首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs)—saquinavir, ritonavir, nelfinavir, and indinavir—interact with the ABC-type multidrug transporter proteins MDR1 and MRP1 in CEM T-lymphocytic cell lines. Calcein fluorescence was significantly enhanced in MDR1+ CEM/VBL100 and MRP1+ CEM/VM-1-5 cells incubated in the presence of various HIV PIs and calcein acetoxymethyl ester. HIV PIs also enhanced the cytotoxic activity of doxorubicin, a known substrate for MDR1 and MRP1, in both VBL100 and VM-1-5 CEM lines. Saquinavir, ritonavir, and nelfinavir enhanced doxorubicin toxicity in CEM/VBL100 cells by approximately three- to sevenfold. Saquinavir and ritonavir also enhanced doxorubicin toxicity in CEM/VM-1-5 cells. HIV-1 replication was effectively inhibited by the various PIs in all of the cell lines, and the 90% inhibitory concentration for a given compound was comparable between the different cell types. Therefore, overexpression of MDR1 or MRP1 by T lymphocytes is not likely to limit the antiviral efficacy of HIV PI therapy.  相似文献   

2.
Two newly synthesized carbocyclic oxetanocin analogs, (+/-)-9-[(1 beta,2 alpha,3 beta)-2,3-bis(hydroxymethyl)-1-cyclobutyl]adenine (cyclobut-A) and (+/-)-9-[(1 beta,2 alpha,3 beta)-2,3-bis(hydroxymethyl)-1-cyclobutyl]guanine (cyclobut-G) were tested for activity against the infectivity of human immunodeficiency virus (HIV) in vitro. A number of other carbocyclic oxetanocin analogs failed to exert good antiretroviral effects. Both cyclobut-A and cyclobut-G protected CD4+ ATH8 cells against the infectivity and cytopathic effect of HIV type 1 (HIV-1) and suppressed proviral DNA synthesis in ATH8 cells exposed to HIV-1 in vitro at concentrations of 50 to 100 microM. These compounds also inhibited the in vitro infectivity of another human pathogenic retrovirus, HIV-2. Furthermore, both compounds completely suppressed the replication of a monocytotropic strain of HIV-1 in monocytes and macrophages at concentrations as low as 0.5 microM, as assessed by inhibition of HIV-1 p24 gag protein production. We also found that 2'-deoxyguanosine readily reversed the antiretroviral activity of cyclobut-G in our system, whereas the activity of cyclobut-A was hardly reversed by 2'-deoxyadenosine or 2'-deoxycytidine. We noted, however, that these compounds inhibited the proliferation of peripheral blood mononuclear cells at concentrations of greater than or equal to 100 microM in vitro. Although both cyclobut-A and cyclobut-G appear to have a certain level of in vitro toxicity, our observations may have theoretical and clinical implications in understanding the structure-activity relationships of antiretroviral agents active against HIV.  相似文献   

3.
Topotecan (TPT), a known inhibitor of topoisomerase I, has previously been shown to inhibit the replication of several viruses. The mechanism of inhibition was proposed to be the inhibition of topoisomerase I. We report that TPT decreased replication of human immunodeficiency virus type 1 (HIV-1) in CPT-K5, a cell line with a topoisomerase I mutation. TPT inhibited production of HIV-1 RNA and p24 in CPT-K5 and wild-type cells equally effectively. The antiviral effects of TPT were observed not only in the topoisomerase-mutated CPT-K5 line but also in peripheral blood mononuclear cells (PBMC) acutely infected with clinical isolates and in OM10.1 cells latently infected with HIV and activated by tumor necrosis factor alpha. Little toxicity from TPT was noted in HIV-1-infected PBMC and in CPT-K5 and OM10.1 cells as measured by cell growth and proliferation assays. These observations suggest that TPT targets factors in virus replication other than cellular topoisomerase I and inhibits cytokine-mediated activation in latently infected cells by means other than cytotoxicity. These results suggest a potential for TPT and for other camptothecins in anti-HIV therapy alone and in combination with other antiretroviral drugs.  相似文献   

4.
5.
6.
Fialuridine (FIAU) is a nucleoside analog with potent activity against hepatitis B virus in vitro and in vivo. In this report, the effect of FIAU on mitochondrial DNA (mtDNA) replication in vitro was investigated. CEM cells, a cell line derived from human T cells, were incubated for 6 days in up to 20 microM FIAU. Total cellular DNA was isolated, normalized for the number of cells, and slot hybridized to a probe specific for mtDNA sequences. Treatment of CEM cells with FIAU did not result in a dose-dependent decrease in the amount of mtDNA. In contrast, dideoxycytidine (ddC) inhibited mtDNA replication by 50% at a concentration of approximately 0.1 microM. After 6 days of incubation, both compounds displayed a 50% toxic dose at a concentration of approximately 2 microM in CEM cells and approximately 34 microM in human hepatoblastoma cells (HepG2). In further experiments, CEM cells were incubated for 15 days in up to 2.5 microM FIAU, and again, no inhibition of mtDNA was observed. Over a 6-day incubation, FIAU, at concentrations of up to 200 microM, also failed to inhibit mtDNA replication in either HepG2 or HepG2 cells which constitutively replicate duck hepatitis B virus. In contrast, ddC inhibited mtDNA replication in these cells with a 50% inhibitory concentration of approximately 0.2 microM over a 6-day incubation. Treatment of cells with either FIAU or ddC resulted in a dose-dependent increase in lactate levels in the cell medium, indicating that any effect of FIAU on mitochondrial function may not be related to inhibition of mtDNA replication on the basis of the in vitro data. Alternative explanations for mitochondrial toxicity are considered.  相似文献   

7.
C2 symmetry-based human immunodeficiency virus (HIV) protease inhibitors were examined in vitro as single agents or in combination with 3'-azido-2',3'-dideoxythymidine (AZT) or 2',3'-dideoxyinosine for activity against HIV type 1 (HIV-1). Ten C2 symmetry-based or pseudo-C2 symmetry-based HIV protease inhibitors were active against a laboratory strain (HIV-1IIIB) in the HIV-1 cytopathic effect inhibition assay. Three inhibitors, A75925, A76928, and A77003, selected to represent a range of aqueous solubility and antiviral activity, were active against four different HIV-1 strains tested. These three inhibitors exhibited a significant inhibition of the cytopathic effect of HIV-1 against the CD4+ ATH8 cell line, with 90% inhibitory concentrations ranging from 0.1 to 4 microM. Cellular toxicity was negligible at up to 20 microM. Furthermore, they completely inhibited the replication of monocytotropic strain HIV-1Ba-L in purified monocytes and macrophages at 0.75 to 2 microM. Potent inhibitory activity against a primary HIV-1 isolate and an AZT-resistant HIV-1 variant was also observed for all three inhibitors in phytohemagglutinin-activated peripheral blood mononuclear cells. When these three HIV protease inhibitors and AZT or 2',3'-dideoxyinosine were used in combinations against a primary HIV isolate in phytohemagglutinin-activated peripheral blood mononuclear cells and the results were analyzed with the COMBO program package, their antiviral activities were identified to be synergistic in some cases and additive in others. The present data warrant further investigations of these compounds as potential antiviral agents for the therapy of HIV infections.  相似文献   

8.
Infection by human immunodeficiency virus type 1 (HIV-1) has been associated with increased cell death by apoptosis in infected and uninfected cells. The envelope glycoprotein complex ([gp120/gp41](n)) of X4 HIV-1 isolates is involved in both infected and uninfected cell death via its interaction with cellular receptors CD4 and CXCR4. We studied the effect of the blockade of CXCR4 receptors by the agonist stromal derived factor (SDF-1alpha) and the antagonist bicyclam AMD3100 on apoptotic cell death of CD4(+) cells in different models of HIV infection. In HIV-infected CEM or SUP-T1 cultures, AMD3100 showed antiapoptotic activity even when added 24 h after infection. In contrast, other antiviral agents, such as zidovudine, failed to block apoptosis under these conditions. The antiapoptotic activity of AMD3100 was also studied in coculture of peripheral blood mononuclear cells or CD4(+) cell lines with chronically infected H9/IIIB cells. AMD3100 was found to inhibit both syncytium formation and apoptosis induction with 50% inhibitory concentrations ranging from 0.009 to 0.24 microg/ml, depending on the cell type. When compared to SDF-1alpha, AMD3100 showed higher inhibitory potency in all cell lines tested. Our data indicate that the bicyclam AMD3100 not only inhibits HIV replication but also efficiently blocks cell-surface-expressed HIV-1 envelope-induced apoptosis in uninfected cells.  相似文献   

9.
A-77003, a human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is effective for both acute and chronic infection in vitro and was evaluated clinically by continuous intravenous infusion administration. The minimum effective dose (the concentration required to completely inhibit viral replication) was determined in vitro in a population of uninfected (99%) and HIV-infected (1%) cells exposed to A-77003 by continuous infusion in hollow-fiber bioreactors. The production of infectious HIV and release of p24 antigen from infected cells were completely inhibited in cultures exposed to A-77003 at or above a concentration of 0.5 microM. Measurement of unintegrated HIV-1 DNA synthesis and flow cytometric analysis for cells expressing HIV p24 antigen demonstrated that the spread of HIV to uninfected cells was also blocked at 0.5 microM A-77003. Dose deescalation to 0.25 microM or removal of A-77003 resulted in the limited spread of the virus throughout the culture, the resumption of viral DNA synthesis, and release of p24. HIV produced after exposure to 0.5 microM A-77003 was noninfectious for a period of 72 h after the removal of the drug. Addition of 1 mg of alpha 1-acid glycoprotein per ml to this in vitro system completely ablated the anti-HIV effect of 0.5 microM A-77003. These data suggest that determination of the minimum effective dose under conditions which simulate human pharmacodynamic patterns may be useful in determining the initial dose and schedule for clinical trials. However, other factors, such as serum protein binding, may influence the selection of a therapeutic regimen.  相似文献   

10.
11.
12.
13.
14.
BACKGROUND: Hydroxyurea is believed to inhibit human immunodeficiency virus type 1 (HIV-1) in HIV disease by decreasing the amount of intracellular deoxynucleotides needed for viral replication. A plasma concentration of 400 micromol L-1 is tolerated in oncological diseases. The present study focused on the possible interference of hydroxyurea with antigen-dependent T-cell activation as an alternative explanation for inhibiting HIV replication in vivo. METHODS: The effect of hydroxyurea on common antigen-induced cell proliferation was studied in peripheral blood mononuclear cells (PBMC) in vitro. RESULTS: Hydroxyurea inhibited Candida albicans-induced cell proliferation at a low concentration (1 micromol L-1), while at least 10 micromol L-1 was required to block HIV-1 replication in phytohaemagglutinin (PHA)-stimulated PBMC. CONCLUSION: Hydroxyurea inhibits antigen-induced lymphoproliferation in vitro at a concentration at which it does not inhibit PHA-induced HIV replication. Hydroxyurea may inhibit HIV-1 in CD4+ T cells in vivo not only by decreasing the amount of intracellular deoxynucleotides, but more specifically by interfering with antigen-dependent T-cell activation, thereby causing a reduction in the number of HIV target cells.  相似文献   

15.
16.
CGP 53437 is a peptidomimetic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease containing a hydroxyethylene isostere. The compound inhibited recombinant HIV-1 protease with a Ki of 0.2 nM. The inhibition constant versus human cathepsin D and human cathepsin E was 4 nM. Human pepsin and gastricsin were inhibited with Kis of 8 and 500 nM, respectively, and human renin was inhibited with a Ki of 190 microM. The replication of HIV-1/LAV, HIV-1/Z-84, and HIV-1/pLAI was inhibited with a 90% effective dose of 0.1 microM in acutely infected MT-2 cells. The 50% cytotoxic dose was 100 microM. Similar antiviral activity was observed when the compound was added up to 10 h after infection. At the effective concentration, processing of Gag precursor protein p55 was greatly reduced, confirming an action on the late stage of the virus life cycle, as expected. The efficacy of the inhibitor was also demonstrated by using primary human peripheral blood lymphocytes infected with the HIV-1/LAV strain, low-passage clinical isolates obtained from HIV-1-seropositive individuals (including a zidovudine-resistant strain), and HIV-2/ROD. In these cells, CGP 53437 delayed the onset of HIV replication in a dose-dependent fashion (substantial effects with concentrations of > or = 0.1 microM) as long as the inhibitor was maintained in the culture. CGP 53437 was orally bioavailable in mice. Concentrations in plasma 10-fold in excess of the in vitro antiviral 90% effective dose could be sustained for several hours after oral application of 120 mg/kg. Therefore, CGP 53437 has the potential to be a therapeutically useful anti-HIV agent for the treatment of AIDS.  相似文献   

17.
A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector pseudotyped with HIV envelope containing the herpes simplex virus-thymidine kinase (HSV-TK) gene under the control of the HIV LTR promoter (pHXTKN) was constructed and stably transferred into human CD4(+) H9, CEM, and U937 cells. RNase protection assays did not initially detect expression of the HSV-TK gene in HXTKN-transduced CD4(+) cells (HXTKN/CD4), but expression was then efficiently induced by infection with HIV-1. MTT assays showed that after HIV-1 infection, the susceptibility of HXTKN/CD4 cells to ganciclovir (GCV) was 1000-fold higher than prior to infection. This enabled HIV-1-infected cells to be selectively killed by transduction with HXTKN followed by exposure to GCV. Because the HSV-TK gene is specifically transferred into HIV-1-permissive cells and expressed only after HIV-1 infection, the frequency of unwanted cell death should be low. Elimination of the HIV-1-infected cells effectively inhibited further spread of infectious virus. In addition, the integrated HIV vector sequences were repackaged on infection with HIV-1 and transferred to surrounding untransduced cells. These results are indicative of the potential benefits of using HIV vectors in gene therapies for the treatment of HIV-1 infection.  相似文献   

18.
19.
Rationally designed synthetic inhibitors of retroviral proteases inhibit the processing of viral polyproteins in cultures of human immunodeficiency virus type 1 (HIV-1)-infected T lymphocytes and, as a result, inhibit the infectivity of HIV-1 for such cultures. The ability of HIV-1 protease inhibitors to suppress replication of the C-type retrovirus Rauscher murine leukemia virus (R-MuLV) and the HIV-related lentivirus simian immunodeficiency virus (SIV) was examined in plaque reduction assays and syncytium reduction assays, respectively. Three of seven compounds examined blocked production of infectious R-MuLV, with 50% inhibitory concentrations of < or = 1 microM. Little or no cellular cytotoxicity was detectable at concentrations up to 100 microM. The same compounds which inhibited the infectivity of HIV-1 also produced activity against SIV and R-MuLV. Electron microscopic examination revealed the presence of many virions with atypical morphologies in cultures treated with the active compounds. Morphometric analysis demonstrated that the active compounds reduced the number of membrane-associated virus particles. These results demonstrate that synthetic peptide analog inhibitors of retroviral proteases significantly inhibit proteolytic processing of the gag polyproteins of R-MuLV and SIV and inhibit the replication of these retroviruses. These results are similar to those for inhibition of HIV-1 infectivity by these compounds, and thus, R-MuLV and SIV might be suitable models for the in vivo evaluation of the antiretroviral activities of these protease inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号