首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cao H  Yang T  Li XF  Wu J  Duan C  Coates AL  Hu J 《Gene therapy》2011,18(2):173-181
The efficacy of adenovirus-mediated gene therapy is attenuated by the host immune responses to both vector and transgene products. Even for helper-dependent adenoviral (HD-Ad) vectors, which have all viral-coding sequences deleted, the viral capsid proteins still cause immune reactions. In order to improve the efficiency in transgene expression during HD-Ad vector readministration, we administered cyclophosphamide to transiently modulate the mouse immune system. We delivered a high dose (5 × 10(10) vector particles (vp) per mouse) of empty HD-Ad to the mouse airway to induce an initial immune response. After 4 weeks, the mice were readministered with an HD-Ad vector containing either the reporter gene, LacZ, or the gene for the human cystic fibrosis transmembrane conductance regulator (CFTR) (1.5 × 10(10) vp per mouse). We found that the expression of both transgenes was greatly improved by the administration of cyclophosphamide when compared with the expression in mice without the immunosuppressing drug. We also found that the high dose of the empty HD-Ad vector administered intranasally does not induce an acute systemic immune response, but it does elicit an acute local response of proinflammatory cytokine production. Antibodies against Ad vector, including the neutralizing antibodies, were greatly reduced by the presence of cyclophosphamide in vector readministratiton. Moreover, cyclophosphamide reduced the infiltration of inflammatory cells, including total leukocytes, lymphocytes, CD4+ and CD8+T cells. These results indicate that transient administration of immunosuppressive agent can be used to extend transgene expression as well as attenuating immunogenicity to HD-Ad vectors in airway readministration.  相似文献   

2.
Inflammation and immune reaction, or pre-existing immunity towards commonly used viral vectors for gene therapy severely impair long-term gene expression in the central nervous system (CNS), impeding the possibility to repeat the therapeutic intervention. Here, we show that injection of a helper-dependent adenoviral (HD-Ad) vector by lumbar puncture into the cerebrospinal fluid (CSF) of non-human primates allows long-term (three months) infection of neuroepithelial cells, also in monkeys bearing a pre-existing anti-adenoviral immunity. Intrathecal injection of the HD-Ad vector was not associated with any sign of systemic or local toxicity, nor by signs of a CNS-specific immune reaction towards the HD-Ad vector. Injection of HD-Ad vectors into the CSF circulation may thus represent a valuable approach for CNS gene therapy allowing for long-term expression and re-administration.  相似文献   

3.
A replication-incompetent adenoviral (Ad) vector is generating interest for both gene therapy and immunotherapy. A major limitation of the use of Ad vectors is the innate immune response, which causes inflammatory cytokine production and tissue damage; however, the precise mechanism of the innate immune response remains to be clarified. Here, we show that serotype 5 human Ad vectors elicit innate immune responses through a myeloid differentiating factor 88 (MyD88)/Toll-like receptor (TLR)-9-dependent and/or -independent manner according to cell type. After stimulation with Ad vectors, the production of interleukin (IL)-6 and IL-12 was significantly decreased in MyD88- or TLR9-deficient dendritic cells (DCs), compared with wild-type DCs. In addition, the surface expression of maturation marker proteins, such as CD40, CD80, CD86, and MHC class II, in MyD88- or TLR9-deficient granulocyte-macrophage colony-stimulating factor (GM-CSF)-DCs was similar to that in wild-type DCs. On the other hand, MyD88- or TLR9-deficient peritoneal macrophages produced the same level of IL-6 as wild-type macrophages after infection with Ad vectors. We did not find any differences in the mRNA expression levels of the molecules involved in innate immunity, such as MyD88, TLR3, TLR7, and TLR9, between DCs and macrophages. The intravenous injection of luciferase-expressing Ad vectors into MyD88- or TLR9-deficient mice resulted in almost comparable levels of IL-6 and IL-12 production and luciferase expression with wild-type mice. These results suggest that Ad vectors can activate innate immunity via MyD88/TLR9-dependent and -independent mechanisms.  相似文献   

4.
Understanding the determinants of the host innate immune response to systemic administration of adenoviral (Ad) vectors is critical for clinical gene therapy. Acute toxicity occurs within minutes to hours after vector administration and is characterized by activation of innate immune responses. Our data indicate that in mice, indicators of vector toxicity include elevations of cytokine levels, liver transaminase levels and thrombocytopenia. To discern potential targets for blunting this host response, we evaluated genetic factors in the host response to systemically administered first-generation Ad vectors (FGV) and helper-dependent Ad vectors (HDV) containing beta-galactosidase expression cassettes. A preliminary screen for modulation of vector-induced thrombocytopenia revealed no role for interferon-gamma, mast cells or perforin. However, vector-induced thrombocytopenia and interleukin 6 (IL-6) expression are less evident in tumor necrosis factor alpha (TNFalpha)-deficient mice. Moreover, we also demonstrated that TNFalpha blockade via antibody or huTNFR:Fc pretreatment attenuates both thrombocytopenia (>40% increase in platelet count) and IL-6 expression (>80% reduction) without affecting interleukin 12 , liver enzymes, hematological indices or vector transduction in a murine model. Our data indicate that the use of HDV, in combination with clinically approved TNFalpha immunomodulation, may represent an approach for improving the therapeutic index of Ad gene therapy for human clinical trials.  相似文献   

5.
Adenoviruses are robust gene delivery vectors in vivo, but are limited by their propensity to provoke strong innate and adaptive responses. Previous work has demonstrated that polyethylene glycol (PEG) modification of adenovirus can protect the vectors from preexisting and adaptive immune responses by reducing protein-protein interactions. To test whether PEGylation can reduce innate immune responses to adenovirus by reducing their interactions with immune cells, first-generation (FG-Ad) and helper-dependent (HD-Ad) Ad5 vectors were PEGylated with SPA-PEG and tested in vitro and in vivo. We demonstrate that increasing PEGylation ablated in vitro transduction, but surprisingly had no negative effect on the level or distribution of in vivo gene delivery. This poor in vitro transduction could be rescued in part by physically forcing the PEGylated vectors onto cells, suggesting that physiological forces in vivo may enable transduction via heparin sulfate proteoglycan and integrin interactions. While transduction remained the same as for unmodified vectors, the PEGylated vectors reduced innate IL-6 responses by 70 and 50% in vivo for FG-Ad and HD-Ad. These reduced innate responses paralleled similar reductions in vector uptake by macrophages in vitro and Kupffer cells in vivo. These data suggest that PEGylation of Ad vectors can reduce innate immune responses without reducing transduction in vivo. These data also suggest that nonspecific vector uptake by macrophages and Kupffer cells may be critically involved in the initial activation of innate immune responses.  相似文献   

6.
Circumventing the immune response to the vector is a major challenge with all vector types. Viral vectors are the most likely to induce an immune response, especially those, like adenovirus and AAV, which express immunogenic epitopes within the organism. The first immune response occurring after vector transfer emerges from the innate immune system, mainly consisting in a rapid (few hours) inflammatory cytokines and chemokines secretion around the administration site. This reaction is high with adenoviral vectors and almost null with AAV. It is noteworthy that plasmid DNA vectors, because of CpG stimulatory islets, also stimulate the innate immunity via the stimulation of TLR receptors on leukocytes. Specific immune response leading to antibodies production and T lymphocytes activation also occurs within a few days after vector introduction. Capsid antigens are mostly responsible for specific immunity toward adenoviruses, and are also involved in the response against AAV. In the former case only, however, viral gene-encoded proteins can also be immunogenic. The pre-existing humoral immunity coming from early infections with wild-type AAV or adenovirus can prevent efficient gene transfer with the corresponding vectors. In all cases, some parameters like route of administration, dose, or promoter type have been extensively described as critical factors influencing vector immunity. Strategies to fight against vector-induced immunity can come from the immunology field, since tolerance induction or immunosuppression are a possibility. Alterations to vector structure have also been extensively performed to circumvent the immune system and thus enhance gene transfer efficiency and safety.  相似文献   

7.
Vectors for gene expression are the essential tools for both gene therapy and basic research. There are two groups of gene therapy vectors, viral and non-viral vectors. At present, toxicity triggered by vectors is one of the major concerns for clinical trials. In general, non-viral vectors, such as plasmid DNA-cationic liposome complex (lipoplex), are thought to be safer than viral vectors, such as adenovirus (Ad) vector, although lipoplex is less efficient in term of gene expression than the Ad vector. However, there has been no study directly comparing the gene expression efficiency and safety of viral and non-viral vectors. Here, we present evidence that the Ad vector shows much more efficient gene expression and is safer than lipoplex, at least with respect to the innate immune response. After being systemically administered to mice, the Ad vector showed a transduction efficiency that was 2 to 5 log orders higher than that of lipoplex, depending on the organ. On the other hand, surprisingly, the administration of lipoplex produced a greater amount of inflammatory cytokines such as interleukin-6, interleukin-12, and tumor necrosis factor-alpha than did the administration of the Ad vector, whereas a comparable level of hepatotoxicity was induced by these vectors. The production of inflammatory cytokines induced by the injection of lipoplex was reduced when the CpG motifs were removed completely from plasmid DNA. Thus, care should be taken to ensure the innate immune response induced by gene therapy vectors, especially lipoplex.  相似文献   

8.
Adenovirus vectors (Ad) are widely used in gene therapy studies, including those aimed at treating cystic fibrosis lung disease. Various approaches have been investigated to blunt the host immune response to Ad, including development of helper-dependent (HD) Ad. The host cytotoxic T-cell response to HD-Ad is generally lower than to earlier-generation Ad. However, antibodies are formed which could inhibit the efficacy of HD-Ad readministration. In this first study of HD-Ad readministration to the lung, we found that a second administration of HD-Ad to mice was possible with minimal loss of transgene expression. In contrast, when first-generation (FG) Ad was administered initially, followed by HD-Ad or FG-Ad, transgene expression was reduced. Significantly lower concentrations of antibodies against Ad were found in lung lavage fluid and serum from mice that received two doses of HD-Ad (when the initial HD-Ad lacked a transgene), compared to mice that received FG-Ad followed by HD-Ad. These data suggest that readministration of HD-Ad for lung gene therapy may be feasible.  相似文献   

9.
Transgene expression from helper-dependent adenoviral (HD-Ad) vectors is effective and long lasting, but not permanent. Their use is also limited by the host response against capsid proteins that precludes successful gene expression upon readministration. In this report, we test the hypothesis that PEGylation of HD-Ad reduces its toxicity and promotes transgene expression upon readministration. PEGylation did not compromise transduction efficiency in vitro and in vivo and reduced peak serum IL-6 levels two-fold. IL-12 and TNF-alpha levels were reduced three- and seven-fold, respectively. Thrombocytopenia was not detected in mice treated with the PEGylated vector. Serum transaminases were not significantly elevated in mice treated with either vector. Mice immunized with 1 x 10(11) particles of unmodified HD-Ad expressing human alpha-1 antitrypsin (hA1AT) were rechallenged 28 days later with 8 x 10(10) particles of unmodified or PEG-conjugated vector expressing beta-galactosidase. Trace levels of beta-galactosidase (52.23+/-19.2 pg/mg protein) were detected in liver homogenates of mice that received two doses of unmodified HD-Ad. Mice rechallenged with PEGylated HD-Ad produced significant levels of beta-galactosidase (5.1+/-0.4 x 10(5) pg/mg protein, P=0.0001). This suggests that PEGylation of HD-Ad vectors may be appropriate for their safe and efficient use in the clinic.  相似文献   

10.
Due to their efficient transduction potential, adeno-associated virus (AAV) vectors are leading candidates for gene therapy in skeletal muscle diseases. However, immune responses toward the vector or transgene product have been observed in preclinical and clinical studies. TLR9 has been implicated in promoting AAV-directed immune responses, but vectors have not been developed to circumvent this barrier. To assess the requirement of TLR9 in promoting immunity toward AAV-associated antigens following skeletal muscle gene transfer in mice, we compared immunological responses in WT and Tlr9-deficient mice that received an AAV vector with an immunogenic capsid, AAVrh32.33. In Tlr9-deficient mice, IFN-γ T cell responses toward capsid and transgene antigen were suppressed, resulting in minimal cellular infiltrate and stable transgene expression in target muscles. These findings suggest that AAV-directed immune responses may be circumvented by depleting the ligand for TLR9 (CpG sequences) from the vector genome. Indeed, we found that CpG-depleted AAVrh32.33 vectors could establish persistent transgene expression, evade immunity, and minimize infiltration of effector cells. Thus, CpG-depleted AAV vectors could improve outcome of clinical trials of gene therapy for skeletal muscle disease.  相似文献   

11.
Central nervous system (CNS) delivery of anti-inflammatory cytokines, such as interleukin 4 (IL4), holds promise as treatment for multiple sclerosis (MS). We have previously shown that short-term herpes simplex virus type 1-mediated IL4 gene therapy is able to inhibit experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice and non-human primates. Here, we show that a single administration of an IL4-expressing helper-dependent adenoviral vector (HD-Ad) into the cerebrospinal fluid (CSF) circulation of immunocompetent mice allows persistent transduction of neuroepithelial cells and long-term (up to 5 months) CNS transgene expression without toxicity. Mice affected by chronic and relapsing EAE display clinical and neurophysiological recovery from the disease once injected with the IL4-expressing HD-Ad vector. The therapeutic effect is due to the ability of IL4 to increase, in inflamed CNS areas, chemokines (CCL1, CCL17 and CCL22) capable of recruiting regulatory T cells (CD4+CD69-CD25+Foxp3+) with suppressant functions. CSF delivery of HD-Ad vectors expressing anti-inflammatory molecules might represent a valuable therapeutic option for CNS inflammatory disorders.  相似文献   

12.
Recombinant adeno-associated viruses (AAVs) have been used widely for in vivo gene therapy. However, adaptive immune responses to AAV have posed a significant hurdle in clinical application of AAV vectors. Recent advances have suggested a crucial role for innate immunity in shaping adaptive immune responses. How AAV activates innate immunity, and thereby promotes AAV-targeted adaptive immune responses, remains unknown. Here we show that AAV activates mouse plasmacytoid DCs (pDCs) via TLR9 to produce type I IFNs. In vivo, the TLR9-MyD88 pathway was crucial to the activation of CD8+ T cell responses to both the transgene product and the AAV capsid, leading to loss of transgene expression and the generation of transgene product–specific and AAV-neutralizing antibodies. We further demonstrate that TLR9-dependent activation of adaptive immunity targeting AAV was mediated by type I IFNs and that human pDCs could be activated in vitro to induce type I IFN production via TLR9. These results reveal an essential role for the TLR9-MyD88–type I IFN pathway in induction of adaptive immune responses to AAV and suggest that strategies that interfere with this pathway may improve the outcome of AAV-mediated gene therapy in humans.  相似文献   

13.
Current viral gene therapy vectors effectively transfer genes in vivo at the price of eliciting innate and acquired host responses against the vector and/or transgene. Antigens present in the viral vector and the expression of the transgene both cause cellular and humoral immune responses dependent on the viral vector, the route of administration, and the genotype and infection history of the host. In general, adenoviral vectors cause strong immune responses, which result in only transient expression of the therapeutic gene. Adeno-associated virus and retrovirus vectors elicit weaker immune responses and can therefore result in long-term gene transfer and expression. Methods to avoid host responses, including modification of viral vector and immunosuppression of the host, can increase the longevity and efficiency of gene transfer.  相似文献   

14.
Previous studies of the use of adenoviral vectors in animal models of gene therapy have focused on the immune response against transduced cells as the major limiting factor to long-term transgene expression. In this study we eliminated the variable of immunity induced by expression of the transgene in order to investigate vector DNA stability of both first-generation and high-capacity adenoviral vectors after gene transfer to skeletal muscle. Transgene expression from a high-capacity adenoviral vector remained at a high level for at least 20 weeks and was accompanied by persistence of intact vector genomes. In contrast, transgene expression from a first-generation adenoviral vector markedly diminished by 6 weeks after gene transfer and was accompanied by mild and variable inflammatory cell infiltrates. Surprisingly, despite this loss of transgene expression, the first-generation adenoviral vector genomes persisted like the high-capacity adenoviral vector genomes. Therefore, in the absence of immunity to transgene proteins, loss of expression from the first-generation vector was due to inhibition of transgene expression rather than to the elimination of vector-containing cells. DNA stability and persistent expression of the high-capacity adenoviral vector supports the potential of this vector for clinical applications of muscle gene transfer.  相似文献   

15.
Zaiss AK  Muruve DA 《Gene therapy》2008,15(11):808-816
Recombinant vectors based on adeno-associated virus (AAV) have been shown to stably express many genes in vivo without mounting immune responses to vectors or transgenes. Thus, AAV vectors have rapidly become the reagents of choice for therapeutic gene transfer. Yet one of the first translations of AAV gene therapy into humans unexpectedly resulted in only short-term expression of the therapeutic gene accompanied by transient but significant toxicity. Immune responses to the vector capsid were held accountable for these results, confirming that a detailed understanding of the interaction of AAV vectors with the immune system is of great importance for the safety and success of gene therapy applications. Most humans display naturally acquired immunity to AAV; circumventing neutralizing antibodies and memory T-cell responses is challenging, but not impossible. This review will evaluate the strategies that have been proposed to overcome such responses and summarize recent findings about the mechanisms and circumstances that lead to the activation of innate and adaptive immune responses to AAV vector components.  相似文献   

16.
Adenoviral immuno-gene therapy using interferon-beta has been effective in an orthotopic model of lung cancer. However, pulmonary inflammation induced by adenoviral (Ad) vectors will almost certainly limit the maximally tolerated dose. On the other hand, the strong innate immune response generated by the vector may be helpful in initiating the adaptive immune response required for efficacy. The goals of this study were to develop an effective approach to inhibit Ad.IFNbeta-mediated acute pulmonary inflammation and to determine whether this reduction of Ad-mediated inflammation decreased the therapeutic efficacy of Ad.IFNbeta in a mouse model of bronchioloalveolar cancer. Our data show that anti-TNF-alpha antibodies can blunt the innate pulmonary immune response induced by Ad vectors, even in sensitized animals. However, this effect also inhibited the ability of the animal to generate anti-tumor immune responses and reduced survival in an orthotopic lung cancer model responsive to Ad.IFNbeta treatment. Interestingly, in a flank model of tumor using a cell line derived from the lung tumor, TNF-alpha blockade did not inhibit efficacy. These data suggest that the innate immune response to adenovirus in the lung may be important in immuno-gene therapy of lung cancer. Therapeutic application of anti-inflammatory therapy in immuno-gene therapy strategies should thus be undertaken with caution.  相似文献   

17.
Lee H  Koehler DR  Pang CY  Levine RH  Ng P  Palmer DJ  Quinton PM  Hu J 《Gene therapy》2005,12(24):1752-1760
Gene therapy vectors are mostly studied in cultured cells, rodents, and sometimes in non-human primates, but it is useful to test them in human tissue prior to clinical trials. In this study, we investigated the possibility of using human sweat glands as a model for testing cystic fibrosis (CF) gene therapy vectors. Human sweat glands are relatively easy to obtain from skin biopsy, and can be tested for CFTR function. Using patients' sweat glands could provide a safe model to study the efficacy of CF gene therapy. As the first step to explore using sweat glands as a model for CF gene therapy, we examined various ex vivo gene delivery methods for a helper-dependent adenovirus (HD-Ad) vector. Gene delivery to sweat glands in skin organ culture was studied by topical application, intradermal injection or submerged culture. We found that transduction efficiency can be enhanced by pretreating isolated sweat glands with dispase, which suggests that the basement membrane is a critical barrier to gene delivery by adenoviral vectors. Using this approach, we showed that Cftr could be efficiently delivered to and expressed by the epithelial cells of sweat glands with our helper-dependent adenoviral vector containing cytokeratin 18 regulatory elements. Based on this study we propose that sweat glands might be used as an alternative model to study CF gene therapy in humans.  相似文献   

18.
Preclinical arterial gene transfer studies with adenoviral vectors are typically performed in laboratory animals that lack immunity to adenovirus. However, human patients are likely to have prior exposures to adenovirus that might affect: (a) the success of arterial gene transfer; (b) the duration of recombinant gene expression; and (c) the likelihood of a destructive immune response to transduced cells. We confirmed a high prevalence (57%) in adult humans of neutralizing antibodies to adenovirus type 5. We then used a rat model to establish a central role for the immune system in determining the success as well as the duration of recombinant gene expression after adenovirus-mediated gene transfer into isolated arterial segments. Vector-mediated recombinant gene expression, which was successful in naive rats and prolonged by immunosuppression, was unsuccessful in the presence of established immunity to adenovirus. 4 d of immunosuppressive therapy permitted arterial gene transfer and expression in immune rats, but at decreased levels. Ultraviolet-irradiated adenoviral vectors, which mimic advanced-generation vectors (reduced viral gene expression and relatively preserved capsid function), were less immunogenic than were nonirradiated vectors. A primary exposure to ultraviolet-irradiated (but not nonirradiated) vectors permitted expression of a recombinant gene after redelivery of the same vector. In conclusion, arterial gene transfer with current type 5 adenoviral vectors is unlikely to result in significant levels of gene expression in the majority of humans. Both immunosuppression and further engineering of the vector genome to decrease expression of viral genes show promise in circumventing barriers to adenovirus-mediated arterial gene transfer.  相似文献   

19.
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.  相似文献   

20.
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose-response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 10(2), and maximum expression at 10(6), transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号