atrophy and goblet cell depletion in the colons of LCD-fed mice. RNA-sequencing analysis showed a higher expression of genes associated with immune system processes, especially those of chemokines and their receptors, in the colon tissues of LCD-fed mice than in those of HCD-fed mice. The HCD was protective against dextran sodium sulfate-induced colitis in mice, while LCD exacerbated gut inflammation; however, the depletion of gut microbiota by antibiotic treatment diminished both beneficial and non-beneficial effects of the HCD and LCD on colitis, respectively. A comparative analysis of the cecal contents of mice fed the HCD or the LCD showed that the LCD did not influence the diversity of gut microbiota, but it resulted in a higher and lower abundance of Oscillibacter and Akkermansia organisms, respectively. Additionally, linoleic acid, nicotinate, and nicotinamide pathways were most affected by cellulose intake, while the levels of short-chain fatty acids were comparable in HCD- and LCD-fed mice. Finally, oral administration of Akkermansia muciniphila to LCD-fed mice elevated crypt length, increased goblet cells, and ameliorated colitis. These results suggest that dietary cellulose plays a beneficial role in maintaining gut homeostasis through the alteration of gut microbiota and metabolites.  相似文献   

5.
The human gut microbiota has been studied for more than a century. However, of nonculture‐based techniques exploiting next‐generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short‐chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate‐producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate‐producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long‐term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target.  相似文献   

6.
ABSTRACT

Fat and sweeteners contribute to obesity. However, it is unknown whether specific bacteria are selectively modified by different caloric and noncaloric sweeteners with or without a high-fat diet (HFD). Here, we combined extensive host phenotyping and shotgun metagenomics of the gut microbiota to investigate this question. We found that the type of sweetener and its combination with an HFD selectively modified the gut microbiota. Sucralose and steviol glycosides led to the lowest α-diversity of the gut microbiota. Sucralose increased the abundance of B. fragilis in particular, resulting in a decrease in the abundance of occludin and an increase in proinflammatory cytokines, glucose intolerance, fatty acid oxidation and ketone bodies. Sucrose+HFD showed the highest metabolic endotoxemia, weight gain, body fat, total short chain fatty acids (SCFAs), serum TNFα concentration and glucose intolerance. Consumption of sucralose or sucrose resulted in enrichment of the bacterial genes involved in the synthesis of LPS and SCFAs. Notably, brown sugar and honey were associated with the absence of metabolic endotoxemia, increases in bacterial gene diversity and anti-inflammatory markers such as IL-10 and sIgA, the maintenance of glucose tolerance and energy expenditure, similar to the control group, despite the consumption of an HFD. These findings indicate that the type of sweetener and an HFD selectively modify the gut microbiota, bacterial gene enrichment of metabolic pathways involved in LPS and SCFA synthesis, and metabolic endotoxemia associated with different metabolic profiles.  相似文献   

7.
ABSTRACT

Alcohol-induced liver disease is closely related to translocation of bacterial products and bacteria from the intestine to the liver. However, it is not known whether bacterial translocation to the liver depends on certain intestinal microbiota changes that would predispose bacteria to translocate to the liver. In this study, we investigated the microbiota in the jejunum, ileum, cecum, feces and liver of mice subjected to chronic ethanol feeding using a Lieber DeCarli diet model of chronic ethanol feeding for 8 weeks. We demonstrate that chronic ethanol administration changes alpha diversity in the ileum and the liver and leads to compositional changes especially in the ileum. This is largely driven by an increase in gram-negative phyla – the source of endotoxins. Moreover, gram-negative Prevotella not only increased in the mucus layer of the ileum but also in liver samples. These results suggest that bacterial translocation to the liver might be associated with microbiota changes in the distal gastrointestinal tract.  相似文献   

8.
《Gut microbes》2013,4(5):455-459
Recently, we discovered that bile acid, a main component of bile, is a host factor that regulates the composition of the cecal microbiota in rats. Because bile secretion increases on a high-fat diet and bile acids generally have strong antimicrobial activity, we speculated that bile acids would be a determinant of the gut microbiota in response to a high-fat diet. The observed changes in the rat cecal microbiota triggered by cholic acid (the most abundant bile acid in human biliary bile) administration resemble those found in animals fed high-fat diets. Here, we discuss the rationale for this hypothesis by evaluating reported diet-induced gut microbiota alterations based on the postulate that bile acids worked as an underlying determinant. The identification of host factors determining the gut microbiota greatly contributes to understanding the causal relationships between changes in the gut microbiota and disease development, which remain to be elucidated.  相似文献   

9.
Recently, we discovered that bile acid, a main component of bile, is a host factor that regulates the composition of the cecal microbiota in rats. Because bile secretion increases on a high-fat diet and bile acids generally have strong antimicrobial activity, we speculated that bile acids would be a determinant of the gut microbiota in response to a high-fat diet. The observed changes in the rat cecal microbiota triggered by cholic acid (the most abundant bile acid in human biliary bile) administration resemble those found in animals fed high-fat diets. Here, we discuss the rationale for this hypothesis by evaluating reported diet-induced gut microbiota alterations based on the postulate that bile acids worked as an underlying determinant. The identification of host factors determining the gut microbiota greatly contributes to understanding the causal relationships between changes in the gut microbiota and disease development, which remain to be elucidated.  相似文献   

10.
目的 探讨在不同高脂饮食喂养时期代谢相关性脂肪性肝病(MAFLD)小鼠血糖水平和肠道菌群的动态变化。方法 采用高脂食物饲喂12只C57BL/6小鼠24周,分别在喂养0周、8周、16周和24周行葡萄糖耐量试验(GTT)和胰岛素耐受试验(ITT)。采集小鼠粪便进行16sRNA检测,分析肠道细菌结构和肠道菌群多样性的变化。结果 随着高脂饮食喂养时间的延长,GTT和ITT试验显著血糖大幅度升高(P<0.05),肠道菌群阿尔法多样性chao1指数和ACE指数显著升高;在门水平,与0周比,喂养8周、16周和24周小鼠菌群厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)比率显著升高(P<0.05),而拟杆菌门(Bacteroidetes)和疣微菌门(Verrucomicrobia)比率显著下降(P<0.05);在属水平,与0周比,高脂饮食喂养8周、16周和24周小鼠艾克曼菌(Akkermansia)和瘤胃球菌科-UCG-014属(Ruminococcaceae_UCG-014)比率显著降低(P<0.05),而红蝽杆菌科-UCG_002属(Coriobacteriaceae_UCG-002)比率显著升高(P<0.05),在喂养24周时杜氏杆菌(Dubosiella)比率显著升高(P<0.05),差异有统计学意义。结论 随着高脂饮食喂养时间延长,小鼠血糖水平升高,肠道菌群阿尔法多样性持续增加,在门和属水平细菌结构发生了显著的改变。  相似文献   

11.
Previous studies indicated that caloric restricted diet enables to lower significantly the risk of cardiovascular and metabolic diseases. In experimental animal models, life-long lasting caloric restriction (CR) was demonstrated to induce changes of the intestinal microbiota composition, regardless of fat content and/or exercise. To explore the potential impact of short and long-term CR treatment on the gut microbiota, we conducted an analysis of fecal microbiota composition in young and adult Fisher 344 rats treated with a low fat feed under ad libitum (AL) or CR conditions (70%). We report here significant changes of the rat fecal microbiota that arise rapidly in young growing animals after short-term administration of a CR diet. In particular, Lactobacillus increased significantly after 8 weeks of CR treatment and its relative abundance was significantly higher in CR vs AL fed animals after 36 weeks of dietary intervention. Taken together, our data suggest that Lactobacillus intestinal colonization is hampered in AL fed young rats compared to CR fed ones, while health-promoting CR diet intervention enables the expansion of this genus rapidly and persistently up to adulthood.  相似文献   

12.
The gut microbiota is a contributing factor in obesity-related metabolic disorders. The effect of metformin on the gut microbiota has been reported; however, the relationship between the gut microbiota and the mechanism of action of metformin in elderly individuals is unclear. In this study, the effect of metformin on the gut microbiota was investigated in aged obese mice. The abundance of the genera Akkermansia, Bacteroides, Butyricimonas, and Parabacteroides was significantly increased by metformin in mice fed a high-fat diet. Metformin treatment decreased the expression of IL-1β and IL-6 in epididymal fat, which was correlated with the abundance of various bacterial genera. In addition, both fecal microbiota transplantation from metformin-treated mice and extracellular vesicles of Akkermansia muciniphila improved the body weight and lipid profiles of the mice. Our findings suggest that modulation of the gut microbiota by metformin results in metabolic improvements in aged mice, and that these effects are associated with inflammatory immune responses.  相似文献   

13.

Aims/hypothesis

Despite the current pandemic of metabolic diseases, our understanding of the diverse nature of the development of metabolic alterations in people who eat a high-fat diet (HFD) is still poor. We recently demonstrated a cardio-metabolic adaptation in mice fed an HFD, which was characterised by a specific gut and periodontal microbiota profile. Since the severity of hepatic disease is characterised by specific microRNA (miRNA) signatures and the gut microbiota is a key driver of both hepatic disease and miRNA expression, we analysed the expression of three hepatic miRNA and studied their correlation with hepatic triacylglycerol content and gut microbiota.

Methods

Two cohorts of C57BL/6 4-week-old wild-type (WT) male mice (n?=?62 and n?=?96) were fed an HFD for 3 months to provide a model of metabolic adaptation. Additionally 8-week-old C57BL/6 mice, either WT or of different genotypes, with diverse gut microbiota (ob/ob, Nod1, Cd14 knockout [Cd14KO] and Nod2) or without gut microbiota (axenic mice) were fed a normal chow diet. Following which, glycaemic index, body weight, blood glucose levels and hepatic triacylglycerol levels were measured. Gut (caecum) microbiota taxa were analysed by pyrosequencing. To analyse hepatic miRNA expression, real-time PCR was performed on total extracted miRNA samples. Data were analysed using two-way ANOVA followed by the Dunnett’s post hoc test, or by the unpaired Student’s t test. A cluster analysis and multivariate analyses were also performed.

Results

Our results demonstrated that the expression of miR-181a, miR-666 and miR-21 in primary murine hepatocytes is controlled by lipopolysaccharide in a dose-dependent manner. Of the gut microbiota, Firmicutes were positively correlated and Proteobacteria and Bacteroides acidifaciens were negatively correlated with liver triacylglycerol levels. Furthermore, the relative abundance of Firmicutes was negatively correlated with hepatic expression of miR-666 and miR-21. In contrast, the relative abundance of B. acidifaciens was positively correlated with miR-21.

Conclusions/interpretation

We propose the involvement of hepatic miRNA, liver triacylglycerols and gut microbiota as a new triad that underlies the molecular mechanisms by which gut microbiota governs hepatic pathophysiology during metabolic adaptation to HFD.
  相似文献   

14.
ABSTRACT

Dietary fibers are considered beneficial nutrients for health. Current data suggest that their interaction with the gut microbiota largely contributes to their physiological effects. In this context, chitin-glucan (CG) improves metabolic disorders associated with obesity in mice, but its effect on gut microbiota has never been evaluated in humans. This study explores the effect of a 3-week intervention with CG supplementation in healthy individuals on gut microbiota composition and bacterial metabolites. CG was given to healthy volunteers (n = 15) for three weeks as a supplement (4.5 g/day). Food diary, visual analog and Bristol stool form scales and a “quality of life” survey were analyzed. Among gut microbiota-derived metabolites, bile acids (BA), long- and short-chain fatty acids (LCFA, SCFA) profiling were assessed in stool samples. The gut microbiota (primary outcome) was analyzed by Illumina sequencing. A 3-week supplementation with CG is well tolerated in healthy humans. CG induces specific changes in the gut microbiota composition, with Eubacterium, Dorea and Roseburia genera showing the strongest regulation. In addition, CG increased bacterial metabolites in feces including butyric, iso-valeric, caproic and vaccenic acids. No major changes were observed for the fecal BA profile following CG intervention. In summary, our work reveals new potential bacterial genera and gut microbiota-derived metabolites characterizing the interaction between an insoluble dietary fiber -CG- and the gut microbiota.  相似文献   

15.
BackgroundObesity is a significant risk factor for atrial fibrillation (AF), and the gut microbiota is closely related to obesity-induced diseases. However, whether the gut microbiota is involved in regulating obesity-induced AF has not been studied. This study investigated whether gut microbiota dysbiosis affects obesity-related AF.MethodsFecal microbes derived from normal diet (ND)-fed and high-fat diet (HD)-fed mice were transplanted into those fed normally. Morphologic, biochemical, functional, histologic, electrophysiological studies, molecular analysis, 16S rRNA gene amplicon sequencing, and RNA-sequencing were performed.ResultsTransplantation of the HD gut microbes in ND-maintained (THD) mice led to a significant increase in the susceptibility to AF. Gut microbiota analysis showed a significant increase in Desulfovibrionaceae, which generated metabolic endotoxemia in THD mice. Transplantation with HD microbes also resulted in significantly increased levels of circulating lipopolysaccharide (LPS), significant disruption in the histologic architecture of the intestinal tissue, and significantly increased proinflammatory cytokines in the left atrium, indicating that atrial inflammation likely contributed to AF susceptibility. RNA-sequencing showed that the THD group had enhanced activation of ferroptosis and TLR4/NF-κB/NLRP3 inflammasome signalling pathway. Inhibiting the ferroptosis or NLRP3 inflammasome signalling pathway significantly improved atrial fibrosis and reduced susceptibility to obesity-related gut dysbiosis-induced AF.ConclusionsThis study provides evidence showing an original causal role of gut microbiota dysbiosis in the pathogenesis of obesity-related AF, which showed elevated LPS and dysregulation of atrial pathologic remodelling by activating ferroptosis and the TLR4/NF-κB/NLRP3 inflammasome signalling pathway.  相似文献   

16.
ABSTRACT

The colonic mucus layer, comprised of highly O-glycosylated mucins, is vital to mediating host-gut microbiota interactions, yet the impact of dietary changes on colonic mucin O-glycosylation and its associations with the gut microbiota remains unexplored. Here, we used an array of omics techniques including glycomics to examine the effect of dietary fiber consumption on the gut microbiota, colonic mucin O-glycosylation and host physiology of high-fat diet-fed C57BL/6J mice. The high-fat diet group had significantly impaired glucose tolerance and altered liver proteome, gut microbiota composition, and short-chain fatty acid production compared to normal chow diet group. While dietary fiber inclusion did not reverse all high fat-induced modifications, it resulted in specific changes, including an increase in the relative abundance of bacterial families with known fiber digesters and a higher propionate concentration. Conversely, colonic mucin O-glycosylation remained similar between the normal chow and high-fat diet groups, while dietary fiber intervention resulted in major alterations in O-glycosylation. Correlation network analysis revealed previously undescribed associations between specific bacteria and mucin glycan structures. For example, the relative abundance of the bacterium Parabacteroides distasonis positively correlated with glycan structures containing one terminal fucose and correlated negatively with glycans containing two terminal fucose residues or with both an N-acetylneuraminic acid and a sulfate residue. This is the first comprehensive report of the impact of dietary fiber on the colonic mucin O-glycosylation and associations of these mucosal glycans with specific gut bacteria.  相似文献   

17.

Background & Aims

Nonalcoholic fatty liver disease (NAFLD) is a major health burden associated with the metabolic syndrome leading to liver fibrosis, cirrhosis and ultimately liver cancer. In humans, the PNPLA3 I148M polymorphism of the phospholipase patatin-like phospholipid domain containing protein 3 (PNPLA3) has a well-documented impact on metabolic liver disease. In this study, we used a mouse model mimicking the human PNPLA3 I148M polymorphism in a long-term high fat diet (HFD) experiment to better define its role for NAFLD progression.

Methods

Male mice bearing wild-type Pnpla3 (Pnpla3WT), or the human polymorphism PNPLA3 I148M (Pnpla3148M/M) were subjected to HFD feeding for 24 and 52 weeks. Further analysis concerning basic phenotype, inflammation, proliferation and cell death, fibrosis and microbiota were performed in each time point.

Results

After 52 weeks HFD Pnpla3148M/M animals had more liver fibrosis, enhanced numbers of inflammatory cells as well as increased Kupffer cell activity. Increased hepatocyte cell turnover and ductular proliferation were evident in HFD Pnpla3148M/M livers. Microbiome diversity was decreased after HFD feeding, changes were influenced by HFD feeding (36%) and the PNPLA3 I148M genotype (12%). Pnpla3148M/M mice had more faecal bile acids. RNA-sequencing of liver tissue defined an HFD-associated signature, and a Pnpla3148M/M specific pattern, which suggests Kupffer cell and monocytes-derived macrophages as significant drivers of liver disease progression in Pnpla3148M/M animals.

Conclusion

With long-term HFD feeding, mice with the PNPLA3 I148M genotype show exacerbated NAFLD. This finding is linked to PNPLA3 I148M-specific changes in microbiota composition and liver gene expression showing a stronger inflammatory response leading to enhanced liver fibrosis progression.  相似文献   

18.
ABSTRACT

In suckling mammals, the onset of solid food ingestion is coincident with the maturation of the gut barrier. This ontogenic process is driven by the colonization of the intestine by the microbiota. However, the mechanisms underlying the microbial regulation of the intestinal development in early life are not fully understood. Here, we studied the co-maturation of the microbiota (composition and metabolic activity) and of the gut barrier at the suckling-to-weaning transition by using a combination of experiments in vivo (suckling rabbit model), ex vivo (Ussing chambers) and in vitro (epithelial cell lines and organoids). The microbiota composition, its metabolic activity, para-cellular epithelial permeability and the gene expression of key components of the gut barrier shifted sharply at the onset of solid food ingestion in vivo, despite milk was still predominant in the diet at that time. We found that cecal content sterile supernatant (i.e. containing a mixture of metabolites) obtained after the onset of solid food ingestion accelerated the formation of the epithelial barrier in Caco-2 cells in vitro and our results suggested that these effects were driven by the bacterial metabolite butyrate. Moreover, the treatment of organoids with cecal content sterile supernatant partially replicated in vitro the effects of solid food ingestion on the epithelial barrier in vivo. Altogether, our results show that the metabolites produced by the microbiota at the onset of solid food ingestion contribute to the maturation of the gut barrier at the suckling-to-weaning transition. Targeting the gut microbiota metabolic activity during this key developmental window might therefore be a promising strategy to promote intestinal homeostasis.  相似文献   

19.

Background

Although a genetic component has been identified as a risk factor for developing inflammatory bowel disease, there is evidence that dietary factors also play a role in the development of this disease.

Aims

The aim of this study was to determine the effects of feeding a red meat diet with and without resistant starch (RS) to mice with dextran sulfate sodium (DSS)-induced colitis.

Methods

Colonic experimental colitis was induced in Balb/c mice using DSS. The severity of colitis was evaluated based on a disease activity index (based on bodyweight loss, stool consistency, rectal bleeding, and overall condition of the animal) and a histological score. Estimations were made of numbers of a range of different bacteria in the treatment pools of cecal digesta using quantitative real-time PCR.

Results

Consumption of a diet high in red meat increased DSS-induced colitis as evidenced by higher disease activity and histopathological scores. Addition of RS to the red meat diet exerted a beneficial effect in acute DSS-induced colitis. Subjective analysis of numbers of a range of bacterial targets suggest changes in the gut microbiota abundance were induced by red meat and RS treatments and these changes could contribute to the reported outcomes.

Conclusions

A dietary intake of red meat aggravates DSS-induced colitis whereas co-consumption of resistant starch reduces the severity of colitis.  相似文献   

20.
BACKGROUNDThe gut-liver axis has attracted much interest in the context of chronic liver disease pathogenesis. Prebiotics such as dietary fibers were shown to attenuate non-alcoholic fatty liver disease (NAFLD) by modulating gut microbiota. Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has been reported to alleviate the symptoms of various intestinal diseases and metabolic syndromes. However, its effects on NAFLD remain to be fully elucidated.AIMTo determine whether treatment with PHGG attenuates NAFLD development in mice through the gut-liver axis.METHODSSeven-week-old male C57BL/6J mice with increased intestinal permeability were fed a control or atherogenic (Ath) diet (a mouse model of NAFLD) for 8 wk, with or without 5% PHGG. Increased intestinal permeability was induced through chronic intermittent administration of low-dose dextran sulfate sodium. Body weight, liver weight, macroscopic findings in the liver, blood biochemistry [aspartate aminotransferase (AST) and alanine aminotransferase (ALT), total cholesterol, triglyceride, free fatty acids, and glucose levels], liver histology, myeloperoxidase activity in liver tissue, mRNA expression in the liver and intestine, serum endotoxin levels in the portal vein, intestinal permeability, and microbiota and short-chain fatty acid (SCFA) profiles in the cecal samples were investigated.RESULTSMice with increased intestinal permeability subjected to the Ath diet showed significantly increased serum AST and ALT levels, liver fat accumulation, liver inflammatory (tumor necrosis factor-α and monocyte chemotactic protein-1) and fibrogenic (collagen 1a1 and α smooth muscle actin) marker levels, and liver myeloperoxidase activity, which were significantly attenuated by PHGG treatment. Furthermore, the Ath diet combined with increased intestinal permeability resulted in elevated portal endotoxin levels and activated toll-like receptor (TLR) 4 and TLR9 expression, confirming that intestinal permeability was significantly elevated, as observed by evaluating the lumen-to-blood clearance of fluorescein isothiocyanate-conjugated dextran. PHGG treatment did not affect fatty acid metabolism in the liver. However, it decreased lipopolysaccharide signaling through the gut-liver axis. In addition, it significantly increased the abundance of cecal Bacteroides and Clostridium subcluster XIVa. Treatment with PHGG markedly increased the levels of SCFAs, particularly, butyric acid, acetic acid, propionic acid, and formic acid, in the cecal samples.CONCLUSIONPHGG partially prevented NAFLD development in mice through the gut-liver axis by modulating microbiota and downstream SCFA profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号