首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic elevation of plasma angiotensin II (Ang II) is detrimental to the heart. In addition to its hemodynamic effects, Ang II exerts cardiotrophic actions that contribute to cardiomyocyte remodeling. However, it remains to be clarified whether these direct actions of Ang II are sufficient to cause contractile dysfunction and heart failure in the absence of altered hemodynamic conditions. In this study, we used TG1306/1R (TG) mice that develop Ang II-mediated cardiac hypertrophy in absence of elevated blood pressure to investigate the phenotypic changes in cardiomyocytes during the adaptive response to chronic cardiac-specific endogenous Ang II stimulation. A 94-week longitudinal study demonstrated that TG mice develop dilated cardiomyopathy with aging and exhibit a significant increase in mortality compared with wild-type (WT) mice. Cardiac hypertrophy in TG mice is associated with cardiomyocyte hypertrophy (15 to 20 weeks: length +20%; 35 to 40 weeks: length +10%, width +15%) but not collagen deposition. In vivo analysis of cardiac function revealed age-dependent systolic and diastolic dysfunction in TG mice (approximately 45% reduction in dP/dtmax and dP/dtmin at 50 to 60 weeks of age compared with WT). Analysis of isolated cardiomyocyte isotonic shortening showed impaired contractility in TG cardiomyocytes (30% to 40% decrease in rates of shortening and lengthening). In TG hearts, chronic Ang II exposure induced downregulation of the sarcoplasmic reticulum calcium pump (SERCA2) and diminution of Ca2+ transients, indicative of an underlying disturbance in calcium homeostasis. In conclusion, chronic Ang II myocardial stimulation without hemodynamic overload is sufficient to produce cardiomyocyte and cardiac dysfunction culminating in heart failure.  相似文献   

2.
Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29).  相似文献   

3.
The cytoskeleton of the cardiomyocyte has been shown to modulate ion channel function. Cytoskeletal disruption in vitro alters Na(+) channel kinetics, producing a late Na(+) current that can prolong repolarization. This study describes the properties of the cardiac Na(+) channel and cardiac repolarization in neonatal mice lacking ankyrin(B), a cytoskeletal "adaptor" protein. Using whole-cell voltage clamp techniques, I(Na) density was lower in ankyrin(B)(-/-) ventricular myocytes than in wild-type (WT) myocytes (-307+/-26 versus -444+/-39 pA/pF, P<0.01). Ankyrin(B)(-/-) myocytes exhibited a hyperpolarizing shift in activation and inactivation kinetics compared with WT. Slower recovery from inactivation contributed to the negative shift in steady-state inactivation in ankyrin(B)(-/-). Single Na(+) channel mean open time was longer in ankyrin(B)(-/-) versus WT at test potentials (V(t)) of -40 mV (1.0+/-0.1 versus 0. 61+/-0.04 ms, P<0.05) and -50 mV (0.8+/-0.1 versus 0.39+/-0.05 ms, P<0.05). Ankyrin(B)(-/-) exhibited late single-channel openings at V(t) -40 and -50 mV, which were not seen in WT. Late I(Na) contributed to longer action potential durations measured at 90% repolarization (APD(90)) at 1 Hz stimulation in ankyrin(B)(-/-) compared with WT (354+/-26 versus 274+/-22 ms, P<0.05). From ECG recordings of neonatal mice, heart rates were slower in ankyrin(B)(-/-) than in WT (380+/-14 versus 434+/-13 bpm, P<0.01). Although the QT interval was similar in ankyrin(B)(-/-) and WT at physiological heart rates, QT-interval prolongation in response to heart rate deceleration was greater in ankyrin(B)(-/-). In conclusion, Na(+) channels in ankyrin(B)(-/-) display reduced I(Na) density and abnormal kinetics at the whole-cell and single-channel level that contribute to prolonged APD(90) and abnormal QT-rate adaptation.  相似文献   

4.
Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo. In this study, by using mice deficient in ASK1 (ASK1-/- mice), we investigated the role of ASK1 in cardiac hypertrophy and remodeling induced by Ang II. Left ventricular (LV) ASK1 was activated by Ang II infusion in wild-type mice, which was mediated by angiotensin II type 1 receptor and superoxide. Although Ang II-induced hypertensive effect was comparable to wild-type and ASK1-/- mice, LV ASK1 activation by Ang II was not detectable in ASK1-/- mice, and p38 and c-Jun N-terminal kinase (JNK) activation was lesser in ASK-/- mice than in wild-type mice. Elevation of blood pressure by continuous Ang II infusion was comparable between ASK1-/- and wild-type mice. However, Ang II-induced cardiac hypertrophy and remodeling, including cardiomyocyte hypertrophy, cardiac hypertrophy-related mRNA upregulation, cardiomyocyte apoptosis, interstitial fibrosis, coronary arterial remodeling, and collagen gene upregulation, was significantly attenuated in ASK1-/- mice compared with wild-type mice. These results provided the first in vivo evidence that ASK1 is the critical signaling molecule for Ang II-induced cardiac hypertrophy and remodeling. Thus, ASK1 is proposed to be a potential therapeutic target for cardiac diseases.  相似文献   

5.
Osteopontin (OPN) is upregulated in several experimental models of cardiac fibrosis and remodeling. However, its direct effects remain unclear. We examined the hypothesis that OPN is important for the development of cardiac fibrosis and remodeling. Moreover, we examined whether the inhibitory effect of eplerenone (Ep), a novel aldosterone receptor antagonist, was mediated through the inhibition of OPN expression against cardiac fibrosis and remodeling. Wild-type (WT) and OPN-deficient mice were treated with angiotensin II (Ang II) for 4 weeks. WT mice receiving Ang II were divided into 2 groups: a control group and an Ep treatment group. Ang II treatment significantly elevated blood pressure and caused cardiac hypertrophy and fibrosis in WT mice. Ep treatment and OPN deficiency could reduce the Ang II-induced elevation of blood pressure and ameliorate the development of cardiac fibrosis, whereas Ep-only treatment abolished the development of cardiac hypertrophy. Most compelling, the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and subsequent left ventricular dilatation in Ang II-treated OPN-deficient mice. These results suggest that OPN has a pivotal role in the development of Ang II-induced cardiac fibrosis and remodeling. Moreover, the effect of Ep on the prevention of cardiac fibrosis, but not cardiac hypertrophy, might be partially mediated through the inhibition of OPN expression.  相似文献   

6.
Recent studies indicate that cardiac T-type Ca2+ current (ICaT) reappears in hypertrophied ventricular cells. The aim of this study was to investigate the role of angiotensin II (Ang II), a major inducer of cardiac hypertrophy, in the reexpression of T-type channel in left ventricular hypertrophied myocytes. We induced cardiac hypertrophy in rats by abdominal aorta stenosis for 12 weeks and thereafter animals were treated for 2 weeks with losartan (12 mg/kg per day), an antagonist of type 1 Ang II receptors (AT1). In hypertrophied myocytes, we showed that the reexpressed ICaT is generated by the CaV3.1 and CaV3.2 subunits. After losartan treatment, ICaT density decreased from 0.40+/-0.05 pA/pF (n=26) to 0.20+/-0.03 pA/pF (n=27, P<0.01), affecting CaV3.1- and CaV3.2-related currents. The amount of CaV3.1 mRNA increased during hypertrophy and retrieved its nonhypertrophic level after losartan treatment, whereas the amount of CaV3.2 mRNA was unaffected by stenosis. In cultured newborn ventricular cells, chronic Ang II application (0.1 micromol/L) also increased ICaT density and CaV3.1 mRNA amount. UO126, a mitogen-activated protein kinase kinase-1/2 (MEK1/2) inhibitor, reduced Ang II-increased ICaT density and CaV3.1 mRNA amount. Bosentan, an endothelin (ET) receptor antagonist, reduced Ang II-increased ICaT density without affecting the amount of CaV3.1 mRNA. Finally, cotreatment with bosentan and UO126 abolished the Ang II-increased ICaT density. Our results show that AT1-activated MEK pathway and autocrine ET-activated independent MEK pathway upregulate T-type channel expression. Ang II-increased of ICaT density observed in hypertrophied myocytes may play a role in the pathogenesis of Ca2+ overload and arrhythmias seen in cardiac pathology.  相似文献   

7.
目的通过观察胺碘酮对模拟缺氧状态下急性分离的大鼠心室肌单细胞复极相中瞬时外向钾电流(Ito)和内向整流钾电流(IK1)通道的影响,探讨其在该条件下抗心律失常的作用机制。方法使用酶解法分离获取大鼠单个心室肌细胞,通过持续通以模拟缺氧细胞外液建立体外模拟缺氧模型,采用全细胞膜片钳实验技术研究胺碘酮对该条件下Ito和IK1的作用。结果胺碘酮呈剂量依赖性降低Ito和IK1电流幅值,对Ito抑制效应的起始浓度为1μmol/L,100μmol/L时抑制作用达最大,最大抑制幅度为56.78%±4.27%(23.98±2.18pA/pFvs10.38±4.27pA/pF;测试电压为+70mV;P<0.01;n=5),IC50(半数抑制浓度)为74.35μmol/L,但Ito的I-V曲线趋势并没有发生变化,稳态激活和失活曲线几乎不发生移动。胺碘酮对IK1内向电流部分抑制起始浓度为1μmol/L,外向电流部分抑制效应的起始浓度为2μmol/L,其最大抑制幅度分别为58.77%±10.76%(56.32±7.24pA/pFvs23.22±7.30pA/pF;测试电压为-150mV;P<0.01)和33.29%±2.15%(6.70±0.89pA/pFvs4.46±0.93pA/pF;测试电压为+40mV;P<0.01;n=5)。对内向电流成分的IC50为63.75μmol/L,IK1通道的稳态激活曲线无明显改变。结论在大鼠离体心室肌单细胞模拟缺氧条件下,胺碘酮对Ito和IK1电流幅度呈剂量依赖性抑制,有对抗缺氧本身造成的动作电位时程缩短效应;对I内向电流成分的敏感性高于外向成分。  相似文献   

8.
Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to excitation-contraction coupling (ECC) remodeling are not precisely known. We review this question, as well as acute Ang II-mediated modulation of ECC. In addition, we discuss adaptive/maladaptive modulation of cardiomyocyte ECC under chronic endogenous Ang II overproduction in the heart induced by local overexpression of the of the renin-angiotensin system in the mouse.  相似文献   

9.
The goal of the present study was to evaluate the effects of Ang II on the current produced by the Na(+)-Ca(2+) exchanger (I(NCX)) working in the reverse mode and the possible autocrine role played by the release of endothelin (ET) in these actions. I(NCX) was studied in isolation in cat cardiac myocytes. Angiotensin II (Ang II) (100 nmol/L) increased I(NCX) at potentials higher than 0 mV (at +60 mV: 2.07 +/- 0.22 pA/pF in control versus 2.73 +/- 0.22 pA/pF in Ang II, n=9; P<0.05). The increase in I(NCX) induced by Ang II was prevented by the treatment of the cells with the unspecific blocker of the ET receptors, TAK 044 (1 micromol/L) (at +60 mV: 2.15 +/- 0.27 pA/pF in control versus 2.01+/- 0.26 pA/pF in Ang II, n=5, NS). These results show, for the first time, that the effect of Ang II on I(NCX) is the result of the autocrine actions of ET released by the octapeptide.  相似文献   

10.
Li HL  She ZG  Li TB  Wang AB  Yang Q  Wei YS  Wang YG  Liu DP 《Hypertension》2007,49(6):1399-1408
Myofibrillogenesis regulator-1 (MR-1) augments cardiomyocytes hypertrophy induced by angiotensin II (Ang II) in vitro. However, its roles in cardiac hypertrophy in vivo remain unknown. Here, we investigate whether MR-1 can promote cardiac hypertrophy induced by Ang II in vivo and elucidate the molecular mechanisms of MR-1 on cardiac hypertrophy. We used a model of Ang II-induced cardiac hypertrophy by infusion of Ang II in female mice. In wild-type mice subjected to the Ang II infusion, cardiac hypertrophy developed after 2 weeks. In mice overexpressing human MR-1 (transgenic), however, cardiac hypertrophy was significantly greater than in wild-type mice as estimated by heart weight:body weight ratio, cardiomyocyte area, and echocardiographic measurements, as well as cardiac atrial natriuretic peptide and B-type natriuretic peptide mRNA and protein levels. Our further results showed that cardiac inflammation and fibrosis observed in wild-type Ang II mice were augmented in transgenic Ang II mice. Importantly, increased nuclear factor kappaB activation was significantly increased higher in transgenic mice compared with wild-type mice after 2 weeks of Ang II infusion. In vitro experiments also revealed that overexpression of MR-1 enhanced Ang II-induced nuclear factor kappaB activation, whereas downregulation of MR-1 blocked it in cardiac myocytes. In conclusion, our results suggest that MR-1 plays an aggravative role in the development of cardiac hypertrophy via activation of the nuclear factor kappaB signaling pathway.  相似文献   

11.
Many lines of evidence have suggested that the renin–angiotensin system plays an important role in the development of cardiac hypertrophy. Pressure overload-induced cardiac hypertrophy is prevented by angiotensin-converting enzyme inhibitors in vivo, and mechanical stretch induces secretion and production of angiotensin II (Ang II) from cardiac myocytes in vitro. Ang II induces cardiomyocyte hypertrophy through the Ang II type 1 (AT1) receptor. All these results suggest that the AT1 receptor-mediated signaling is critical for the development of mechanical stress-induced cardiac hypertrophy. However, we have recently obtained results from AT1 knockout mice suggesting that mechanical stress can induce cardiac hypertrophy without AT1 receptor-mediated Ang II signaling.  相似文献   

12.
Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.  相似文献   

13.
INTRODUCTION: The slow component of the delayed rectifier K+ current IKs modulates repolarization of the cardiac action potential (AP), and the loss of IKs is known to cause long QT1 (LQT1) syndrome by prolonging action potential duration (APD). In this study, we generated a guinea pig LQT1 syndrome model using the IKs blocker chromanol 293B and then assayed the electrophysiologic effects of the ATP-sensitive potassium channel IK,ATP opener nicorandil on this model. METHODS AND RESULTS: Transmembrane action potentials of perfused right ventricular papillary muscle preparations and both in vitro and in vivo ECGs of guinea pigs were recorded. Blockade of IKs by chromanol 293B (30 microM) prolonged the action potential duration at 90% repolarization (APD90) by 8.5% and QT interval by 16.5% of control values. In addition, proarrhythmic early afterdepolarizations (EADs) and ventricular fibrillation were observed. Venoinjection of chromanol 293B (1 mg/kg) revealed 10.9% QT prolongation. Nicorandil (5-30 microM) dose-dependently shortened APD90 under the control condition, whereas it reversed the AP prolongation effect of chromanol 293B by 7.4% at the 30 microM concentration. Moreover, nicorandil shortened QT intervals both in vitro and in vivo and displayed an inhibitory effect on EADs and ventricular fibrillation. CONCLUSION: The ATP-sensitive potassium channel opener nicorandil may be an effective drug in the therapy of LQT1 syndrome by shortening APD and the QT interval.  相似文献   

14.
持续性心房颤动患者IK1电流密度及其基因表达变化的研究   总被引:1,自引:0,他引:1  
目的比较持续性心房颤动患者(房颤组)和正常窦性心律患者(窦律组)右心耳单个心房肌细胞内向整流钾通道电流(IK1)密度的变化及其亚基Kir2.1 mRNA表达的变化.方法用常规全细胞膜片钳技术记录了8例风湿性心脏病房颤患者和12例窦律患者急性酶分离法分离的右心耳单个心房肌细胞IK1的变化;用半定量一步法RT-PCR技术检测了19例房颤患者和18例窦律患者右心耳组织内向整流钾通道亚基Kir2.1 mRNA的表达.结果房颤组患者右心耳单个心房肌细胞IK1电流密度在电位水平更负时比窦律组明显升高,且电流升高只发生在静息电位水平更负的细胞,平均静息膜电位分别为(-78.95±4.67)mV和(-70.22±11.08)mV,P>0.05;超级化至-100 mV时IK1电流密度分别为(-9.59±2.47)pA/pF(n=15个细胞)和(-5.58±2.52)pA/pF(n=26个细胞),P<.01.Kir2.1 mRNA水平与对照组相比,升高了47.81%,为0.50±0.16与0.34±0.09,P<0.05.结论Kir2.1 mRNA表达升高可能是IK1电流升高的分子基础,IK1电流升高及其基因表达上调是房颤离子重构的机制之一,在房颤电重构中发挥一定的作用.  相似文献   

15.
OBJECTIVE: Cardiac hypertrophy due to pressure overload is associated with several cellular electrophysiological alterations such as prolongation of action potential duration (APD), decrease in transient outward current (Ito) and occurrence of the pacemaker current I(f). These alterations may play a role in sudden arrhythmic death, which is a major risk factor in myocardial hypertrophy and failure. Since angiotensin II is a key signal for myocyte hypertrophy, we tested if an 8-week treatment of old spontaneously hypertensive rats (SHR) with the antagonist of type-1 angiotensin II receptor (AT1), losartan (10 mg/kg/day), was able to influence the cellular electrophysiologic remodeling associated with cardiac hypertrophy. METHODS: Left ventricular myocytes were isolated from control (CTR) or losartan-treated (LOS) 18-month old SHR. Patch-clamped LVM were superfused with a normal Tyrode's solution (to measure action potential) or appropriately modified Tyrode's solution (to measure Ito and I(f)). RESULTS: Heart weight to body weight ratio (HW/BW) was significantly smaller in LOS (5.69 +/- 0.25 mg/g) than in CTR rats (6.67 +/- 0.37 mg/g; P < 0.05). Membrane capacitance, an index of cell size, was significantly reduced in LOS (342 +/- 12, n = 92) vs. CTR (422 +/- 14 pF, n = 96, P < 0.001). APD was significantly shorter in LOS than in CTR (at -60 mV: 197 +/- 23 vs. 277 +/- 19 ms, n = 28, P < 0.001); this effect was paralleled by a larger maximum Ito density in the LOS group (LOS: 15.1 +/- 1.4 pA/pF, CTR: 10.0 +/- 0.8 pA/pF) (n = 27, P < 0.02). I(f), elicited by hyperpolarizing steps (range: -60 to -130 mV), was consistently recorded in SHR cells; however, its maximal specific conductance was significantly lower in LOS than in CTR rats (28.6 +/- 3.6 vs. 54.2 +/- 8.0 pS/pF, n = 55, P < 0.001). Voltage of half-maximal activation (V1/2) of both Ito and I(f) was unchanged by the treatment. CONCLUSIONS: AT1 receptor blockade with losartan prevents the development of myocyte hypertrophy and associated electrophysiological alterations in old SHR.  相似文献   

16.
The role of the cardiac current Ik1 in arrhythmogenesis remains highly controversal. To gain further insights into the mechanisms of IK1 involvement in cardiac excitability, we studied the susceptibility of transgenic mice with altered IK1 to arrhythmia during various pharmacological and physiological challenges.Arrhythmogenesis was studied in transgenic mice expressing either dominant negative Kir2.1-AAA or wild type Kir2.1 subunits in the heart, models of IK1 suppression (AAA-TG) and up-regulation (WT-TG), respectively. Under normal conditions, both anesthetized wild type (WT) and AAA-TG mice did not display any spontaneous arrhythmias. In contrast,WT-TG mice displayed numerous arrhythmias of various types. In isolated hearts, the threshold concentration for halothane-induced ventricular tachycardias (VT) was increased to 170% in the AAA-TG and decreased to 55% in WT-TG hearts when compared to WT hearts. The number of PVCs induced by AV node ablation combined with hypokalemia was reduced in AAA-TG hearts and increased in WT-TG mice.After AV node ablation AAA-TG hearts were more tolerant, and WT-TG less tolerant to isoproterenol- induced arrhythmias than WT hearts. Analysis of monophasic action potentials in isolated hearts shows a significant reduction in the dispersion of action potential repolarization in mice with suppressed IK1. The data strongly support the hypothesis that in the mouse heart upregulation of IK1 is proarrhythmic, and that under certain conditions IK1 blockade in cardiac myocytes may be a potentially useful antiarrhythmic strategy.  相似文献   

17.
Angiotensin-converting enzyme 2 (ACE2) converts the vasopressor angiotensin II (Ang II) into angiotensin (1-7) [Ang(1-7)], a peptide reported to have vasodilatory and cardioprotective properties. Inactivation of the ACE2 gene in mice has been reported by one group to result in an accumulation of Ang II in the heart and an age-related defect in cardiac contractility. A second study confirmed the role of ACE2 as an Ang II clearance enzyme but failed to reproduce the contractility defects previously reported in ACE2-deficient mice. The reasons for these differences are unclear but could include differences in the accumulation of Ang II or the deficiencies in Ang(1-7) in the mouse models used. As a result, the roles of ACE2, Ang II, and Ang(1-7) in the heart remain controversial. Using a novel strategy, we targeted the chronic overproduction of either Ang II or Ang(1-7) in the heart of transgenic mice and tested their effect on age-related contractility and on cardiac remodeling in response to a hypertensive challenge. We demonstrate that a chronic accumulation of Ang II in the heart does not result in cardiac contractility defects, even in older (8-month-old) mice. Likewise, transgenic animals with an 8-fold increase in Ang(1-7) peptide in the heart exhibited no differences in resting blood pressure or cardiac contractility as compared to age-matched controls, but they had significantly less ventricular hypertrophy and fibrosis than their nontransgenic littermates in response to a hypertensive challenge. Analysis of downstream signaling cascades demonstrates that cardiac Ang(1-7) selectively modulates some of the downstream signaling effectors of cardiac remodeling. These results suggest that Ang(1-7) can reduce hypertension-induced cardiac remodeling through a direct effect on the heart and raise the possibility that pathologies associated with ACE2 inactivation are mediated in part by a decrease in production of Ang(1-7).  相似文献   

18.
目的研究生理状态下及异丙肾上腺素灌流对兔界嵴(CT)与梳状肌(PM)细胞动作电位(AP)及钠电流(INa)、短暂外向钾电流(Ito)、L型钙电流(ICa-L)、延迟整流钾电流(IK)及内向整流性钾电流(IK1)的影响,探讨CT与房性心律失常的关系。方法酶解法分离兔CT及PM细胞,利用全细胞膜片钳技术,记录生理状态下及异丙肾上腺素灌流后CT与PM细胞AP及INa、Ito、ICa-L、IK及IK1的变化。结果①生理状态下,CT细胞动作电位时程(APD)较长,可见明显的平台期;PM细胞AP形态与普通心房肌细胞相似,1期复极迅速,平台期短,类似三角形。②生理状态下,CT细胞Ito电流密度比PM细胞明显降低(7.13±0.38 pA/pF vs 10.70±0.62 pA/pF,n=9,P<0.01),而INa、Ito、ICa-L、IK及IK1则无明显差别。③异丙肾上腺素灌流时CT与PM细胞APD20、APD50、APD90均延长(n=8,P<0.01);指令电位+50 mV时,CT与PM细胞Ito电流密度均减少(n=9,P<0.01)而IK均增加(n=8,P<0.05);指令电位+10 mV时,CT与PM细胞ICa-L电流密度均增加(n=9,P<0.01);IK1在两种心肌细胞均无明显差异。结论 CT与PM细胞AP差异与Ito有关。异丙肾上腺素灌流时ICa-L与IK增强,Ito抑制使CT与PM细胞APD延长,触发机制可能是CT参与房性心律失常的机制之一。  相似文献   

19.
OBJECTIVE: To elucidate the regional difference of the K+ current blocking effects of methanesulfonanilide class III agents. METHODS: Regional differences in action potential duration (APD) and E-4031-sensitive component (IKr) as well as -insensitive component (IKs) of the delayed rectifier K+ current (IK) were investigated in enzymatically isolated myocytes from apical and basal regions of the rabbit left ventricle using the whole-cell clamp technique. RESULTS: At 1 Hz stimulation, APD was significantly longer in the apex than in the base (223.1 +/- 10.6 vs. 182.7 +/- 14.5 ms, p < 0.05); application of 1 microM E-4031 caused more significant APD prolongation in the apex than in the base (32.5 +/- 6.4% vs. 21.0 +/- 8.8%, p < 0.05), resulting in an augmentation of regional dispersion of APD. In response to a 3-s depolarization pulse to +40 mV from a holding potential of -50 mV, both IK tail and IKs tail densities were significantly smaller in apical than in basal myocytes (IK: 1.56 +/- 0.13 vs. 2.09 +/- 0.21 pA/pF, p < 0.05; IKs: 0.40 +/- 0.15 vs. 1.43 +/- 0.23, p < 0.01), whereas IKr tail density was significantly greater in the apex than in the base (1.15 +/- 0.13 vs. 0.66 +/- 0.11 pA/pF, p < 0.01). The ratio of IKs/IKr for the tail current in the apex was significantly smaller than that in the base (0.51 +/- 0.21 vs. 3.09 +/- 0.89; p < 0.05). No statistical difference was observed in the voltage dependence as well as activation and deactivation kinetics of IKr and IKs between the apex and base. Isoproterenol (1 microM) increased the time-dependent outward current of IKs by 111 +/- 8% during the 3-s depolarizing step at +40 mV and its tail current by 120 +/- 9% on repolarization to the holding potential of -50 mV, whereas it did not affect IKr. CONCLUSIONS: The regional differences in IK, in particular differences in its two components may underlie the regional disparity in APD, and that methanesulfonanilide class III antiarrhythmic agents such as E-4031 may cause a greater spatial inhomogeneity of ventricular repolarization, leading to re-entrant arrhythmias.  相似文献   

20.
Introduction: Long QT Syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and life-threatening polymorphic ventricular tachyarrhythmias. LQT1 caused by KCNQ1 mutations is the most common form of LQTS.
Methods and Results: Patients diagnosed with LQTS were screened for disease-associated mutations in KCNQ1, KCNH2, KCNE1, KCNE2, KCNJ2, and SCN5A . A novel mutation was identified in KCNQ1 caused by a three-base deletion at the position 824–826, predicting a deletion of phenylalanine at codon 275 in segment 5 of KCNQ1 (ΔF275). Wild-type (WT) and ΔF275- KCNQ1 constructs were generated and transiently transfected together with a KCNE1 construct in CHO-K1 cells to characterize the properties of the slowly activating delayed rectifier current (IKs) using conventional whole-cell patch–clamp techniques. Cells transfected with WT- KCNQ1 and KCNE1 (1:1.3 molar ratio) produced slowly activating outward current with the characteristics of IKs. Tail current density measured at −40 mV following a two-second step to +60 mV was 381.3 ± 62.6 pA/pF (n = 11). Cells transfected with ΔF275- KCNQ1 and KCNE1 exhibited essentially no current. (Tail current density: 0.8 ± 2.1 pA/pF, n = 11, P = 0.00001 vs WT). Cotransfection of WT- and ΔF275- KCNQ1 (50/50), along with KCNE1, produced little to no current (tail current density: 10.3 ± 3.5 pA/pF, n = 11, P = 0.00001 vs WT alone), suggesting a potent dominant negative effect. Immunohistochemistry showed normal membrane trafficking of ΔF275- KCNQ1 .
Conclusion: Our data suggest that a ΔF275 mutation in KCNQ1 is associated with a very potent dominant negative effect leading to an almost complete loss of function of IKs and that this defect underlies a LQT1 form of LQTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号